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I. INTRODUCTION

We study the problem of sequential multitarget state
estimation from noisy sensor observations. The traditional
approach to model the state and observations as random
vectors has drawbacks, since it cannot efficiently model
the changing multitarget state dimension and observation
dimension. To address this issue, Mahler [1] formulated
the problem using the random finite set (RFS) framework.
In this framework, the multitarget state and the
observations are modeled as realizations of random sets.
Approximate and computationally feasible multitarget
state estimation algorithms have been developed using
RFS statistics [1–4].

Most of the research on RFS-based multitarget filtering
has made use of a specific type of sensors, which we refer
to as standard sensors [5]. The standard-sensor observation
model can be characterized as follows: 1) Each target
causes either one or no measurement and 2) each
measurement is caused by either a single target or clutter.
Examples of this category of sensors are range sensors,
bearing sensors, radar, and sonar. We are interested in a
different but important class of sensors, which we call
superpositional sensors [5]. The superpositional-sensor
observation model has the following characteristics: 1)
Each measurement is affected by multiple targets in an
additive fashion—i.e., the contribution to a measurement
due to multiple targets is equal to the sum of contributions
to that measurement from each of the targets when present
alone; 2) each target can potentially affect any number of
measurements; and 3) measurements are not independent.
Many sensors belong to the category of superpositional
sensors. Examples include direction-of-arrival sensors for
linear antenna arrays [6], antenna arrays in multiuser
detection for wireless communication networks [7],
multipath channel modeling in MIMO-OFDM channels
[8], acoustic amplitude sensors [9], and radio frequency
tomographic tracking systems [10]. In the RFS filter
literature under standard-sensor assumptions, both the
multitarget state and the observations are modeled as
random finite sets. In this work we model the multitarget
state as an RFS and the observations as random vectors.

Various filters have been proposed within the RFS
framework. These filters differ in the underlying
assumption they make about the multitarget state. The
probability hypothesis density (PHD) filter [2] assumes
the state to be a realization of a Poisson RFS. It has the
advantage that a single PHD function can completely
characterize the multitarget distribution. The cardinalized
probability hypothesis density (CPHD) filter [3] is an
improvement over the PHD filter and uses the independent
and identically distributed cluster (IIDC) RFS to model
the multitarget state. A PHD function and a cardinality
distribution are required to characterize the IIDC
multitarget distribution. The additional cardinality
information improves the performance of the CPHD filter.
These filters have been used in various multitarget
tracking applications. Some examples include application
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of the PHD filter for the problem of passive multistatic
radar tracking [11] and the problem of simultaneous
localization and mapping [12]. The CPHD filter has been
applied for distributed multitarget estimation [13] using
the consensus approach.

Both the PHD and CPHD filters use a single density
function to represent the multiple single-target states. In
contrast, the multi-Bernoulli filter [1, 14] models each
target state with a scalar existence probability and a state
density function. This allows more accurate state
representation and also provides easy track maintenance
[1]. A generalization of the multi-Bernoulli filter has been
proposed by Vo and Vo [15], called the generalized labeled
multi-Bernoulli (GLMB) filter. This provides a
closed-form solution to the Bayes recursive filter and can
track target labels over time. Since a direct
implementation of the GLMB filter can be
computationally expensive, efficient approximations have
been recently developed [16–18].

From our simulations (see Section VII), we observe
that the approximate multi-Bernoulli filter for
superpositional sensors makes frequent cardinality errors.
We address this issue by using a hybrid multi-Bernoulli
CPHD filter in which the new targets are modeled as
realizations of the IIDC RFS while the existing targets are
modeled using the multi-Bernoulli RFS.

In this paper we provide the derivation of the
multi-Bernoulli filter [19] and the hybrid multi-Bernoulli
CPHD filter update equations for the
superpositional-sensor scenario. A summary of the update
equations, without any derivations, was provided in our
earlier conference paper [20]. The derivation relies on
performing an approximate Bayes update of the PHD of
each independent component in the multitarget state. The
cardinality distribution of the IIDC component is also
updated.

We note that the derivation approach we present for
the multi-Bernoulli filters for superpositional sensors is
significantly different from that for the multi-Bernoulli
filter for standard sensors [1]. The latter uses the
probability-generating functional-based formulation of the
multitarget Bayes filter [1], which cannot be easily applied
for the superpositional observation model. The
approximate approach developed in this paper cannot be
extended to the standard observation model, because the
crucial step of applying Campbell’s theorem can only be
used when the observation model has a superpositional
form.

The remainder of the paper is organized as follows. We
summarize the related literature on superpositional sensors
and RFS-theory-based filters in Section II. Section III
provides the problem formulation and discusses the
mathematical formulation of the superpositional-sensor
model. A brief review of the concept of RFSs is provided
in Section IV. The PHD update mechanism for union of
independent random finite sets is also discussed in
Section IV. We develop the multi-Bernoulli and hybrid
multi-Bernoulli CPHD filter update equations in

Section V. Section VI presents the auxiliary particle-filter
implementation of these filters. Section VII compares
these filters with the CPHD filter in the context of
multitarget tracking using acoustic sensor networks and
the radio frequency (RF) tomography measurement
model. We provide conclusions in Section VIII.

II. RELATED WORK

Various multitarget tracking filters have recently been
proposed for the case of superpositional sensors. Here we
provide a brief summary of this literature. A general
mathematical description of RFS theory can be found in
[1, 21]. The PHD filter for superpositional sensors was
derived by Thouin et al. [22].1 CPHD filter equations for
superpositional sensors were first derived in [5] but are
computationally intractable. An analytically tractable
closed-form Gaussian-mixture-based implementation of
the CPHD filter for superpositional sensors was derived by
Hauschildt [26]. Building on the derivation approach
proposed by Thouin et al. [22], Mahler and El-Fallah
derived a computationally tractable CPHD filter for
superpositional sensors [24]. An auxiliary particle-filter
implementation of the PHD and CPHD filters for
superpositional sensors was presented in [25]. The PHD
and CPHD filters for superpositional sensors are
extensively discussed in [21].

The multi-Bernoulli filter was adapted for estimation
and detection of multiple objects from image observations
in track-before-detect applications [27] under the
assumption that the likelihood has a separable form. This
assumption is valid when the objects are nonoverlapping.
Hoseinnezhad et al. [28] used this filter for tracking
multiple targets in background-subtracted image
sequences. The particle-based implementation of the
multi-Bernoulli filter has been discussed in [14].

We proposed the multi-Bernoulli filter for
superpositional sensors in [19]. We presented a
particle-filter implementation of this filter in [29]. This
implementation is similar to the multiple particle filter
proposed in [30] in the sense that both use one particle
filter per target. The multiple particle filter assumes the
number of targets to be fixed and known, but the
multi-Bernoulli filter automatically tracks the changing
number of targets. The update step in the multiple particle
filter propagates the marginal posterior, whereas the update
step in the multi-Bernoulli filter propagates the PHD.

Some recent research has focused on labeled random
finite sets and the corresponding GLMB filter and its
approximations. These can be applied to the
superpositional-sensor model. In [31], Papi and Kim
proposed a particle-based multitarget tracking algorithm
for superpositional measurements. They used the
approximate CPHD filter [25] update equations to design
proposal distributions for propagating labeled random

1 An error in the main update equation of this filter was corrected in an
erratum [23]; the correct equations were also presented in [24, 25].
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finite sets over time. An approximation mechanism is
developed in [32] for multitarget tracking using labeled
random finite sets; this is applicable to any generic
measurement model, including the superpositional-sensor
model. Labeled RFS-based tracking has also been applied
for the case of merged measurements [33], where groups
of closely spaced targets can generate a single merged
measurement.

All of these filters use a single kind of random finite
set to model the multitarget state. We can benefit by
modeling the multitarget state as a union of different kinds
of random finite sets. Some of the hybrid approaches
proposed in the literature for the case of standard sensors
are discussed next. A hybrid of the multi-Bernoulli filter
and the PHD filter was developed by Williams [34] for
multitarget tracking applications, using a Poisson RFS to
model new targets and targets with a low probability of
existence. This results in fast track initiation and use of
fewer Bernoulli components. Pollard et al. [35] used a
hybrid combination of the multiple hypothesis tracking
(MHT) filter and the Gaussian-mixture CPHD filter for
multitarget tracking. The Gaussian-mixture CPHD filter
provides a robust cardinality estimate of the multitarget
state, which is complemented by accurate state estimates
from the MHT filter. A combination of the MHT and PHD
filters was utilized by Panta et al. to obtain track-valued
estimates [36]. They used the PHD filter as a clutter filter
by using its output to gate the input for the MHT filter. To
the best of our knowledge, no hybrid filter has been
developed previously for the case of superpositional
sensors.

III. PROBLEM FORMULATION AND SENSOR MODEL

In this paper we study superpositional sensors in the
context of the multitarget tracking problem. The
multitarget state is the set Xk = {xk,1, xk,2, . . . , xk,nk

},
where xk,i, i = 1, 2, . . . , nk are the single-target state
vectors of the nk ≥ 0 targets present at time step k. The
single-target state dimension is nx, so xk,i ∈ Rnx ∀i. The
targets move independently and their motion is governed
by the Markovian transition kernel tk|k−1 (xk,i|xk−1,i, uk),
where uk is the Gaussian noise vector. This state
information is hidden, but we have access to the
observation vector zk ∈ Rnz at time step k. The
observations are related to the multitarget state through the
likelihood function hzk

(Xk). Let Z[k] = [z1, z2, . . . , zk] be
the collection of all the observation vectors up to time k.
The multitarget tracking problem is to estimate the
posterior multitarget state density p(Xk|Z[k]) at each time
step k. For a known model of the multitarget state, we
estimate the sufficient statistics of the posterior multitarget
state density.

A. Superpositional-Sensor Model

The likelihood function under the superpositional
model assumption has the following form:

hzk
(Xk) = hzk

(ζ (Xk)) (1)

= hzk

⎛
⎝∑

x∈Xk

g (x)

⎞
⎠ , (2)

where hzk
is the real-valued likelihood function and g and

ζ are (potentially nonlinear) functions mapping to vectors
of reals. When the sensor observation noise is Gaussian
with zero mean and covariance matrix �z, the likelihood
takes the form

hzk
(Xk) = N�z (zk − ζ (Xk)) , (3)

where N�(z) denotes the Gaussian density function with
zero mean and covariance matrix � evaluated at z.

IV. RANDOM FINITE SETS

Random sets are an extension of the concept of
random variables and random vectors. While random
vectors are of a predefined dimension and have an
ordering of their elements, random sets can have
uncertainty in the set dimension, and there is no preferred
ordering of the elements of the set.

We can associate a probability density function f(W)
with a random finite set � which integrates to 1. Since it is
a function defined over sets, its integral is defined as

∫
f (W ) δW = f (∅) +

∞∑
n=1

1

n!

∫
f (Wn) dWn = 1,

(4)
where ∅ is the empty set. The notation δW denotes set
integration, and δWn denotes standard integration. We
have used the abbreviated notation Wn = {w1, . . . , wn}
and dWn = dw1 . . . dwn for brevity. The associated
cardinality distribution of the RFS is given by

Prob (|�| = n) = π (n) = 1

n!

∫
|W |=n

f (W ) δW. (5)

Since the addition operation is not naturally defined on
sets, defining the expectation of an RFS in the traditional
manner is not possible. An important and useful statistic
of the RFS which can be defined using a modified
definition of the first moment [1] is the probability
hypothesis density. The PHD of an RFS with a probability
density f(W) is

D (x) =
∫

f ({x} ∪ W ) δW. (6)

Similarly, the second factorial moment is defined as

D ({x1, x2}) =
∫

f ({x1, x2} ∪ W ) δW. (7)

A. IIDC RFS

An IIDC RFS is specified using an arbitrary
cardinality distribution π c(n) and a density function qc(x).
The PHD of the IIDC RFS is

Dc (x) =
∫

f ({x} ∪ W ) δW = μcqc (x) , (8)
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μc =
∞∑

n=0

nπ c (n), (9)

where μc is the mean cardinality. Its second factorial
moment can be calculated [24] to be

Dc ({x1, x2}) = aqc (x1) qc (x2) , (10)

a =
∞∑

n=0

n (n − 1) π c (n). (11)

B. Multi-Bernoulli RFS

To understand the multi-Bernoulli RFS, let us first
consider the Bernoulli RFS. A Bernoulli RFS can be either
an empty set with probability 1 − r or a singleton set {x}
with probability r; the singleton element x, when present,
is drawn from the distribution function q(x). The PHD
function of the Bernoulli RFS is given by

Db (x) =
∫

f ({x} ∪ W ) δW = rq (x) . (12)

The Bernoulli RFS can be used to model a single target. To
represent multiple targets, its extension the multi-Bernoulli
RFS can be used [1]. A multi-Bernoulli RFS � is defined
as the union of N independent Bernoulli RFS components,
� = �1 ∪ �2 ∪ . . . ∪ �N, where each �i is a Bernoulli
RFS with parameters given by {ri, qi(x)}Ni=1. The PHD of
the multi-Bernoulli RFS [1, chapter 16, example 91] is

Dmb (x) =
N∑

i=1

riqi (x). (13)

The second factorial moment of the multi-Bernoulli RFS
[19] is

Dmb ({x1, x2}) =
N∑

i=1

N∑
j=1,j �=i

rirj qi (x1) qj (x2) (14)

= Dmb (x1) Dmb (x2) −
N∑

i=1

r2
i qi (x1) qi (x2). (15)

C. Union of Statistically Independent Random Finite
Sets

Consider an RFS � which is the union of multiple (M)
statistically independent random finite sets �1, �2, . . . ,
�M, given by � = �1 ∪ �2 ∪ �3 ∪ . . . ∪ �M. The
random finite sets �1, �2, . . . , �M can be sets of any kind.
For example, in this paper we consider them to be a
Bernoulli RFS, a multi-Bernoulli RFS, or an IIDC RFS.
We refer to these individual constituent random finite sets
of � as components of �. We consider the union of
statistically independent random finite sets, as this allows
us to approximately propagate the PHD function of the
individual components over time.

Let the PHD function for each of the RFS components
be denoted respectively by D1(x), D2(x), D3(x), . . . ,

DM(x). Let the PHD of the RFS � be denoted D(x); then

D (x) = D1 (x) + D2 (x) + D3 (x) + · · · + DM (x) . (16)

This result can be easily proved using the properties of the
probability-generating functional and the basic rules for
functional derivatives [1].

Let f 1(W), f 2(W), . . . , fM(W) be, respectively, the
multitarget probability densities of the random finite sets
�1, �2, . . . , �M. Let f(W) be the multitarget probability
density of the random finite set � given by the union � =
�1 ∪ �2 ∪ �3 ∪ . . . ∪ �M. Then we have the following
convolution relation between the densities [1, section
11.5.3]:

f (W ) =
∑

Y 1	Y 2	···	YM=W

f 1
(
Y 1

)
f 2

(
Y 2

) · · · f M
(
YM

)
,

(17)
where the summation is over all mutually disjoint subsets
Y1, Y2, . . . , YM of W such that Y1 ∪ Y2 ∪ . . . ∪ YM = W.
The notation 	 is used to emphasize that the union is over
mutually disjoint sets.

D. PHD Update for the Union of Statistically
Independent Random Finite Sets

In this section we analyze the PHD update step when
the multitarget state can be expressed as union of multiple
statistically independent random finite sets. Let the
predicted multitarget state at time k + 1 be modeled as a
random finite set �k + 1|k with density fk + 1|k(W) and PHD
Dk + 1|k(x). Further, assume that �k + 1|k is the union of
statistically independent random finite sets �1

k+1|k,
�2

k+1|k, . . . , �M
k+1|k with, respectively, densities f 1

k+1|k(Y ),
f 2

k+1|k(Y ), . . . , f M
k+1|k(Y ) and PHDs D1

k+1|k(x), D2
k+1|k(x),

. . . , DM
k+1|k(x). Then from (16) and (17), we have

fk+1|k (W ) =
∑

Y 1	···	YM=W

M∏
A=1

f A
k+1|k

(
YA

)
, (18)

where the summation is over all mutually disjoint subsets
Y1, Y2, . . . , YM of W such that Y1 ∪ Y2 ∪ . . . ∪ YM = W and

Dk+1|k (x) = D1
k+1|k (x) + D2

k+1|k (x) + · · · + DM
k+1|k (x) .

(19)
Let fk + 1(W) and Dk + 1(x) be the density and PHD of

the posterior multitarget state. Then we have

Dk+1 (x) =
∫

fk+1 ({x} ∪ W ) δW. (20)

Applying Bayes’s rule, we get

Dk+1 (x) =
∫

hzk+1 ({x} ∪ W ) fk+1|k ({x} ∪ W ) δW

fk+1
(
zk+1|Z[k]

) . (21)
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From (18) we have

fk+1|k ({x} ∪ W )

=
M∑

A=1

∑
Y 1	···	YM=W

f A
k+1|k

({x} ∪ YA
) ∏

j �=A

f
j

k+1|k
(
Y j

)

(22)

=
M∑

A=1

DA
k+1|k (x) ×

∑
Y 1	···	YM=W

f A
k+1|k

({x} ∪ YA
)

DA
k+1|k (x)

×
∏
j �=A

f
j

k+1|k
(
Y j

)
. (23)

We can simplify this as

fk+1|k ({x} ∪ W ) =
M∑

A=1

DA
k+1|k (x)

∑
Y 1	···	YM=W

f
Ax
k+1|k

(
YA

)

×
∏
j �=A

f
j

k+1|k
(
Y j

)
, (24)

where f
Ax
k+1|k(Y ) is defined as

f
Ax
k+1|k (Y ) = f A

k+1|k ({x} ∪ Y )

DA
k+1|k (x)

(25)

for A = 1, 2, . . . , M. These are valid multitarget densities
which integrate to 1 from the definition of PHD in (6).
Now denote

f
A∗

x
k+1|k (W ) =

∑
Y 1	···	YM=W

f
Ax
k+1|k

(
YA

) ∏
j �=A

f
j

k+1|k
(
Y j

)

(26)
for A = 1, 2, . . . , M, which are valid multitarget densities.
We note that the density f

A∗
x

k+1|k(W ) is obtained by

replacing f A
k+1|k(YA) with f

Ax
k+1|k(YA) in (18). Using this

notation we can write

fk+1|k ({x} ∪ W ) =
M∑

A=1

DA
k+1|k (x) f

A∗
x

k+1|k (W ). (27)

Substituting (27) in (21), we have

Dk+1 (x) =
M∑

A=1

DA
k+1|k (x)

∫
hzk+1 ({x} ∪ W ) f

A∗
x

k+1|k (W ) δW

fk+1
(
zk+1|Z[k]

) .

(28)
Now define

DA
k+1 (x) = DA

k+1|k (x)

∫
hzk+1 ({x} ∪ W ) f

A∗
x

k+1|k (W ) δW

fk+1
(
zk+1|Z[k]

)
(29)

for A = 1, 2, . . . , M.
We now assume that the posterior multitarget state

at time k + 1 is a union of statistically independent

random finite sets �1
k+1, �

2
k+1, . . . , �M

k+1. Let D1
k+1(x),

. . . , DM
k+1(x) be their PHD functions. Then from (19),

(28), and (29) we have

M∑
A=1

DA
k+1 (x) =

M∑
A=1

DA
k+1 (x). (30)

To derive an update mechanism for propagating the PHD
over time, we make the following separability assumption
on the PHD of the different components:

DA
k+1 (x) ≈ DA

k+1 (x) (31)

for all A = 1, 2, . . . , M.

This one-to-one matching is an approximation and is
based on the assumption that the posterior multitarget state
is also a union of independent random finite sets and that
for each component in the predicted multitarget state we
have a corresponding component of the same type in the
posterior multitarget state. This approximation is justified
under the assumption that the supports of the PHD
functions of the two components are well separated. This
is a good approximation if each component represents a
single target or a group of targets which are well separated
in the state space.

This approximation allows us to relate the posterior
and predicted PHD functions, using (29) and (31), as
follows:

DA
k+1 (x) ≈ DA

k+1|k (x)

∫
hzk+1 ({x} ∪ W ) f

A∗
x

k+1|k (W ) δW

fk+1
(
zk+1|Z[k]

) .

(33)

In general we can update the PHD of each individual RFS
component of the multitarget state using this
approximation. We apply this PHD update mechanism for
two specific cases: when the multitarget state is modeled
as a union of independent Bernoulli RFS components,
leading to the multi-Bernoulli filter, and when it is
modeled as a union of independent multi-Bernoulli RFS
and IIDC RFS components, leading to the hybrid
multi-Bernoulli CPHD filter.

V. MULTI-BERNOULLI FILTERS FOR THE
SUPERPOSITIONAL-SENSOR MODEL

In this section we approximate the PHD update
scheme proposed in Section IV-D for the case of the
superpositional-sensor model under the assumption of
Gaussian sensor noise. This approximation leads to a
computationally tractable update equation for the PHD of
individual components. This result is applied in later
subsections for deriving the update equations of the
multi-Bernoulli filter and the hybrid multi-Bernoulli
CPHD filter.
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A. Approximate PHD Update for the
Superpositional-Sensor Model with Gaussian Sensor
Noise

From (29) we have

DA
k+1 (x)

= DA
k+1|k (x)

∫
hzk+1 ({x} ∪ W ) f

A∗
x

k+1|k (W ) δW

fk+1
(
zk+1|Z[k]

) (34)

= DA
k+1|k (x)

∫
hzk+1 ({x} ∪ W ) f

A∗
x

k+1|k (W ) δW∫
hzk+1 (W ) fk+1|k (W ) δW

. (35)

Using the assumption of Gaussian sensor noise and the
superpositional likelihood model from (2) and (3), we have

DA
k+1 (x) = DA

k+1|k (x)

×
∫
N�z (zk+1 − g (x) − ζ (W )) f

A∗
x

k+1|k (W ) δW∫
N�z (zk+1 − ζ (W )) fk+1|k (W ) δW

.

(36)

We apply the transformation y* = ζ (W) in the numerator
and y = ζ (W) in the denominator. Using the formula for
change of variables for set integrals (24), we have

DA
k+1 (x) = DA

k+1|k (x)

×
∫
N�z (zk+1 − g (x) − y∗) Q

A∗
x

k+1|k (y∗) dy∗∫
N�z (zk+1 − y) Qk+1|k (y) dy

,

(37)

where Qk + 1|k(y) and Q
A∗

x
k+1|k(y∗) are the probability

distributions of the random vectors y and y*, respectively.
Using a Gaussian approximation for these densities,
Qk + 1|k(y) ≈ N�k+1 ( y − μk+1) and Q

A∗
x

k+1|k(y∗)

≈ N
�

A∗
x

k+1
(y∗ − μ

A∗
x

k+1), we have

DA
k+1 (x) ≈ DA

k+1|k (x)

×
∫
N�z (zk+1 − g (x) − y∗)N

�
A∗

x
k+1

(
y∗ − μ

A∗
x

k+1

)
dy∗

∫
N�z (zk+1 − y)N�k+1 (y − μk+1) dy

.

(38)

This equation can be simplified using the following result:∫
N�1 (a − y) × N�2 (y − b)dy = N�1+�2 (a − b).

Combining the approximations in (33) and (38), the
approximate PHD update equation for the
superpositional-sensor model with Gaussian sensor noise
is

DA
k+1 (x) ≈ DA

k+1|k (x)
N

�z+�
A∗

x
k+1

(
zk+1 − g (x) − μ

A∗
x

k+1

)
N�z+�k+1 (zk+1 − μk+1)

,

(39)
where μk + 1 and �k + 1 are the mean and covariance
matrix of the distribution Qk + 1|k(y), and μ

A∗
x

k+1 and �
A∗

x
k+1

are the mean and covariance matrix of the distribution
Q

A∗
x

k+1|k(y∗). These mean and covariance-matrix parameters
can be found using the quadratic version of Campbell’s

theorem [24, 25]. Through modeling of the unknown
multitarget state as a union of independent random finite
sets, different tracking filters can be derived whose update
equations are special cases of (39).

The approximations Qk+1|k(y) ≈ N�k+1 (y − μk+1) and

Q
A∗

x
k+1|k(y∗) ≈ N

�
A∗

x
k+1

(y∗ − μ
A∗

x
k+1) have been introduced in

order to analytically evaluate the integrals in (37). Without
this approximation, the update equation would involve
integrals which have to be numerically evaluated and
would make the filter implementation computationally
demanding. We have performed a brief numerical analysis
of the errors introduced in the integral because of this
approximation, and the detailed results are available in
[37]. To summarize, we observe that as the average
number of targets represented by the underlying random
finite sets is increased, the error between the original and
the approximated integral decreases significantly. For
different kinds of random finite sets, the accuracy of the
approximation varies. The approximation is most accurate
for an IIDC RFS, followed by a union of multi-Bernoulli
and IIDC RFS; it is least accurate for a multi-Bernoulli
RFS.

B. Multi-Bernoulli Filter

The multi-Bernoulli filter models the multitarget state
as the union of multiple independent Bernoulli random
finite sets. The scalar existence probability and the
single-target state density for each Bernoulli component
are propagated over time. The propagation is done in two
stages: prediction and update. The model for target
dynamics accounts for the survival of existing targets from
the previous time step to the current time step and for the
birth of new targets. The single-target motion model is
used for propagation of surviving targets in the prediction
step. Target birth is modeled as a multi-Bernoulli RFS. We
do not consider target spawning in this paper. The most
recent observation, along with the likelihood model, is
used in the update step to propagate the Bernoulli
parameters.

1) Prediction Step: The multi-Bernoulli prediction
equations are derived in [1, 38]. Since the superpositional
observation model does not play a role in the prediction
step, the multi-Bernoulli prediction equations remain the
same. We briefly review these equations in this section.

Let the existence probability and state density
parameters of the Nk targets at time k be {rk,i , qk,i(x)}Nk

i=1.
At time k + 1, let there be Nk + 1|k predicted targets with
parameters ri = rk + 1|k,i and qi(x) = qk + 1|k,i(x).
Additionally, the predicted multi-Bernoulli RFS
parameters can be expressed as

{ri, qi (x)}Nk+1|k
i=1 = {

rP
i , qP

i (x)
}Nk

i=1 ∪ {
rB
i , qB

i (x)
}Nk+1|k

i=Nk+1 ,

(40)

where {rP
i , qP

i (x)}Nk

i=1 are the parameters of targets
propagated from the previous time step and
{rB

i , qB
i (x)}Nk+1|k

i=Nk+1 are the parameters of newly born targets.
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The relation between the predicted target parameters at
time k + 1 and the posterior target parameters at time
k is

rP
i = rk,i

〈
qk,i , ps

〉
(41)

and

qP
i (x) =

〈
tk+1|k (x|·) , qk,ips

〉
〈
qk,i , ps

〉 , (42)

where ps(x) is the target survival probability, tk + 1|k(x|·) is
the Markov transition kernel, and 〈a, b〉 is the scalar
product defined as 〈a, b〉 = ∫

a(x)b(x)dx. Since the

parameters {rB
i , qB

i (x)}Nk+1|k
i=Nk+1 are used to model the new

targets arriving at time k + 1, they are initialized using
the target birth model.

2) Update Step: We assume that the posterior
multitarget density also has the multi-Bernoulli form. For
the case of superpositional sensors, the measurements do
not provide any direct information about the number of
targets. Hence, no new Bernoulli components are added in
the update step and Nk + 1 = Nk + 1|k. Since the PHD of all
the individual Bernoulli components taken together can
completely specify the posterior multi-Bernoulli density,
the update step consists of updating the PHD for each of
the i = 1, 2, . . . , Nk + 1 Bernoulli components. Let
{r ′

i , q
′
i(x)}Nk+1

i=1 denote the parameter set of the posterior
multi-Bernoulli density at time k + 1. Combining the
results from [12] and [39], the approximate PHD update is
given by

r ′
iq

′
i(x) ≈ riqi(x)

N�z+�ī
k+1

(
zk+1 − g(x) − μī

k+1

)
N�z+�k+1 (zk+1 − μk+1)

(43)

where

μk+1 =
Nk+1|k∑
i=1

ri si, (44)

�k+1 =
Nk+1|k∑
i=1

(
ri vi − r2

i sis
T
i

)
, (45)

μī
k+1 = μ

A∗
x

k+1 = μk+1 − ri si, (46)

�ī
k+1 = �

A∗
x

k+1 = �k+1 − (
ri vi − r2

i sis
T
i

)
, (47)

and

si = 〈qi, g〉 , vi = 〈
qi, ggT

〉
. (48)

The expressions for these parameters are derived in
Appendix A. From (44)–(48) we see that the quantities
μ

A∗
x

k+1 and �
A∗

x
k+1 do not depend on x when �A

k+1|k is a
Bernoulli RFS.

C. Hybrid Multi-Bernoulli CPHD Filter

The multi-Bernoulli RFS modeling of the multitarget
state allows us to model each of the targets individually

and update its state information. Although this can be seen
as an improvement over the IIDC RFS modeling of the
multitarget state, which utilizes only one state density
function to model all of the targets, estimating the number
of targets using the multi-Bernoulli RFS model is
inaccurate in practice. Also, since the number of targets is
changing over time, we need to add multiple Bernoulli
components at each time step to account for target births.
Processing a large number of Bernoulli components at
each time step is not computationally efficient. To address
these drawbacks, we propose to use a hybrid approach,
where the existing targets are modeled using a
multi-Bernoulli RFS and the newborn targets are modeled
using the IIDC RFS.

The hybrid multi-Bernoulli CPHD filter uses the
following modeling scheme. The final posterior
distribution from the previous time step is modeled as a
multi-Bernoulli RFS. In the prediction step, the
multi-Bernoulli component is propagated following the
motion model of surviving targets, whereas to account
for newborn targets an IIDC RFS component is
initialized. The IIDC component is independent of the
multi-Bernoulli component. Thus the predicted
distribution corresponds to the union of an IIDC
random finite set and a multi-Bernoulli random finite set,
and these sets are independent. The union is completely
represented by the PHD of the Bernoulli components, the
PHD of the IIDC component, and the cardinality
distribution of the IIDC component. The update step
propagates all of these quantities using Bayes’s rule.
Hence the obtained posterior is the union of an IIDC
component and a multi-Bernoulli component. Since
individual targets are better represented using
Bernoulli random finite sets, the updated IIDC
component is then approximated using multiple
Bernoulli components. Thus the final posterior
distribution is modeled using a multi-Bernoulli random
finite set.

1) Prediction Step: Let the parameters of the
posterior Bernoulli components at time step k be
denoted {rk,i , qk,i(x)}Nk

i=1 as before. The Bernoulli
parameters at the end of the prediction step are
{ri, qi(x)}Nk

i=1 and are given by (41) and (42). Let πc
k+1|k(n)

and qc(x) = qc,k+1|k(x) be the predicted cardinality
distribution and the predicted density function of the IIDC
component at time k + 1. Their exact forms depend on
the specific target birth model used. Let μc denote the
expected cardinality of the predicted IIDC RFS
component. Note that no new Bernoulli components are
added in the prediction step to account for the birth of new
targets.

2) Update Step: The update step consists of
updating the PHD for each of the Bernoulli components,
the PHD of the IIDC component, and the cardinality
distribution of the IIDC component. Let the parameters of
the posterior multi-Bernoulli and IIDC random finite sets
be denoted by {r ′

i , q
′
i(x)}Nk

i=1 and {q ′
c(x), πc

k+1(n)},
respectively.
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From (12) and (39), the PHD update of the ith
Bernoulli component is given by

r ′
iq

′
i (x) ≈ riqi (x)

N�z+�ī
k+1

(
zk+1 − g (x) − μī

k+1

)
N�z+�k+1 (zk+1 − μk+1)

,

(49)
where

μk+1 =
Nk∑
i=1

risi + μcsc, (50)

�k+1 =
Nk∑
i=1

(
rivi − r2

i sis
T
i

) + μcvc − (
μ2

c − a
)
scs

T
c ,

(51)

μī
k+1 = μ

A∗
x

k+1 = μk+1 − risi, (52)

�ī
k+1 = �

A∗
x

k+1 = �k+1 − (
rivi − r2

i sis
T
i

)
, (53)

si = 〈qi, g〉, vi = 〈
qi, ggT

〉
, sc = 〈qc, g〉, vc = 〈

qc, ggT
〉
,

(54)

and

a =
∞∑

n=0

n (n − 1) πc
k+1|k (n). (55)

The equations for the parameters μk+1, �k+1, μī
k+1, and

�ī
k+1 are derived in Appendix A.

Using (8) and (39), the PHD update for the IIDC RFS
component is

μ′
cq

′
c (x) ≈ μcqc (x)

N�z+�c̄
k+1

(
zk+1 − g (x) − μc̄

k+1

)
N�z+�k+1 (zk+1 − μk+1)

,

(56)
where

μc̄
k+1 = μ

A∗
x

k+1 =
Nk∑
j=1

rj sj + a

μc

sc, (57)

�c̄
k+1 = �

A∗
x

k+1 (58)

=
Nk∑
j=1

(
rj vj − r2

j sj s
T
j

) + a

μc

vc −
(

a2

μ2
c

− b

μc

)
scs

T
c ,

(59)

and

b =
∞∑

n=0

n (n − 1) (n − 2) πc
k+1|k (n). (60)

The parameters μk + 1 and �k + 1 are as given in (50) and
(51), respectively. The derivation of the parameters μc̄

k+1
and �c̄

k+1 is provided in Appendix A. From (57)–(60) we

see that the quantities μ
A∗

x
k+1 = μc̄

k+1 and �
A∗

x
k+1 = �c̄

k+1 do
not depend on x when �A

k+1|k is an IIDC RFS.

The main advantage of the IIDC component in the
hybrid filter is that we can make use of the accurate
cardinality estimation of the CPHD filter. The update
equation for the cardinality distribution of the IIDC RFS
component is

πc
k+1 (n) ≈ πc

k+1|k (n)
N�z+�

c,n
k+1

(
zk+1 − μ

c,n
k+1

)
N�z+�k+1 (zk+1 − μk+1)

, (61)

where

μ
c,n
k+1 =

Nk+1|k∑
i=1

risi + nsc (62)

and

�
c,n
k+1 =

Nk+1|k∑
i=1

(
rivi − r2

i sis
T
i

) + n
(
vc − scs

T
c

)
. (63)

The parameters μk + 1 and �k + 1 are as given in (50) and
(51), respectively. Appendix B derives the cardinality
update equation. Note that the multi-Bernoulli filter can be
treated as a special case of the hybrid multi-Bernoulli
CPHD filter. Indeed, we obtain the multi-Bernoulli filter
update equations if we set the IIDC component to be the
empty set in all of these equations.

VI. AUXILIARY PARTICLE-FILTER IMPLEMENTATION

We implement the proposed filters using a Monte
Carlo approach. Approximate update equations have been
derived in this paper, but even they do not lead to a fully
analytically tractable filter. Hence we develop
particle-filter-based implementations of the filters. The
basic particle-filter approach does not give a stable
implementation because of the multiple approximations
employed to derive the filter equations. We propose
auxiliary particle-filter implementations of the
multi-Bernoulli filter and the hybrid multi-Bernoulli filter
based on the auxiliary particle-filter implementation of the
PHD filter discussed in [39].

The normalized posterior PHD corresponding to each
Bernoulli component qk−1,i(x), and the IIDC component
qk−1,c(x) at time k − 1, are approximated using a set of
weighted particles as follows:

qk−1,θ (x) ≈ q̂k−1,θ (x) =
Np∑
j=1

w
(j )
k−1,θ δ

(
x − x(j )

k−1,θ

)
,

(64)
where θ = i, i = 1, . . . , Nk−1, for Bernoulli components
and θ = c for the IIDC component, and

∑Np

j=1 w
(j )
k−1,θ = 1.

The probabilities of existence of the Bernoulli components
are r̂k−1,i , i = 1, . . . , Nk−1, and the cardinality
distribution of the IIDC component is represented using a
finite dimensional vector π̂ c

k−1(n) whose elements sum to
1. For the hybrid multi-Bernoulli CPHD filter, the
quantities q̂k−1,c(x) and π̂ c

k−1(n) are initialized using the
birth process parameters. For the CPHD filter, these
quantities are obtained from the previous time step. Thus
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Fig. 1. Pseudocode for auxiliary particle-filter implementation of
hybrid multi-Bernoulli CPHD filter.

one particle filter is used for each Bernoulli component
and one particle filter is used to approximate the IIDC
component. The pseudocode for the auxiliary
particle-filter implementation of the hybrid
multi-Bernoulli CPHD filter is provided in Fig. 1.

For each Bernoulli component, at time k the auxiliary
variables x̄(j )

k−1,i are sampled from a mixture of a
reweighted particle set pk−1,i(x) and the posterior q̂k−1,i(x)
from the previous time step. Similarly for the IIDC
component, the auxiliary variables x̄(j )

k−1,c are sampled
from a mixture of a reweighted particle set pk−1,c(x) and
the posterior q̂k−1,c(x) from the previous time step. The

reweighted particle set pk−1,θ (x) is given by

pk−1,θ (x) =
Np∑
j=1

w̃
(j )
k−1,θ δ

(
x − x(j )

k−1,θ

)
, (65)

w̃
(j )
k−1,θ ∝ w

(j )
k−1,θ

⎛
⎝N�z+�̃θ̄

k

(
zk − g

(
ψ

(
x(j )

k−1,θ

))
− μ̃θ̄

k

)
N�z+�̃k

(zk − μ̃k)

⎞
⎠

ε

,

(66)

where
∑Np

j=1 w̃
(j )
k−1,θ = 1; ψ(x(j )

k−1,θ ) = E(xk,θ |x(j )
k−1,θ ); the

quantities μ̃k, μ̃θ̄
k , �̃k , and �̃θ̄

k are calculated using
(50)–(55) and (57)–(60), with particle approximations for
sθ and vθ evaluated using the particle set ψ(x(j )

k−1,θ ); and ε

is the tempering factor [39] for stabilizing the weights in
the auxiliary particle filter. Regularization is performed by
adding a small zero-mean Gaussian jitter 


(j )
k,θ ∼ N�reg (0)

to the particles to maintain their diversity and avoid
particle degeneracy.

In the proposal (prediction) step, the particles are
propagated according to the target transition model
tk |k−1(xk|xk−1). For the update step, the quantities μk,
μθ̄

k, �k , and �θ̄
k are calculated using (50)–(55) and

(57)–(60). The PHD update step is realized by performing
an update of the particle weights using (49) and (56). For
the particles sampled from the reweighted distribution
pk−1,θ (x), weight compensation is performed. For each
Bernoulli component, the weighted particle set is
resampled to obtain particles with equal weights. The
existence probability is updated from (49) by using
particle approximation for qi(x). The cardinality
distribution of the IIDC component π̂ c

k (n) is updated using
(61)–(63).

Pruning of the Bernoulli components is performed in
order to eliminate targets with low probability of existence
(<r0). An estimate of the number of newborn targets Nc

k is
obtained from the IIDC cardinality distribution π̂ c

k (n)
using the maximum a posteriori rule. The “split” function
partitions the set of particles representing the normalized
IIDC PHD into Nc

k clusters using the k-means algorithm,
and each cluster is used to initialize a new Bernoulli
component with existence probability 1. The new
components created can sometimes correspond to spurious
copies of existing targets; hence gating is performed so
that new targets starting within close vicinity of existing
targets are pruned. The definition of closeness between
two targets is application dependent. We use the Euclidean
distance measure between the centroids of the two particle
sets representing the target positions and eliminate the
new component if the distance is less than 1 m in our radio
frequency tomography application. The pruned Bernoulli
components are used for initialization of the IIDC PHD
along with the target birth model in the next time step.
This can be helpful in case of low detection probability or
high noise variance.

The multi-Bernoulli auxiliary particle-filter
implementation is very similar to the pseudocode given in

NANNURU & COATES: HYBRID MULTI-BERNOULLI AND CPHD FILTERS FOR SUPERPOSITIONAL SENSORS 2855



Fig. 1. The major difference is that instead of the IIDC
component, multiple Bernoulli components are initialized
in the prediction stage to account for target births. In the
update stages, the PHDs of the corresponding Bernoulli
components are updated. There is no clustering step
required, but the pruning and gating steps are the same.
The CPHD auxiliary particle-filter implementation is
obtained by ignoring the steps related to the
multi-Bernoulli component in Fig. 1. The normalized
posterior PHD is propagated to the next time step instead
of being approximated with a multi-Bernoulli component.

VII. NUMERICAL SIMULATIONS

In this section we use numerical simulations to
demonstrate the application of the proposed filters to the
problem of multitarget tracking. We consider two
examples of the superpositional-sensor model. The first is
a radio frequency tomography application, and the second
is an acoustic-sensor network.

A. Target Dynamics

We assume that for each target, its dynamics are
independent of the other targets and their dynamics.
Specifically, the motion of each target when present within
the monitoring region is governed by the following
approximately constant velocity model [4]:

xk+1,i =

⎡
⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ xk,i +

⎡
⎢⎢⎢⎢⎣

T 2

2 0

0 T 2

2

T 0

0 T

⎤
⎥⎥⎥⎥⎦

[
ux

uy

]
,

(67)
where T is the sampling period and ux and uy are
zero-mean Gaussian white noise with respective variance
σ 2

ux
and σ 2

uy
. In this model, the state xk,i of each object i at

time k is represented by a four-dimensional vector:
position on the x- and y-axis and velocity on the x- and
y-axis. Multiple targets can be simultaneously present, and
targets can appear or disappear over time.

B. Radio Frequency Tomography

1) Measurement Model: The radio frequency (RF)
tomography approach to target tracking has recently
become popular [10, 40, 41]. The RF tomography
measurement model we simulate here is based on work by
Li et al. [41], where it is used for single-target tracking,
and by Nannuru et al. [42, 43], where it is used for
multitarget tracking.

A typical deployment of RF sensors for the
tomographic tracking application is shown in Fig. 2c. The
measurements are the received signal strength recordings
for each sensor pair. The RF sensors communicate among
each other but not with the targets. A network of Ns

sensors forms a total of nz = Ns(Ns − 1)/2 unique sensor
pairs (bidirectional links) generating nz measurements in
every time step. The background received signal strength
values are recorded initially when the monitoring region is

Fig. 2. RF tomography. Top: Average OSPA error as measurement
noise standard deviation σ z is increased from σ z = 1 to σ z = 2.

Middle: Median cardinality and its 5th–95th percentiles (shaded region)
as function of time for σ z = 1.5. Bottom: True target tracks and

estimated target locations obtained using hybrid MBR-CPHD filter for
σ z = 1.5.
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empty. The objective of RF tomography is to use the
measured deviations from these background received
signal strength values to track moving targets.

The empirical modeling of RF link measurements is
studied in [41–43]. The jth link measurement z

j

k at time
step k can be modeled as

z
j

k = ζ j (Xk) + v
j

k =
∑
x∈Xk

gj (x) + v
j

k (68)

where

gj (x) = φ exp

(
−λj (x)

σλ

)
(69)

and

λj (x) = d
j

1 (x) + d
j

2 (x) − d
j

12. (70)

Here d
j

1 (x) and d
j

2 (x) are distances between the target
located at x and the two sensors of link j; d

j

12 is the distance
between the two sensors of link j; λj (x) is the elliptical
distance measure between a target located at x and link j
(see [41] for more details); φ and σλ are fixed parameters
based on physical properties of the sensors and targets;
and v

j

k is the zero-mean Gaussian sensor noise. The RF
tomography measurement equation has a superpositional
form, as can be seen by comparing (68) with (2).

We simulate an RF sensor network with Ns = 20
sensor nodes distributed uniformly on the periphery of the
20 m × 20 m square region as shown in Fig. 2c. This
gives rise to a total of nz = 190 unique bidirectional links.
The observation-model parameters are φ = 5 and
σλ = 0.4. The measurement noise variance is �z = σ 2

z Inz ,
where Inz is the nz × nz identity matrix.

2) Motion-Model Parameters: Fig. 2c shows the
target tracks we use for the simulations. The black cross
( × ) indicates the starting location of the target. The
variation of number of targets over time is shown in Fig.
2b. The targets labeled 7 and 8 in Fig. 2c appear within the
monitoring region at time steps 9 and 17, respectively.
Target 8 disappears from the monitoring region at time
step 24. The targets in this scenario evolve according to
the linear Gaussian dynamics given in (67) with a time
step of duration T = 0.25 s and the noise variance
parameters of σ 2

ux
= σ 2

uy
= 0.35. We simulate 35 time

steps of target motion for a total of 35 × 0.25 = 8.75 s.
3) Error Metric and Filter Settings: We compare the

multi-Bernoulli (MBR) filter and the hybrid
multi-Bernoulli CPHD (MBR-CPHD) filter with the
CPHD filter. The auxiliary particle-filter implementations
of these filters are as discussed in Section VI. To compare
them, we need to find the error between the filter estimates
and the true multitarget state. Since we have to compare
sets, possibly with different cardinality, we use the optimal
subpattern assignment (OSPA) metric [44]. The OSPA
metric penalizes errors in estimating target location as
well as in estimating the number of targets using the
cardinality penalty factor c. The multitarget state estimate
is obtained by averaging particles representing position for

each existing Bernoulli component. For the CPHD filter,
the state estimates are centroids of the clusters obtained by
partitioning the particle set using the k-means algorithm.

A single target survival probability is assumed to be
constant throughout the monitoring region and is equal to
ps = 0.9. For the MBR filter, four new Bernoulli
components are added at each time step to account for
target births. The probability of existence of these new
components is rB = 0.2, and their density functions are
uniform within the monitoring region. For the hybrid
MBR-CPHD filter, the birth process is IIDC with discrete
uniform cardinality distribution and the normalized PHD
is assumed uniform within the monitoring region.
Rejected components from the current time step are also
used to partially initialize the PHD of the IIDC component
in the next time step. This way, targets with low
probability of existence which get erroneously eliminated
can be reintroduced using the IIDC component.

Spurious new Bernoulli components often get
initialized near existing target locations. We prune these
duplicate components by performing gating with a gating
radius of 1 m. Bernoulli components with existence
probability lower than the existence probability at birth are
pruned—i.e., r0 = rB = 0.2. A low existence probability
threshold is chosen because it can identify individual
targets even when they are in close vicinity. We use Np =
1000 particles for each particle filter. In the auxiliary step
we use α = 0.5 and the tempering factor is ε = 0.3. For
regularization of particles we set
�reg = σ 2

regdiag(1, 1, 1, 1) with σ reg = 0.25.
4) Simulation Results: The average OSPA error

metrics are calculated by repeating simulations multiple
times with different random initializations. The target
tracks shown in Fig. 2c are used for all the Monte Carlo
runs. A set of 20 different measurement sequences is
generated and each is processed with five different random
initializations for all the algorithms. Thus the average
error is reported by running 100 Monte Carlo simulations.
We ignore the first five time steps when calculating the
average error, to allow the filter estimates to stabilize. The
mean OSPA error is calculated for different values of the
measurement noise parameter σ z and is shown in Fig. 2a
for c = 0.5 and c = 1. As the noise is increased from σ z =
1 to σ z = 2, the performance of all the filters deteriorates.
When the measurement noise is small, the hybrid
MBR-CPHD filter has the lowest error among all the
filters. For higher measurement noise, the CPHD filter and
the hybrid MBR-CPHD filter have almost the same
performance.

The median cardinality estimates (over the 100 Monte
Carlo simulations) and the 5th and 95th percentiles for the
different algorithms are shown in Fig. 2b for σ z = 1.5.
The multi-Bernoulli filter has low initial cardinality
estimates because only a maximum of four new Bernoulli
components are added at each time step. The MBR filter
also significantly underestimates the number of targets,
which is reflected as high average OSPA error, as seen
from Fig. 2a. The CPHD filter has the most accurate
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cardinality estimate, as its 5th and 95th percentiles
coincide with the median cardinality at most of the time
steps. The hybrid MBR-CPHD filter makes significantly
better cardinality estimates than the MBR filter. The
targets missed by the MBR-CPHD filter at the current time
step are reintroduced by input from the CPHD component
at the next time step. Since the average OSPA error for the
CPHD filter and the MBR-CPHD filter are almost the
same and the CPHD filter provides better cardinality
estimates than the MBR-CPHD filter, the MBR-CPHD
filter provides more accurate target location information
than the CPHD filter. In fact, ignoring the errors in
cardinality, the root mean square error averaged over 100
Monte Carlo simulations is 0.42, 0.54, and 0.32 m for the
CPHD, MBR, and MBR-CPHD filters, respectively, when
the measurement noise is σ z = 1.5. Fig. 2c depicts an
example of target location estimates obtained using the
hybrid MBR-CPHD filter.

C. Acoustic-Sensor Network

1) Measurement Model: Acoustic-sensor networks
can be used for multitarget tracking based on the strength
of the emitted acoustic signals. In this paper we adapt the
acoustic amplitude-sensor measurement model discussed
in [9]. A possible deployment of an acoustic-sensor
network is shown in Fig. 3c. It is an active tracking system
in which each target emits an acoustic signal of known
amplitude A and all the sensors receive the signal. If a
target at location x emits the acoustic signal, a sensor
located at d j receives the signal at a reduced strength of
gd j(x) = A/max(||x − dd j||, d0)κ , where ||x|| denotes the
Euclidean norm of vector x, κ is the path loss exponent,
and d0 is the threshold distance such that the received
signal amplitude saturates if the target is closer than d0 of
the sensor. When multiple targets are present, the strength
of the combined signal received by each of the sensors is
the sum of the strength of the signals due to each of the
individual targets. Thus the measurement z

j

k received by
sensor j at time k can be modeled as

z
j

k = ζ j (Xk) + v
j

k (71)

=
∑
x∈Xk

A

max
(∥∥x − dj

∥∥ , d0
)κ + v

j

k , (72)

where v
j

k is the zero-mean Gaussian measurement noise.
This measurement model is of the superpositional form, as
can be seen by comparing (72) with (2).

We simulate an acoustic-sensor network with Ns = 25
sensor nodes distributed in a 1000 m × 1000 m square
region in a grid format, as shown in Fig. 3c. A wider
observation region is chosen to evaluate the robustness of
the filters in a more challenging scenario. The
measurement dimension is nz = Ns = 25, and the
measurement-model parameters are A = 500, κ = 1, and
d0 = 1. The measurement noise variance is �z = σ 2

z Inz .

Fig. 3. Acoustic-sensor network. Top: Average OSPA error as
measurement noise standard deviation σ z is increased from σ z = 0.5 to

σ z = 1.5. Middle: Median cardinality and its 5th–95th percentiles
(shaded region) as function of time for σ z = 1. Bottom: True target

tracks and estimated target locations obtained using MBR-CPHD filter
for σ z = 1.
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TABLE I
Average Computational Time (in Seconds) Required to Process One

Observation Vector for σ z = 1

Average Computational Time

Algorithm RF Tomography Acoustic Network

CPHD 3.76 0.73
MBR 2.54 0.63

MBR-CPHD 2.41 0.58

2) Motion-Model Parameters and Filter Settings:
The target dynamics discussed in Section VII-A are used
to simulate the target tracks. The simulated target tracks
are shown in Fig. 3c, and the target number variation
is shown in Fig. 3b. These tracks are simulated for
35 time steps using the process noise parameters of
σux

= σuy
= 25 m and time-step duration T = 0.25 s.

Most of the filter settings are the same as those discussed
in Section VII-B-3. The gating radius is increased to
100 m, since the monitored region is considerably larger.

3) Simulation Results: Fig. 3a shows how the average
OSPA error varies as a function of measurement noise for
c = 50 and c = 100. The averages are calculated using 100
Monte Carlo simulations. The hybrid MBR-CPHD filter
performs significantly better than the CPHD filter in this
setup and has the lowest average OSPA error for all values
of σ z. The median cardinality and the 5th and 95th
percentiles are shown in Fig. 3b for σ z = 1. The CPHD
filter has the most accurate cardinality estimates, followed
by the hybrid MBR-CPHD filter and the MBR filter. Since
the hybrid MBR-CPHD filter has lower average OSPA
error than the CPHD filter, for the targets that are correctly
identified, the hybrid MBR-CPHD filter is able to
accurately track their locations in a much wider
observation region. Fig. 3c shows the true target
trajectories and the estimated target locations obtained
using the hybrid MBR-CPHD filter for σ z = 1.

D. Computational Requirements

Table I compares the average computational time2

required for the different algorithms to process one
observation vector. The time required to process one
observation vector of the acoustic-sensor network is much
smaller than that of the RF-sensor network because the
measurement dimension is much smaller and there are
fewer targets. The hybrid MBR-CPHD filter is the fastest
of the filters. The CPHD filter has higher computational
requirements because of the costly clustering step required
at each time step, and the MBR filter has higher
computational requirements because of the multiple
additional particle filters employed to account for new
target arrivals. The hybrid MBR-CPHD filter saves
computation by initiating new particle filters only if the

2 All the simulations were performed using algorithms implemented in
MATLAB on Two Xeon four-core 2.5 GHz computers with 14 GB of
RAM.

IIDC component indicates arrival of new targets, and the
costly clustering step is required only when multiple new
targets arrive within the monitoring region in the same
time step.

VIII. CONCLUSIONS

We studied the multi-Bernoulli filter and the hybrid
multi-Bernoulli CPHD filter for a superpositional-sensor
model in this paper. The methodology for deriving update
equations is similar for both the filters and is based on
propagating the PHD of individual RFS components. The
cardinality distribution is additionally propagated for the
hybrid multi-Bernoulli CPHD filter. We proposed
auxiliary particle-filter implementations of the filters and
conducted a numerical study using a simulated RF
tomography setup and an acoustic-sensor network setup to
perform multitarget tracking. The hybrid multi-Bernoulli
CPHD filter performed better than the multi-Bernoulli
filter and better than or equal to the CPHD filter when
using the OSPA-error metric. The hybrid filter was the
least computationally demanding.

APPENDIX A. APPLICATION OF CAMPBELL’S
THEOREM

Let f(W) be a multitarget density corresponding to
some random finite set. Denote the PHD function and the
second factorial moment density function of the RFS by
D(x) and D(x1, x2) respectively. Let the random vector y
be a function defined over random sets as
y = r(W ) = ∑

w∈W g(w). Then according to the quadratic
version of Campbell’s theorem [24, 25],

μ = E [(y)] =
∫

g (x) D (x) dx (73)

and

� = E
[
(y − μ) (y − μ)T

] =
∫

g (x) g(x)T D (x) dx

+
∫∫

g (x1) g(x2)T D̃ ({x1, x2}) dx1dx2, (74)

where D̃({x1, x2}) = D({x1, x2}) − D(x1)D(x2). Thus the
mean and covariance matrix, which represent the first- and
second-order statistics of the random vector y, depend on
the PHD function and the second factorial moment density
function of the corresponding random set.

A. Multi-Bernoulli RFS

For the multi-Bernoulli distribution, substituting (13)
and (15) into (73) and (74) yields

μk+1 =
∫

g (x)

⎛
⎝Nk+1|k∑

i=1

riqi (x)

⎞
⎠ dx (75)

=
Nk+1|k∑
i=1

ri

∫
g (x) qi (x) dx =

Nk+1|k∑
i=1

risi (76)
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and

�k+1 =
∫

g (x) g(x)T

⎛
⎝Nk+1|k∑

i=1

riqi (x)

⎞
⎠ dx

−
∫ ∫

g (x1) g(x2)T

⎛
⎝Nk+1|k∑

i=1

r2
i qi (x1) qi (x2)

⎞
⎠ dx1dx2

(77)

=
Nk+1|k∑
i=1

(
rivi − r2

i sis
T
i

)
, (78)

where

si = 〈qi, g〉, vi = 〈
qi, ggT

〉
. (79)

We now consider the multi-Bernoulli RFS �k+1|k with
Nk + 1|k parameters to be the union of a Bernoulli RFS
�A

k+1|k with parameters {ri, qi(x)} and another
multi-Bernoulli RFS �B

k+1|k with the remaining parameter

set {rj , qj (x)}j �=i . The density f
A∗

x
k+1|k(W ) in (26) can be

interpreted as the multitarget distribution of the RFS,
which is the union of independent random finite sets with
multitarget densities given by f

Ax
k+1|k(W ) and f B

k+1|k(W ),

where f
Ax
k+1|k(W ) is defined in (25). From (12), the density

function f
Ax
k+1|k(W ) corresponds to an RFS which is empty

with probability 1, and hence all its moments are zero.
Hence the parameters μ

A∗
x

k+1 and �
A∗

x
k+1, using Campbell’s

theorem, are

μ
A∗

x
k+1 = 0 +

Nk+1|k∑
j=1,j �=i

rj sj (80)

= μk+1 − risi = μī
k+1 (81)

and

�
A∗

x
k+1 = 0 +

Nk+1|k∑
j=1,j �=i

(
rj vj − r2

j sj s
T
j

)
(82)

= �k+1 − (
rivi − r2

i sis
T
i

) = �ī
k+1. (83)

B. Union of Multi-Bernoulli RFS and IIDC RFS

Let the RFS � be the union of a multi-Bernoulli RFS
with parameters {ri, qi(x)}Nk+1|k

i=1 and an IIDC RFS with
parameters {qc(x), π c(n)}. Using the expression for PHD
and second factorial moments from (8), (10), (13), and
(15), we have

μk+1 =
∫

g (x)

⎛
⎝Nk+1|k∑

i=1

riqi (x) + μcqc (x)

⎞
⎠ dx (84)

=
Nk+1|k∑
i=1

risi + μcsc (85)

and

�k+1 =
∫

g (x) g(x)T

⎛
⎝Nk+1|k∑

i=1

riqi (x) + μcqc (x)

⎞
⎠ dx

−
∫ ∫

g (x1) g(x2)T

⎛
⎝Nk+1|k∑

i=1

r2
i qi (x1) qi (x2)

⎞
⎠ dx1dx2

+
∫ ∫

g (x1) g(x2)T
(
a − μ2

c

)
qc (x1) qc (x2) dx1dx2

(86)

=
Nk+1|k∑
i=1

(
rivi − r2

i sis
T
i

) + μcvc − (
μ2

c − a
)
scs

T
c ,

(87)

where

sc = 〈qc, g〉, vc = 〈
qc, ggT

〉
. (88)

We now consider the random finite set �k+1|k to be the
union of three independent random finite sets as follows:
�k+1|k = �A

k+1|k ∪ �B
k+1|k ∪ �C

k+1|k. Let �A
k+1|k be a

Bernoulli RFS with parameters {ri, qi(x)}, �B
k+1|k be a

multi-Bernoulli RFS with parameter set {rj , qj (x)}j �=i , and
�C

k+1|k be an IIDC RFS with parameters {qc(x), π c(n)}.
The density f

A∗
x

k+1|k(W ) in (26) can be interpreted to be the
density of an RFS which is the union of three independent
random finite sets. From (12), the density function
f

Ax
k+1|k(W ) corresponds to an RFS which is empty with

probability 1, and hence all its moments are zero. The
parameters μ

A∗
x

k+1 and �
A∗

x
k+1, therefore, using Campbell’s

theorem, are

μ
A∗

x
k+1 = 0 +

Nk+1|k∑
j=1,j �=i

rj sj + μcsc (89)

= μk+1 − risi = μī
k+1 (90)

and

�
A∗

x
k+1 = 0 +

Nk+1|k∑
j=1,j �=i

(
rj vj − r2

j sj sjT
)

+ μcvc − (
μ2

c − a
)
scs

T
c (91)

= �k+1 − (
rivi − r2

i sis
T
i

) = �ī
k+1. (92)

We now consider the random finite set �k+1|k to be the
union of two independent random finite sets as follows:
�k+1|k = �A

k+1|k ∪ �B
k+1|k. Let �A

k+1|k be an IIDC RFS
with parameters {qc(x), π c(n)} and �B

k+1|k be a

multi-Bernoulli RFS with parameter set {rj , qj (x)}Nk+1|k
j=1 .

In this case the multitarget density f
Ax
k+1|k(W )

corresponds to an IIDC RFS with parameters
{qc(x), [(n + 1)π c(n + 1)]/μc} with probability 1. This is

2860 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 51, NO. 4 OCTOBER 2015



because, when x /∈ W (event with probability 1), we have

f
Ax
k+1|k (W ) = f A

k+1|k ({x} ∪ W )

DA
k+1|k (x)

(93)

= (|W | + 1)!π c (|W | + 1) q{x}∪W
c

μcqc (x)
(94)

= (|W | + 1)!π c (|W | + 1) qW
c

μc
(95)

= |W |! (|W | + 1) π c (|W | + 1)

μc
qW

c . (96)

The μc and a parameters corresponding to the cardinality
distribution [(n + 1)π c(n + 1)]/μc are a/μc and b/μc,
respectively. Thus from (85) and (87) we have

μ
A∗

x
k+1 =

Nk+1|k∑
j=1

rj sj + a

μc
sc = μc̄

k+1 (97)

and

�
A∗

x
k+1 =

Nk+1|k∑
j=1

(
rj vj − r2

j sj s
T
j

) + a

μc
vc −

(
a2

μ2
c

− b

μc

)
scs

T
c

(98)

= �c̄
k+1. (99)

APPENDIX B. CARDINALITY UPDATE FOR IIDC
COMPONENT

We now derive the cardinality distribution of the
posterior IIDC component. This can be defined as

π c
k+1 (n) =

∫
|W |c=n

fk+1|k+1 (W ) δW (100)

=
∫
|W |c=n

hzk+1 (W ) fk+1|k (W ) δW∫
hzk+1 (W ) fk+1|k (W ) δW

(101)

= π c
k+1|k (n)

∫
hzk+1 (W ) f

c,n
k+1|k (W ) δW∫

hzk+1 (W ) fk+1|k (W ) δW
, (102)

where

f
c,n
k+1|k (W ) = 1

π c
k+1|k (n)

δ|W |c (n) fk+1|k (W ) . (103)

The multitarget density f
c,n
k+1|k(W ) corresponds to the

union of a multi-Bernoulli RFS and the random finite set
obtained by constraining the cardinality (|W|c = n) of the
IIDC RFS. Applying the approximations as before, we get

π c
k+1 (n) ≈ π c

k+1|k (n)
N�z+�

c,n
k+1

(
zk+1 − μ

c,n
k+1

)
N�z+�k+1 (zk+1 − μk+1)

, (104)

where μk + 1 and �k + 1 are as given in (85) and (87). From
[24, 25] we have

μ
c,n
k+1 =

Nk+1|k∑
i=1

risi + nsc (105)

and

�
c,n
k+1 =

Nk+1|k∑
i=1

(
rivi − r2

i sis
T
i

) + n
(
vc − scs

T
c

)
. (106)

Note that in this update equation there is no assumption
made about the cardinality of the multi-Bernoulli
component.
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