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ABSTRACT

Radio Frequency (RF) tomographic tracking is the process of track-
ing moving targets by analyzing changes of attenuation in wireless
transmissions. This paper presents a novel sequential Monte Carlo
(SMC) method for RF tomographic tracking of a single target using
a wireless sensor network. The algorithm incorporates on-line Ex-
pectation Maximization (EM) to estimate model parameters. Based
on experimental measurements, we introduce a new measurement
model for the attenuation caused by a target. We assess performance
through numerical simulation and demonstrate that it significantly
outperforms previous RF tomographic tracking procedures.

Index Terms— RF Tomography, On-line EM, Sequential
Monte Carlo, Wireless Sensor Networks

1. INTRODUCTION

Device-free passive (DfP) localization techniques estimate the lo-
cations of moving objects without requiring that the objects carry
devices that transmit or reflect signals [1]. Many different DfP al-
gorithms have been developed in recent years. Signature-based al-
gorithms can be effective but require extensive training data to learn
signal patterns that correspond to target positions. Radio-frequency
tomographic imaging/tracking avoids this by proposing a statistical
model for the change induced in the mean (or variance) of the re-
ceived signal strength of a transmission when a target is present be-
tween the wireless transmitter and receiver [2, 3, 4, 5].

RF tomographic imaging involves an image reconstruction step
to estimate target locations [2, 3]. The only previous RF tomo-
graphic tracking approach [3] treats the maximum of this image as a
“measurement” and applies a Kalman filter to track the target. This
method has several disadvantages: (i) it necessitates a pixelization
of the region of interest (to form an image); (ii) an imaging problem
must be solved, which is considerably more challenging than the ac-
tual tracking problem of interest; (iii) the measurements are artificial
and the pixelization induces an undesirable quantization error.

We propose a novel RF tomographic tracking algorithm, which
avoids the imaging task. We adopt a particle filtering (Sequential
Monte Carlo) approach. In order to make the algorithm computa-
tionally efficient and improve tracking accuracy, we introduce a new
measurement model, whose form is motivated by experimental data.
This model does not pixelize the region of interest, in contrast to
the measurement models of [2, 3]. Our algorithm incorporates an
on-line Expectation Maximization (EM) procedure to estimate the
parameters of the dynamic model of the target and the observation
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model. These parameters can vary significantly for different targets
and environments, so the on-line EM algorithm provides an impor-
tant self-calibration mechanism.

The rest of the paper is organized as follows. Section 2 provides
a problem statement. Section 3 describes the pixel-free measurement
model and Section 4 details the new algorithm. Section 5 reports on
simulation experiments and Section 6 makes concluding remarks.

2. PROBLEM STATEMENT

When RF signals are transmitted through a sensed area, the obstruc-
tions inside the area can absorb, scatter or reflect part of the sig-
nals. These effects cause attenuation of the Received Signal Strength
(RSS). The changes in mean attenuation of the signals transmitted
between multiple pairs of sensor nodes can be used to estimate the
position of a moving target.

We consider a network of N nodes and M links. In each mea-
surement interval, the N nodes successively broadcast packets and
the neighboring nodes measure the RSS. The RSS value of link ¢
at time step k is y;(k). We assume that we have access to a rela-
tively small number of sensor measurements recorded during a pe-
riod when there is no object moving through the sensed area. From
these, we calculate an average background RSS value vector yavg,
which contains the average RSS values across all links:

Yave = [J1, 92, -, Gumr] " M

This vector captures the attenuation caused by the stationary objects
in the region of surveillance.

During the tracking period, an instantaneous RSS value vector
Yk is collected from the sensors at time k. This contains an RSS
value for each of the M links. We subtract the background vector
Yave to obtain a vector of the RSS change:

Zx = Yk — Yavg (2)

Our goal is to track a single moving target described by state xy,
with motion specified by a Markovian dynamic model f(xx|xx—1).
In order to do this, we strive to maintain a particle approximation of
the marginal posterior p(xk|z1.x) and estimate the expected value of
x under this distribution.

3. MEASUREMENT MODEL

The measurement model describes the relationship between the true
state and the measurement values. In this paper, we propose a pixel-
free measurement model for the attenuation caused by a target mov-
ing between a transmitter s and receiver . The model is motivated
by experimental data recorded in a sensor network deployed in an



outside environment with relatively few obstructions (some trees and
a statue). Figure 1 shows the data we recorded together with the
model we propose, where the two parameters of the model have been
chosen by simple regression to minimize the mean-squared error.

For the two-way link ¢ between a node pair, consider an ellipse
with foci at the transmitter and receiver. Define:

w2 d(xi) + df (xx) — ds (3)

where d; (xx), dj (xk) are the distances from the target’s position to
the source and receiver, respectively, and d; is the link distance. A}
is a parameter related to link ¢’s elliptic width which describes the
target’s position relative to the link 4 at time step k.
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Fig. 1. Attenuation level versus )\ for the proposed pixel-free model:
a comparison between the model and experimental measurements.
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0, otherwise.

Here o is a parameter that controls the rate of decay of attenuation
with respect to \. We then construct the pixel-free measurement
model as

Zx = @8k + 05k ()

where zy is a M x 1 vector represents the measured attenuation, ¢ is
a scalar weight parameter, and Sy is a M x 1 vector of measurement
noise with Sk ~ N (0, Inrx ).

4. SMC RF TOMOGRAPHIC TRACKING ALGORITHM

We employ a particle filter to track the marginal posterior distribu-
tion p(xk|z1:x). The filter maintains a weighted particle approxi-
mation to the marginal posterior (see [6] for a tutorial introduction
and overview of particle filtering techniques). In this paper, we de-
scribe a sequential importance resampling (SIR) approach, but it is
also possible to use other methods such as auxiliary particle filtering.

The observation model that we outlined in Section 3 has three
unknown parameters, ¢, o, and os. Our experimental experience
with the second of these parameters o is that it is relatively consis-
tent for different targets and environments. We therefore choose to

estimate it from our experimental data and fix it as a constant in our
tracking algorithms. There is considerably more variation in ¢ and
os. For this reason, we choose to estimate these using the on-line
Expectation-Maximization (EM) approach described in [7].

We adopt a Gaussian AR-1 model for the target dynamics, i.e.
Xk4+1 = aXi + 0, VE, Where xy is the target postion in the 2D
plane and v ~ N(0, 1). The constant ¢ < 1 models a (small) drift
towards the centre of the surveillance region and leads to a stationary
process; we choose a as a constant that is close to 1.

4.1. On-line EM Algorithm

In the on-line EM algorithm, we form estimates of the set of param-
eters 0 = [, 05, 0,]. Here we provide a necessarily brief overview
of the on-line EM algorithm. We refer the reader to Section III.B
of [7] for more detail.

A natural approach to point estimation for the parameters 6 is to
recursively maximize the series of likelihoods p(z1.x|6). An on-line
EM algorithm could be employed for this task, but this requires esti-
mation of sufficient statistics based on probability distributions with
increasing dimension with respect to time. Andrieu et al. propose
an on-line EM algorithm that focuses on a pseudo-likelihood. The
on-line EM updates are performed every L time-steps using blocks
of particles and measurements. Define X S XbL41:(b+1)L and
Zy £ ZpL41:(b+1)L, Where b is the index of the block.

Since the underlying process xj is stationary, the vectors
{Xb, Zy} are identically distributed with common distribution

Po(Xv, Zv) =mo(Xor+1)Po(ZbL+1)|XpL+1) X
(b+1)L

H Do (Xk|Xk—1)po(Zk|xk) (6)

k=bL+2

where g (+) is the stationary distribution of the process x. The like-
lihood pe(Zs) for block b is

Do (Zb) = / Do (X, Zb) dX. (7)
XL

We form an estimate of § by maximizing a log pseudo-likelihood
function [7] defined for m blocks of observations as

m—1

1(0) = > logpe(Zs) ®)
b=1

Under ergodicity assumptions, the average log pseudo-likelihood
satisfies

1(0) = /ZL log po(z)pe~ (2) dz )

where 6 is the true value of 6. The on-line EM algorithm recursively
maximizes [(0) by updating the estimate of 6 via

0, = arg max Q(0,0p-1) (10)
where
Q.01 = [ og(ou(x.2)pu, (X2 (2) dxda
XL xzlL

an

In practice, we compute () via a set of sufficient statistics
Q(6,,0%). We use 0, = A(2(0,—1,07)) as a mapping function



from the sufficient statistics €2(6, 6*) to 6 that maximizes Q. In our
case, the sufficient statistics ©(6p—1, 6™) are:

QOy_1,07) =

= Lo, 001,902, 93, P4] 12)

where w1, ..., w4 are functions of 0,1 and 6%, and 91, ..., %4
are functions of X; and Zj;. The expectation is with respect to

Doy, _ 1 (X|Z)pg* (Z)

(w1, w2, w3, wa)

(b+1)L
> (e —xa-1) T (xic — Xk-1))
k=bL+2
(b+1)L
> (2 — dgr)” (2 — dgr))
k=bL+1
(b+1)L
> (zigr)
k=bL+1
(b+1)L

> llexlls

k=bL+1

1(Xs, Zo)

P2(Xy, Zyp)

P3(Xp, Zy) =

Pa(Xs, Zp) =

The mapping A is defined as:

o UJ1(05_1,0*)
Ovp = A1) (13)
Op_1,0*
w3 (0p—1,0")
— Z2\0m Y ) 1
®b 010y 1,07 (15)

The expectations do not have an analytical solution, so we cal-
culate them by an importance sampling approach, using the particle
tracks that we generate in our tracking algorithm. The complete al-
gorithm, combining the SIR filter and on-line EM, is described in
Algorithm 1 below. For the simulations reported in this paper, we

have used the prior p(xx |x,(;ll) as the importance function gq.

S. SIMULATION RESULTS

5.1. Simulation Description

In this section we present the results of simulations conducted to
explore the performance of the proposed algorithm. The simulation
mimics a wireless sensor network with 24 nodes that we have used
for preliminary experiments. The sensor nodes are deployed in a
7m X 7m square as shown in Figure 2 (a), with a spacing of 1 metre.
A person walks within the network area clockwise along a specified
square route (the blue line) with the speed of 0.5 metres per second
starting from position (1,1). A set of measurements is recorded every
second (i.e. each time step corresponds to one second).

We generate 100 realizations of this trajectory for each of 3 mea-
surement noise standard deviations o, = 0.1,0.5,+/5. The mea-
surements are generated according to two models: the pixel-free
model described in this paper and the pixelized model from [2]. For
the pixel-free model, oy = 0.02 and ¢ = 5 (these values were cho-
sen because they provide a good fit to our experimental data). For the
pixelized model, Ap = 0.15m (pixel width), and A\ = 0.02 (see [2]),
and ¢ = 15 (again these values provide a good fit to experimental
data).

We compare the performance of the SMC algorithm with that
of the imaging plus Kalman filter algorithm of [3]. In the SMC al-
gorithm, we use 1000 particles. The unknown parameter values in
the on-line EM algorithm are initialized by drawing from the fol-
lowing uniform distributions: o5 ~ U(0,v/5], ¢ ~ U(0,10] and
oy ~ U(0,1]. In the imaging plus Kalman filter algorithm, the reg-
ularization parameter « used in the imaging algorithm is set to 200.
The transition noise o, for the Kalman filter is set to 0.3.

// Initialization
Sample 6y ~ ¢q(f) and set b = 1;
for:=1,...,N do

Sample xg’) ~ q(Xo);
, (D
Setw{) = P&
Q(xo )
end
for k=1,2,... do
// SIR

fori=1,...,N do
// Sampling
v~ o, (eeleL )
// Calculate importance weights

Sample x

po,_y (zrlxpe,  Gelxf? )

Set p{ = - ;
Pr %b,l(xk\xgllyzk)
end
// Resample
ORRONG in {5 117
Resample {x; ", p;. to obtain | x,.”,
i=1 i=1
// On-line EM
if £ mod L = 0 then
// E-step
fori=1,...,Ndo
; x|z
Calculate Wb(Z> = Lﬁ)‘b);
960, _, (X, 1Zb)
end
Normalize weights {Wb(z)} such that
YW =1
Update €2, =
(1= )€1 + a0 S0, W™ (X", Z):
// M-step
Set 0, = A(Sp) and b = b+ 1;
end
end

Algorithm 1: SMC RF Tomographic Tracking

5.2. Results

An example SMC-estimated trajectory for the case o, = /5 is
shown in Figure 2; it clearly provides a relatively accurate approx-
imation of the ground-truth trajectory. Figure 3 shows a box-and-
whisker plot of the mean-squared error (MSE) for the SMC algo-
rithm when applied to data generated using the pixel-free model,
based on 100 realizations. The MSE decreases rapidly after the first
10 time steps and stays at a constant low level. For almost all tracks,
the on-line EM succeeds in providing acceptably accurate estimates
of the unknown parameters, leading to improved performance over



(a) Simulation layout with SMC tracking example

8 T T T T T T T T
7 ® ® ® 1
+'~ gy - - -— o -4
6 ’_:'— D e ey e atanins @
5¢ ®
€ 4r @ ; OSensor Nodes 4
- +l = =True Trajectt
> 3t @ 1 - E;L:ﬁnal;zjc??r?a%ctory -}'I' @ k
¥ K
r @ i ‘
1t "’"41'-9-;-4—-#--0—-#-;—4—-#-4——&’ O
of O 66 6 © 6 6 1
o 1 2 3 4 5 6 7 8
X, m
(b) Convergence of parameter ¢ by on-line EM
10,

1 20 30 40 50 60 70 80 90
Time Step

Fig. 2. Simulation scenario with a square trajectory. (a) An example
tracking estimate is depicted for the case o5 = /5. (b) The evolu-
tion of the estimate of ¢ using the on-line EM algorithm. For most
tracks the estimates converge to a value close to the true value of 5.

time. Figure 2(b) shows the evolution of the estimates of ¢. Almost
all estimates converge to values close to the true value 5 after 30-40
seconds (3-4 update steps in on-line EM).

Tables 1 and 2 compare the mean-squared error (MSE) of the
SMC and the imaging plus KF algorithms using the data generated
from the pixelized model and the pixel-free model, respectively. At
the same noise level, the MSE values of SMC algorithm are much
lower than those of the imaging plus KF algorithm. The SMC algo-
rithm, despite operating under the assumption of a pixel-free model,
significantly outperforms the imaging plus KF algorithm even when
the data is generated using a pixelized model.

Noise Std. Dev. | SMC Alg. (m?) | Imaging Alg. (m?)
0.5 0.0086 0.6165
1 0.0093 0.6166
NG 0.0158 0.6645

Table 1. MSE comparison using data from pixelized model

Noise Std. Dev. | SMC Alg. (m?) | Imaging Alg. (m?)
0.5 0.0010 0.0943
1 0.0019 0.4890
NG 0.0277 2.2046

Table 2. MSE comparison using data from pixel-free model
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Fig. 3. Box-and-whisker plot of the MSE as a function of time for the
SMC algorithm applied to data generated using the pixel-free model.
The boxes range from the 25th to 75th quantiles; the whiskers extend
3 times the interquartile range. The median is marked as a red line;
and the red plus symbols indicate outliers.

6. CONCLUSIONS

This paper introduces a particle filtering method for RF tomo-
graphic tracking of a single target. The algorithm incorporates an
on-line EM algorithm to estimate key parameters in the measure-
ment and dynamic models. In order to improve the accuracy and
to reduce computational requirements, we developed a pixel-free
measurement model based on experimental data. Simulation results
demonstrate that the algorithm is effective and outperforms the pre-
viously described approach. Future work will focus on real-world
experiments and an extension to multi-target tracking.
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