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ABSTRACT 

Randomfinite set (RFS) based filters such as the cardinalized prob­

ability hypothesis density (CPHD) filter have been successfully ap­
plied to the problem of single sensor multi target tracking. Various 
multi sensor extensions of these filters have been proposed in the lit­
erature, but exact update equations for the multi sensor CPHD filter 
have not been identified. In this paper, we provide the update equa­
tions and propose an approximate implementation. The exact imple­
mentation of the multi sensor CPHD filter is infeasible even for very 
simple scenarios. We develop an algorithm that greedily searches 
for the most likely groups of measurement subsets. This enables 
a computationally tractable implementation. Numerical simulations 
are performed to compare the proposed filter implementation with 
other random finite set based filters. 

Index Terms- random finite sets, CPHD filter, multi sensor 
processing, multi target tracking 

1. INTRODUCTION 

In this paper we address the problem of multi target state estimation 
using the measurements generated by multiple sensors. In the ran­

domfinite set (RFS) framework the multitarget state and sensor mea­
surements are modelled as realizations of random finite sets. Various 
filters have been developed within this framework for the case when 
measurements are generated by a single sensor. Prominent examples 
include the probability hypothesis density (PHD) filter [1] and the 
cardinalized probability hypothesis density (CPHD) filter [2]. Imple­
mentations of these filters have been successfully applied to single 
sensor tracking [3-5], but there has been less progress in developing 
accurate and computationally tractable multi sensor filters. 

The general multi sensor PHD filter was first developed by 
Mahler [6], but equations were only presented for the two-sensor 
case. Delande et al. [7] extended the result to apply to any number 
of sensors. Exact implementation is infeasible due to the combina­
torial nature of the filter. Further simplifications or approximations 
are required for a computationally tractable algorithm. Delande et 
al. [8,9] have provided filter equations with reduced computational 
complexity when there is limited overlap in the fields-of-view of the 
different sensors. They describe a particle filter based implementa­
tion. Jian et al. [10] proposed to implement the general multi sensor 
PHD filter by repetitive application of a two-sensor PHD filter, 
but the proposed extension to multiple sensors is unclear. In the 
iterated-corrector PHD filter [11] the multisensor information is 
processed in a sequential manner. Measurements from the first sen­
sor are processed by the single sensor PHD filter. The output PHD 
produced by this step is used as the predicted PHD when processing 
measurements from the second sensor and so on. A drawback of 
this approach is that the final result depends on the order in which 
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sensors are processed [12]. An iterated-corrector CPHD filter can 
be constructed in a similar fashion. To address the issue of sensor 
order dependence, Mahler proposed the product multisensor PHD 

and CPHD filters [13]. Although the final results are independent 
of sensor order, Ouyang and Ji [14] have reported that Monte Carlo 
implementations of these filters are unstable and the problem wors­
ens as the number of sensors increases. We have observed a similar 
instability in Gaussian mixture model based implementations. 

We make two main contributions in this paper. First, we provide 
exact update equations for the general multi sensor CPHD filter. Due 
to space restrictions we do not include the derivations, but we pro­
vide them in [15]. Exact implementation of the filter is computation­
ally infeasible. In our second contribution, we develop an approx­
imate, computationally tractable implementation using a Gaussian 
mixture model. The filter estimates at each time step both the num­
ber of targets and the target state values. We use greedy algorithms 
to identify the most likely groupings of the subsets of measurements 
associated with each target. By processing only these groupings, we 
can drastically reduce the computational overhead without experi­
encing significant degradation in tracking performance. 

1.1. Problem Statement 

We describe the multisensor multitarget tracking problem in this 
section. Let the individual target state at time k be denoted by 
Xk,i E R9x for the ith target. The multi target state is given by the set 
Xk = {Xk,l,' .. Xk,nk} where nk 2 0 is the unknown number of tar­
gets present at time k. The single target state is assumed to evolve ac­
cording to the Markovian transition kernel A+llk(Xk+l,ilxk,i). Let 
bk(X) be the target birth intensity function at time k and Psv,k(X) 
be the single target survival probability. 

Information about the multi target state is available from s 
independent sensors. Let Z� = {z{ k' z� k' . . .  , ztr, . k} be the " ), 
measurement set generated by the j-th sensor at time step k. 
The measurement set can be empty. Denote by Z�:s the collec­
tion of measurement sets generated by all sensors at time k, i.e., 
Z�:s = {ZL Z�, ... , Zk}. If a target is present at location x, sen­
sor j detects it with probability of detection P� k (x) and generates 
a measurement z with probability density (likelihood function) 
given by hj,k (zlx). Denote the probabilty of a missed detection as 

q� k(x) = 1- � k(x), , , 
We are interested in forming an estimate Xk of the multitarget 

state at time k given all the measurements up until time k by all the s 
sensors denoted by zU:' = {Zi:s, zi's, ... , Z�:s}. More generally, 
we would like to estimate the posterior multi target state distribu­
tion Alk(Xklzi,'n. In a CPHD filter setting, we assume that the 
posterior multitarget state distribution can be approximated using an 
independent and identically distributed cluster (II DC) process. 
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2. GENERAL MULTISENSOR CPHD FILTER 

In this section we present the general multisensor CPHD filter. The 
filter derivation is based on the following modelling assumptions: 
(i) the predicted multi target distribution at time k + 1 is nDC; (ii) 

the sensor observation processes are independent conditional on the 
multitarget state Xk+1, and the sensor clutter processes are nDC; 
(iii) each target generates at most one measurement per sensor at 
each time instant; and (iv) each measurement is either associated 
with one target or is generated by clutter. 

We introduce some notation and quantities before presenting the 
filter equations. Let Ck+l ,j (z) be the clutter spatial distribution and 

Ck+l,j (y) be the probability generating function (PGF) of the clut­
ter cardinality distribution of the j-th sensor at time k + 1. Let 
Dk+llk(X) denote the predicted PHD function and rk+llk(X) denote 
the normalized predicted PHD function at time k + 1 (normalized so 
that it integrates to one). Let the PGF of the predicted cardinality dis­
tribution Pk+llk(n) be denoted by Gk+1Ik( Y)' For brevity we drop 
the time index and denote 

Ck+l,j(Z) = Cj(z), Ck+l,j(Y) = Cj(y), P� k+l (x) = p�(x) 

Gk+1Ik(Y) = G(y), q� k+l (x) = q�(x) 

hj,k+l(zlx) = hj(zlx), mj,k+l = mj 

Note that abbreviated notation is used only for convenience and the 
above quantities are in general functions of time. Throughout the en­
tire paper, for functions a(x) and b(x), the notation a[b] is defined 
as a[ b] = J a( x) b( x) dx. We use the notation [1, s] to denote the 
set of integers from 1 to s. 

2.1. CPHD prediction step 

The prediction step of the CPHD filter for the multi sensor case is 
the same as that for the single sensor case. The posterior probability 
hypothesis density at time k is Dklk (x) and the posterior cardinality 
distribution is Pklk (n). The predicted probability hypothesis density 
function at time k + 1 is given by [2,5] 

The predicted cardinality distribution at time k + 1 is given by [2,5] 

Pk+llk (n) = 

",
.

n ( _ .) � ( I ) (Dk+lldPsv]F (Dk+lldl-psv])l-j (l) 
L.,Pb n J L., . (D [l])l Pklk , 
J=O l=j J k+llk 

where n, j and I are non-negative integers and Pb is the cardinality 
distribution of the birth process. 

2.2. CPHD update step 

We now provide the CPHD filter update equations. For derivation 
of these equations please refer to the technical report [15]. Let W 
be any subset of the measurement set ZVl such that it contains at 
most one measurement per sensor. Think of W as a possible subset 
of measurements at different sensors generated by the same target. 
Let P be a grouping of disjoint subsets W. We denote the collection 
of all such possible groupings by P. We denote by IFI the number 
of subsets W in P, and define 

IFlj = I{z E Z�:W E P with Z E W} I . (2) 

Th t't' C(v)() 
- d"Cj(Y) d G(v) ( ) _ dVGk+1Ik(Y) e quan lIes j Y 
-

dy" an k+llk Y 
-

dyV 
are the vth -order derivatives of the PGFs of the clutter cardinality 
distribution and the predicted cardinality distribution, respectively. 

We use "t to denote the probability, under the predictive PHD, 
that a target is detected by no sensor, and we thus have: 

(3) 

For concise specification of the update equations, it is useful to have 
notation to describe the cardinality component of the weight associ­
ated with a grouping P. Let us define the following quantities: 

'¢P = (U C;mdPlj)(O)) dIPI)b) , (4) 

'¢;O = (U C;mj-IPlj)(O)) dIPI+1)b) , (5) 

'¢70 = n! , (fI C;mdPlj \0) ) "tn-IPI . (6) 
(n-IPI)· j=1 

Here '¢P is the cardinality component of the weight assuming that 
at least IFI targets are present; '¢;O assumes additionally that at least 
one of these is not detected; and '¢'j, is the appropriate weight when 

n is the true cardinality of the multi target set. 

Since the measurement subset W includes at most one mea­
surement from each sensor, we can associate with it an index set 
Tw � [1, s] which is the collection of sensor indexes which con­
tribute measurements to W. Define: 

(7) 

ieTw 

The probability hypothesis density update expression for the general 
multisensor CPHD filter is then given by: 

Dk+llk+l(X) TI
s 

j '" ( '" ( ) 
( ) 

= ao . qd(x) + L., ap L., pw x) . 
rk+llk x J=1 PEP WEP 

The cardinality distribution update expression is given by 

Pk+llk+l (n) 
Pk+llk (n) 

L (,¢70 TI 
dW

) 
PEP WEP 
IPI,;n 

L ('¢p 
TI 

dW
) 

PEP WEP 

(10) 

(11) 
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3. APPROXIMATE IMPLEMENTATION OF THE 

GENERAL CPHD FILTER 

In this section, we propose a computationally tractable implemen­
tation of the general multi sensor CPHD filter. An exact implemen­
tation of the general multisensor CPHD filter is infeasible because 
of the prohibitively large size of the collection P. Hence we pro­
pose the following two-step approximation to identify elements ofP 
which make significant contribution to the update expressions. The 
first approximation is to select a few measurement subsets W for 
each Gaussian component that are best explained by that component. 
The second approximation step is to greedily construct groupings of 
these subsets which are significant for the update step. 

3.1. Selecting the best measurement subsets 

For this step we assume the following Gaussian mixture model rep­
resentation of the normalized predicted PHD function 

(12) 

where NCi)(X) is a Gaussian density function. Consider the mea­
surement subset Wand the associated index set Twas defined ear­
lier. For the ith Gaussian component and the measurement subset 

W we can associate a weight function ,BCil(W) defined as 

jETw 

This weight can be intuitively thought of as the ratio of the likelihood 
that W was generated by the single target represented by the ith 

Gaussian component and the likelihood that W was generated by the 
clutter process. When the measurement subset W is truly generated 
by the ith Gaussian component, the weight,BC i) (W) is high. We use 

,BC i) (W) to rank measurement subsets for each Gaussian component 
and retain only a fraction of them with highest weights. 

For each Gaussian component, we select the measurement sub­
sets by randomly ordering the sensors and incrementally incorporat­
ing information from each sensor in turn. We retain a maximum of 
Wmax subsets at each step. The algorithm can be visualized in the 
form of a trellis diagram. Figure I provides a pictorial representa­
tion. The nodes of the trellis correspond to the enumerated sensor 
observations ( 1,2, ... ) or the no detection case (0). Each column 
of the trellis corresponds to observations from one of the sensors. 
The sensor number is indicated at top of each column. Each path 
through the trellis corresponds to a different measurement subset. 
The sequential sensor processing can be demonstrated as follows. 
A measurement subset (path) retained after processing observations 
from sensor 3 is shown as a solid line passing through nodes 0, 1 
and 1 corresponding to sensors 1, 2 and 3 respectively. When pro­
cessing sensor 4 information, this path is extended for each node of 
sensor 4 as represented by the dashed line. The weights of these new 
measurement subsets (paths) are calculated using the expression for 

,BCi) (W) but limited to only the first 4 sensors. This is done for each 
existing path in the sensor-measurement space and Wmax measure­
ment subsets with highest weights are retained. 

2 3 4 5 

0 0 @ 0 

CD It:�-----0 ,', CD 
\ " 

. 
(2) (2) (2) \. 'CD (2) 

CD CD ® 

Fig. 1. Trellis diagram 

3.2. Grouping of subsets 

The algorithm to select groupings of subsets is similar to the above 
algorithm used to identify the best measurement subsets. To un­
derstand the algorithm, we can interpret the trellis diagram in Fig­
ure 1 as follows: Each column of the trellis corresponds to the set 
of measurement subsets identified by a Gaussian component with 
the component number indicated at the top for each column. The 
node 0 corresponds to the empty measurement subset W = 0 which 
is always included for each component. We note that not all paths 
through this trellis correspond to a valid grouping because of the 
constraint that the measurement subsets within a group should be 
disjoint. With each valid group (path) P we associate the weight 
measure op = TI dw with d0 = 1. 

WEP 
We greedily identify groupings of subsets by incrementally in-

corporating measurement subsets from the different components. 
We process the components in decreasing order of their associated 
weights. While performing extension of paths, only those leading 
to a valid group are considered. After processing each component, 
we retain a maximum of Pmax paths corresponding to the ones with 
highest 0 p. These selected groups of measurement subsets are used 
in the update equations (10) and (11) to compute the posterior PHD 
and cardinality distribution. 

4. NUMERICAL SIMULATIONS 

We next compare Gaussian mixture model based implementations 
of the different multi sensor PHD and CPHD filters. We com­
pare the iterated-corrector PHD (IC-PHD [11]), the product PHD 
(P-PHD [13]), the general multisensor PHD (G-PHD [6,7]), the 
iterated-corrector CPHD (IC-CPHD [11]), the product CPHD (P­
CPHD [13]) and the general multisensor CPHD (G-CPHD) proposed 
in this paper. The simulation setup is similar to the one in [12]. 

Target dynamics and parameters: The target tracks are simu­
lated using the constant velocity model [12]. The single target state 
is a quadruple consisting of its x and y coordinates and its velocities 
along those axes. The targets are moving inside a 2000m x 2000m 
square region for 100 time steps. 1\vo targets are present initially 
and a third target arrives at time step k = 66 and stays until the 
end. The single target survival probability is assumed to be con­
stant over the whole region with ps = 0.9 9. The cardinality distri­
bution of target births Pb is assumed Poisson with mean 0.2. The 
target birth intensity function bk+l (x ) is a two component Gaussian 
mixture with weights 0.1 each and centered at [250,250,0,0] and 
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[-250, -250, 0 , 0] with covariance matrix diag([lOO, 100,25,25]). 
All targets originate from either of these two locations. 

Observation model and parameters: Three sensors (s = 3) 
make observations about the targets' positions (x and y coordinates). 
For each sensor, the measurement noise when a target is detected is 
additive Gaussian with zero mean and covariance matrix 0";1 where 
1 is the identity matrix and 0"; = 100m2. The clutter process for each 
sensor is Poisson with rate).. = 10 and a uniform clutter density over 
the monitoring region. Two of the sensors have a fixed probability of 
detection Pd = 0.95. The probability of detection of the third sensor 
is changed gradually from 0.5 to 1 in the simulations. We consider 
two different sensor orderings while processing each of the above 
filters. In Case 1 the sensor with variable probability of detection is 
processed last while in Case 2 it is processed first. 

Filter implementation details: The algorithms use a Gaussian 
mixture approximation of the PHD, as first employed in [4,5]. The 
simulations were conducted using MATLAB. Pruning and merging 
of Gaussian components is performed after processing each sensor 
for the iterated-corrector filters. Many of the components have very 
small weights and pruning them after processing each sensor has no 
significant effect on the tracking accuracy but greatly reduces com­
putation time. For other filters, pruning and merging is conducted at 
the end of each time iteration as they process measurement subsets 
and we do not have access to the intermediate Gaussian components. 

We develop novel implementations of the general multi sensor 
PHD and CPHD filters to make them computationally tractable. For 
both filters, the first step is to find measurement subsets using the 
algorithm in Section 3.1 and we use Wmax = 8. Implementation of 
the general multi sensor PHD filter proceeds by finding all possible 
partitions from the given collection of measurement subsets. This 
problem can be mapped to the exact cover problem in computer sci­
ence [16]. An efficient algorithm called Dancing Links has been 
suggested by Knuth [17] for solving this problem. We use an open 
source implementation of this algorithm in the C programming lan­
guage [18]. For the general multisensor CPHD filter, we perform 
grouping of measurement subsets using the algorithm described in 
Section 3.2. We select a maximum of Pmax = 25 groups of mea­
surement subsets in our implementation. For the CPHD filters, the 
cardinality distribution is assumed to be zero for n > 20. 

Results and discussion: We use the OSPA error metric [19] 
to compare the tracking estimates of different filters. For the OSPA 
metric, we set the cardinality penalty factor c = 100 and power P = 1. 
For the PHD filters, we estimate the number of targets by rounding 
the sum of weights of the Gaussian components to the nearest in­
teger. For the CPHD filters, we estimate the number of targets as 
the peak of the posterior cardinality distribution. For all the filters, 
the target state estimates are the centres of the Gaussian components 
with highest weight in the posterior PHD. After each time step, we 
restrict the number of Gaussian components to a minimum of four 
and a maximum of four times the estimated number of targets. 

The average OSPA error (calculated from 50 Monte Carlo sim­
ulations) is shown in Figure 2(a) for the different filters as a function 
of the probability of detection Pd of the variable sensor. Both the 
product PHD and the product CPHD filters have significantly higher 
error because of the unstable nature of their update equations. The 
IC-PHD filter is sensitive to sensor ordering; processing the sensor 
with low probability of detection last (Case 1) leads to a significant 
deterioration in its performance. For the remaining filters the impact 
of sensor ordering is minimal. A portion of Figure 2(a) is expanded 
and shown in Figure 2(b) for clarity. The G-PHD filter and the IC­
CPHD filter have comparable performance. The average OSPA error 
is lowest for the G-CPHD filter proposed in this paper with about 

-e-IC-PHD 
-+-P-PHD 50 .... -e--G-PHD 
-M-IC-CPHD 

g 40 . . . .  -e.-P-CPHD 
UJ +G-CPHD 
c: 
(J) 30l��' 4;;;;;;;'���E:::5t=:$C 
o � . 

f :O! : :�:I�--r-=-I-=--. .! . -. .  -. . .  

0.6 0.7 0.8 0.9 Pd 
(a) 

11 
I-e--G-PHD-M-IC-CPHD+G-CPHDI 

e 10 ................. . , . 
UJ 
c: 
(J) 
o 
Q) 
Ol 
� 

� 

6.5 0.6 0.7 Pd 
(b) 

0.8 0.9 

Fig. 2. (a): Average OSPA error versus the probability of detection 
Pd of the variable sensor. The solid and dashed lines correspond to 
Case 1 and Case 2, respectively. (b): A zoomed-in version of the fig­
ure in (a) focusing on the IC-CPHD filter and the general multi sensor 
PHD and CPHD filters. 

10% improvement when compared to the G-PHD or IC-CPHD fil­
ters for lower values of Pd. The G-CPHD filter improves over the G­
PHD filter because of the additional cardinality information. It also 
outperforms the IC-CPHD filter because it jointly processes groups 
of multi sensor measurement subsets. 

5. CONCLUSIONS 

In this paper, we propose update equations for the probability hy­
pothesis density and the cardinality distribution of the general mul­
tisensor CPHD filter. Since the exact equations are computationally 
intractable we propose an approximate Gaussian mixture model im­
plementation of the filter. We achieve computational tractability by 
restricting the number of measurement subsets for each Gaussian 
component and further using a greedy algorithm to identify likely 
candidate groupings of the subsets. We demonstrated superiority of 
the proposed filter using numerical multi target tracking simulations. 
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