
Efficient delay-tolerant particle filtering through selective

processing of out-of-sequence measurements

Xuan Liu, Boris N. Oreshkin and Mark J. Coates
Department of Electrical and Computer Engineering

McGill university
Montreal, Quebec, Canada

{xuan.liu2, boris.oreshkin}@mail.mcgill.ca; mark.coates@mcgill.ca

Abstract – This paper proposes a novel algorithm for
delay-tolerant particle filtering that is computationally
efficient and has limited memory requirements. The al-
gorithm estimates the informativeness of delayed (out-
of-sequence) measurements (OOSMs) and immediately
discards uninformative measurements. More informa-
tive measurements are then processed using the storage
efficient particle filter proposed by Orguner et al. If
the measurement induces a dramatic change in the cur-
rent filtering distribution, the particle filter is re-run to
increase the accuracy. Simulation experiments provide
an example tracking scenario where the proposed algo-
rithm processes only 30-40% of all OOSMs using the
storage efficient particle filter and 1-3% of OOSMs by
re-running the particle filter. By doing so, it requires
less computational resources but achieves greater accu-
racy than the storage efficient particle filter.

Keywords: Tracking, particle filtering, out of se-
quence measurement (OOSM), resource management.

1 Introduction
Tracking is frequently performed using multiple sensor
platforms, with measurements being relayed to a cen-
tral fusion site over a wireless network. This can lead to
some measurements being delayed when adverse envi-
ronmental conditions cause packet losses to occur. The
fusion centre is then faced with out-of-sequence mea-
surements (OOSMs). Simply discarding the delayed
OOSMs can waste important information and lead to
much poorer tracking performance. On the other hand,
incorporating the measurements into a particle filter in
an efficient manner can be a challenging task.

In this paper, we propose a novel algorithm for delay-
tolerant particle filtering that is computationally effi-
cient and has limited memory requirements. The algo-
rithm first applies an inexpensive computational proce-
dure based on extended Kalman filtering to estimate
the informativeness of the OOSMs. It immediately
discards any measurements which are deemed uninfor-

mative. The more informative measurements are pro-
cessed using the storage efficient particle filter proposed
by Orguner et al. in [1]. This algorithm is usually accu-
rate, but it can fail when a measurement is extremely
informative, because it does not change the locations of
particles but just updates their weights. It thus cannot
address situations in which the current particle filter
distribution should be changed significantly because of
the new out-of-sequence measurement. Our algorithm
applies a second test to detect these highly-informative
OOSMs, and incorporates them by re-running the par-
ticle filter from the time-step of the OOSM. Gaussian
approximations of past particle distributions are stored
to permit the initialization of the re-run particle filter.

Our simulation experiments provide an example
tracking scenario where the proposed algorithm pro-
cesses only 30-40% of all OOSMs using the storage ef-
ficient particle filter and 1-3% of OOSMs by rerunning
the particle filter. By doing so, it requires less compu-
tational resources but achieves greater accuracy than
the storage efficient particle filter proposed in [1].

1.1 Paper Organization

The rest of the paper is organized as follows. Sec-
tion 1.2 discusses the related work. Section 2 provides
the problem statement. Section 3 provides an overview
of memory efficient OOSM particle filters and Section 4
presents the novel algorithm. The performance of the
proposed methods is assessed through simulation in
Section 5. We make concluding remarks in Section 6.

1.2 Related Work

There has been a substantial amount of research ad-
dressing tracking with out-of-sequence measurements.
The initial work on this topic focused on tracking sys-
tems with linear state and measurement models (see [2]
and references therein). In order to address nonlinear
models, researchers began to explore methods for effi-
ciently processing OOSMs within particle filters. In [3],
Orton et al. proposed an approach that employs the set



of particles before and after the time step of the delayed
measurement to update the current weights of particles.
This method was improved with a Markov chain Monte
Carlo (MCMC) smoothing step to mitigate the poten-
tial problem of degeneracy in [4]. The OOSM particle
filters proposed in [3,4] need to store all of the particles
of the last l steps, (l is the predetermined maximum
number of lags), which can lead to an excessive con-
sumption of storage resources. To address this, Mallick
et al. proposed an approximate OOSM particle filter
that only stores the mean and covariance matrix of the
particles [5]. These three OOSM particle filtering algo-
rithms require an inversion of the system dynamics to
perform “backwards prediction”, which is only possible
for linear state dynamics. In subsequent work, both
for OOSM processing [1] and particle smoothing [6],
researchers have identified procedures for approximate
inversion for some non-linear systems; it is possible to
incorporate these techniques to extend the applicability
of the algorithms in [3–5].

In [1], Orguner et al. propose a number of “storage
efficient particle filters” (SEPFs) for OOSM processing.
As in [5], the particle filters only store statistics (single
mean and covariance) of the particle set, rather than
the particles themselves, at previous time steps. Aux-
iliary fixed point smoothers are employed to determine
the likelihood of the delayed measurement conditioned
on each particle in the current set, and this likelihood
is used to update the weight of the particle. The au-
thors compare the performance of the algorithms using
three types of smoother: Extended Kalman Smoother
(EKS), Unscented Kalman Smoother (UKS) and Parti-
cle Smoother (PS). In their simulations, the EKS out-
performs the other methods with least computation.
Their experiments address highly non-linear filtering
problems where the extended Kalman filter often fails
to track the target. The EKS is successful because the
particle filter provides it with critical side-information.

The storage efficient particle filters perform well for
many OOSM tracking tasks, but their performance can
suffer when there are a significant number of highly-
informative OOSMs (such as the scenario described in
Section 5). Incorporating such OOSMs using the auxil-
iary fixed point smoother can lead to a major decrease
in the effective number of particles. The storage effi-
cient particle filters of [1] therefore choose to discard
them.

2 Problem Statement
We now provide a mathematical formulation of the
OOSM filtering problem. We consider the scenario with
Markovian and (possibly) non-linear state dynamics
and measurements described by (possibly) non-linear
functions of the current state. The innovation and ob-
servation noises are modeled as additive Gaussian. At
each timestep k, there is an active set of distributed

sensors, Vk, that make measurements. These measure-
ments are relayed to the fusion centre. A subset of them
Sk experience minimal delay and can be processed at
time k. Other measurements are delayed and only be-
come available for processing at later timesteps. Mea-
surements that are delayed by more than l timesteps
are considered uninformative and are ignored.

The system is described by the following equations:

xk+1 = fk+1|k(xk) + vk+1|k (1)

yjk = hjk(xk) + sjk (∀j ∈ Vk) (2)

Yk = {ySkk : Sk ⊆ Vk} (3)

Zk = {yDk−l,kk−l ,yDk−l+1,k
k−l+1 , . . . ,yDk−1,k

k−1 } (4)

Here {xk} denotes the state sequence, which is a
Markov process with initial distribution x0 ∼ p(x0),
and {yjk} denotes the measurement sequence at the j-
th sensor. vk+1|k is the transition noise with Gaussian
distribution N (0,Vk+1|k), and sjk is the measurement
noise with Gaussian distribution N (0,Qj

k). The func-
tions fk+1|k(.) and hjk(.) are the transition and mea-
surement functions. Yk denotes the set of non-delayed
measurements received at time k. Zk denotes the set
of OOSMs received at time k. The set Dτ,k is the sub-
set of active sensors at time τ whose measurements are
received at time step k; yDk−l,kk−l is the set of measure-
ments made at time k−l that arrive at the fusion centre
at time k.

Let W̃i:j
k denote the set of measurements generated in

the interval [i, j] available at the fusion centre by time k.
This includes all the non-delayed measurements Yi:j =
∪jm=iYm and OOSMs {yDτ,mτ ∈ Zm : τ ∈ [i, j],m ∈
[1, k]}. We also denote Wi:j

k = W̃i:j
k \ Zk, i.e. the set

of all measurements available at time k except those in
Zk. Lastly, let Wj

k ≡ W
j:j
k and W̃j

k ≡ W̃
j:j
k .

The OOSM filtering task is to form an estimate of
the posterior distribution p(xk|W̃1:k

k ) (and hence an es-
timate of the state xk).

3 OOSM Particle Filters
OOSM particle filters differ in how they incorporate the
OOSMs from the set Zk. The simplest approach is to
discard them, but this can result in poor tracking per-
formance. Another obvious approach is to restart the
filter at the time step immediately prior to the time
step associated with the earliest OOSM in Zk and re-
run to the current time step k. This requires that we
record all the particles, weights and the measurements
for the window of time over which OOSMs are consid-
ered useful. We call this approach the “OOSM re-run
particle filter” and consider it as a benchmark for the
accuracy that can be achieved. This method has two
unattractive qualities: the storage requirements can be
immense (consider 10,000 particles stored for a window
of 10 timesteps), and the computation cost is high.



As discussed in Section 1.2, several methods have
been proposed to alleviate these costs. In this section,
we provide a brief review of the storage efficient par-
ticle filter of [1] and introduce a seemingly novel (but
obvious) alternative algorithm. In both algorithms, the
memory requirements are reduced by storing statistics
of the particle sets from past time steps instead of the
particles themselves. Effectively, the past particle dis-
tributions are represented by Gaussian approximations.
The stored information is then the mean and covariance
matrix of particles at each time step from k − l − 1 to
k. Denote, respectively, by ξk, ωk the sets of the val-
ues and weights of particles at time k, and let µk, Rk

denote their mean and covariance. The stored informa-
tion is then

Ωk = {µk−l−1:k,Rk−l−1:k,Wk−l:k
k }, (5)

A generic storage efficient OOSM particle filtering
algorithm is summarized in Algorithm 1. If there are
no OOSMs at time k, we write Zk = ∅.
Algorithm 1: Generic OOSM Particle Filter
At time k1

Input: Zk, Ωk

(ξk, ωk) ← ParticleFilter(Yk, ξk−1, ωk−1) ;2

(µk, Rk) ← SaveGauss(ξk, ωk) ;3

if Zk 6= ∅ then4

(ξk, ωk, Ωk) ← ProcessOOSM(Zk, ξk, ωk, Ωk);5

In this algorithm, the function ParticleFilter can
be any standard particle filtering method. If Yk =
∅, ParticleFilter only propagates the particles and
skips the measurement processing step. The function
SaveGauss uses the maximum likelihood estimator of
the mean and covariance given the weighted sample set
ξk, ωk:

µk =
N∑
i=1

ω
(i)
k ξ

(i)
k (6)

Rk =
N∑
i=1

ω
(i)
k (ξ(i)

k − µk)(ξ(i)
k − µk)T (7)

3.1 Gaussian Approximation Re-run
Particle Filter (OOSM-GARP)

A simple modification of the re-run particle filter in-
volves storing only Gaussian approximations of the par-
ticle distributions at previous timesteps. When a batch
of OOSMs arrives, the particle filter is re-run from the
time step preceding the earliest OOSM. Since the par-
ticle set from that time step is unavailable, particles are
generated from the stored approximation.

When OOSM-GARP receives Zk at time k, it returns
to the time step τ̃k − 1 (let τ̃k denote the earliest time
step of all OOSMs in Zk). It samples particles from
N (µτ̃k−1,Rτ̃k−1), propagates them to the time step τ̃k
and runs the filter as standard particle filter using all

stored measurements W̃ τ̃k:k
k . At each step, it updates

the mean and covariance matrix in the stored set Ωk

as described in Algorithm 2.

Algorithm 2: ProcessOOSM-GARP
Input: Zk, Ωk

τ̃k = min
τ
{τ : yτ ∈ Zk} ;1

{ξ(i)
τ̃k−1}

N
i=1 ∼ N (xτ̃k−1,µτ̃k−1,Rτ̃k−1) ;2

ω
(i)
τ̃k−1 = 1/N, i = 1 . . . N ;3

for j = τ̃k, . . . , k do4

(ξj , ωj) ← ParticleFilter(W̃j
k, ξj−1, ωj−1);5

(µj , Rj) ← SaveGauss(ξj, ωj) ;6

endfor7

In many tracking tasks, the Gaussian provides a
reasonable approximation to the particle distributions,
particularly as it is only used to restart a particle filter.
OOSM-GARP thus performs almost as well as the ba-
sic re-run particle filter but requires much less memory.
However, OOSM-GARP is relatively computationally
complex since it reprocesses all the particles for k−τ̃k+1
steps.

3.2 Storage Efficient Particle Filter
with EKS (SEPF-EKS)

We now provide a brief review of the storage efficient
OOSM particle filter from [1], which forms part of our
proposed algorithm. We focus on the filter that em-
ploys EKS, since it is less computationally demanding
but offers equivalent or better accuracy. In order to
simplify the presentation, we consider a single OOSM
yτ ≡ yDτ,kτ ∈ Zk.

The SEPF is based on the following weight-update
equation:

ω
(i)
k ∝ p(yτ |ξ

(i)
k ,W1:k

k ,Zk,τ̄ )ω(i)
k,τ̄ . (8)

Here ω(i)
k,τ̄ and ω(i)

k denote the weights before and after

processing yτ . p(yτ |ξ(i)
k ,W1:k

k ,Zk,τ̄ ) denotes the likeli-
hood function of yτ given all the current particles ξ(i)

k ,
all received measurements in W1:k

k and the recently re-
ceived OOSMs in Zk except yτ , thus Zk,τ̄ = Zk \{yτ}.

The SEPF estimates this likelihood expression in
two stages. First it forms an approximation of
p(xτ |ξ(i)

k ,W1:k
k ,Zk,τ̄ ). This is achieved by applying an

augmented-state extended Kalman smoother [7] to up-
date the stored mean and covariance at time τ to reflect
the information from the measurements Wτ+1:k

k ∪Zk,τ̄
and the current particle ξ(i)

k (which is treated as a mea-
surement). SEPF then employs an EKF approximation
of p(yτ |xτ ) to construct an estimate of the likelihood
p(yτ |W1:k

k ,Zk,τ̄ , ξ(i)
k ).

SEPF-EKS achieves significant computational sav-
ings because it processes the means and covariances in-



stead of all N particles. The computational complexity
is less than the re-run particle filters in most cases1.

The algorithm is vulnerable to highly informative
OOSMs. After processing an OOSM that should lead
to a major change in the filtering distribution, the effec-
tive number of particles (measured by 1/

∑
(ω(i))2) can

be greatly diminished. This reduces sample diversity in
the particle filter and can cause significant performance
deterioration.

4 Selectively Processing OOSMs
We now propose a simple but effective two-stage al-
gorithm that processes only the informative OOSMs,
leading to significantly increased computational effi-
ciency. The first stage of the algorithm estimates
the informativeness of an OOSM (we outline two met-
rics and estimation schemes below) and discards those
deemed uninformative. In the second stage, the infor-
mative OOSMs are processed by SEPF-EKS. If sig-
nificant reduction of the effective sample size is de-
tected after application of SEPF-EKS, we choose to
apply OOSM-GARP. The approach combines the ad-
vantages of OOSM-GARP and SEPF-EKS in order
to achieve a satisfactory tradeoff between performance
and complexity. We describe the proposed approach
ProcessOOSM-SP in Algorithm 3.

In this algorithm, the function CalcMI is used to
estimate the informativeness of a measurement, and
it is discussed in more detail below. The thresholds
γ1 and γ2 govern the trade-off between computational
complexity and accuracy. The first threshold γ1 de-
termines the proportion of OOSMs that are declared
uninformative and immediately discarded. The second
threshold defines the proportion of informative OOSMs
that are processed using ProcessOOSM-GARP which re-
runs the particle filter from the time τ when the OOSM
was measured. In our experiments we observed that
ProcessOOSM-GARP can be invoked rarely and yet this
substantially improves the quality of tracking.

4.1 OOSM Selection Rule

We propose two metrics for assessing the “informative-
ness” of OOSMs, both based on information-theoretic
concepts. For the first metric, the OOSM is treated as a
random variable Yτ , so the metric and decision do not
depend on the actual measured value yτ ≡ yDτ,kτ ∈ Zk.
The first metric is the mutual information between the
OOSM Yτ and the state Xk, I(Yτ ,Xk|W1:k

k ,Zk,τ̄ ).
The second metric is the Kullback-Leibler divergence
(KL-divergence) [8] between the distribution at time k,
conditioned on all measurements except for yτ , and the

1It is difficult to efficiently extend the SEPF-EKS algorithm to
process batches of OOSMs, so the computational savings dimin-
ish when it is common for multiple OOSMs to arrive in a given
timestep. The OOSM-GARP algorithm readily accommodates
such batches.

Algorithm 3: ProcessOOSM-SP
Input: Zk, Ωk

EKSfailed = 0;1

for yτ ∈ Zk do2

Iyτ ← CalcMI(yτ , µτ , Rτ , Hτ) ;3

if Iyτ < γ1 then4

discard yτ ;5

else6

Nprior
eff = 1/

∑N
i=1(ω(i)

k )2 ;7

(ξk,ωk,Ωk) ←8

ProcessOOSM-EKS(yτ ,ξk,ωk,Ωk) ;
Npost

eff = 1/
∑N
i=1(ω(i)

k )2 ;9

if Npost
eff /Nprior

eff < γ2 then10

EKSfailed = 1 ;11

break ;12

endif13

endfor14

if EKSfailed then15

(ξk,ωk,Ωk) ← ProcessOOSM-GARP(Zk, Ωk) ;16

distribution at time k conditioned on all measurements
including yτ , D(p(xk|W1:k

k ,Zk,τ̄ )‖p(xk|W1:k
k ,Zk)).

Our goal is to estimate the metric quickly and rela-
tively accurately in order to decide about whether to
process the OOSM. We therefore employ Gaussian ap-
proximations to the distributions of interest and use
the extended Kalman filter to calculate their parame-
ters. We now discuss the individual metrics and the
procedures used for their estimation.

4.1.1 Mutual Information Metric

The mutual information is defined between measure-
ment Yτ and state Xk as follows:

I(Yτ ,Xk|W1:k
k ,Zk,τ̄ )

=
∫

log
(

p(yτ ,xk|W1:k
k ,Zk,τ̄ )

p(yτ |W1:k
k ,Zk,τ̄ )p(xk|W1:k

k ,Zk,τ̄ )

)
×

p(yτ ,xk|W1:k
k ,Zk,τ̄ ) dyτ dxk

Thus to calculate the mutual information based test
statistic it is sufficient to know the joint distribution
p(yτ ,xk|W1:k

k ,Zk,τ̄ ). The mutual information can also
be expressed in terms of conditional entropies H:

I(Yτ ,Xk|W1:k
k ,Zk,τ̄ )

= H(Xk|W1:k
k ,Zk,τ̄ )−H(Xk|Yτ ,W1:k

k ,Zk,τ̄ ).

We choose to approximate the joint distribution by
a Gaussian distribution:

p(yτ ,xk|W1:k
k ,Zk,τ̄ )

≈ N (
(

xk
yτ

)
;
(
µxk

µyτ

)
,

(
Rxk Rxkyτ

Ryτxk Ryτ

)
)



Let us define Rxk|yτ = Rxk −RxkyτR
−1
yτ Ryτxk . Stan-

dard Gaussian marginalization and conditioning for-
mula lead to the following relationships:

H(Xk|W1:k
k ,Zk,τ̄ ) =

1
2

log |2πeRxk |

H(Xk|Yτ ,W1:k
k ,Zk,τ̄ ) =

1
2

log |2πeRxk|yτ |

I(Yτ ,Xk|W1:k
k ,Zk,τ̄ ) =

1
2

log
|Rxk |

|Rxk −RxkyτR
−1
yτ Ryτxk |

We can devise the following technique for estimating
I(Yτ ,Xk|W1:k

k ,Zk,τ̄ ). We assume that the measure-
ment equation at time τ can be reasonably accurately
linearized around the estimate of the state. Defining
Hτ = ∂

∂xhτ (x)|x=µxτ
, this implies that yτ ≈ Hτxτ+sτ .

See [9] for further discussion about this assumption.
Commencing with the saved distribution at time τ ,

p(xτ |W1:τ
k ) ≈ N (xτ ;µτ ,Rτ ) and using the lineariza-

tion assumption, we can calculate the Gaussian approx-
imation of the joint distribution at time τ :

p(yτ ,xτ |W1:τ
k ) ≈ N (

(
xτ
yτ

)
;
(
µxτ

µyτ

)
,

(
Rxτ Rxτyτ

Ryτxτ Ryτ

)
),

where we set µxτ = µτ , µyτ = hτ (µτ ); Rxτ = Rτ ,
Ryτ = HτRτHT

τ + Qτ , Rxτyτ = RτHT
τ , Ryτxτ =

RT
xτyτ .
We now apply a forward EKF recursion, augmenting

the state x with the measurement yτ , denoted by z
with its covariance P. The EKF recursion consists of a
prediction step:

zm+1|m =
(
µxm+1|m

µyτ

)
=
(

fm(µxm)
µyτ

)
(9)

Pm+1|m =
(

Fm 0
0 I

)(
Rxm Rxmyτ

Ryτxm Ryτ

)(
FTm 0
0 I

)
+
(

Vm+1|m 0
0 0

)
(10)

and an update step:

rm+1 = ỹm+1 − h̃m+1(µxm+1|m) (11)

Km+1 = Pm+1|mH̃T
m+1(H̃m+1Pm+1|mH̃T

m+1 + Q̃m+1)−1

(12)

zm+1 = zm+1|m + Km+1rm+1 (13)
Pm+1 = (I−Km+1Hm+1)Pm+1|m (14)

Note that

ỹm+1 =

 · · ·
yjm+1

· · ·


is the vector of varying dimensionality that contains
stacked measurements from time m + 1 available at
time k, i.e. ỹm+1 contains yjm+1 if yjm+1 ∈ W

m+1
k ∪

Zk. Likewise, h̃m+1(·) is the corresponding non-linear

vector function defined similarly to ỹm+1. However,
H̃m+1 = ∂

∂xhm+1(x)|x=zm+1|m is the linearization with
augmented state. Q̃m+1 is the block-diagonal matrix
which describes noise terms corresponding to compo-
nents yjm+1 of vector ỹm+1.

Repeated application of the recursion permits estima-
tion of the joint distribution p(yτ ,xk|W1:k

k ,Zk,τ̄ ) and
this allows us to estimate the mutual information met-
ric I(Yτ ,Xk|W1:k

k ,Zk,τ̄ ) using the expressions above.

4.1.2 KL-divergence metric

The KL-divergence between p(xk|W1:k
k ,Zk,τ̄ ) and

p(xk|W1:k
k ,Zk) is calculated using the following for-

mula:

D(p(xk|W1:k
k ,Zk,τ̄ )‖p(xk|W1:k

k ,Zk))

=
1
2

log

(
|R̂k|
|Rk|

+ tr(R̂−1
k Rk)+

(µ̂k − µk)T R̂−1
k (µ̂k − µk)− dx

)
(15)

where dx is the dimensionality of the state xk. In Al-
gorithm 3 we use the symmetrized KL-divergence:

Iyτ =
(
D(p(xk|W1:k

k ,Zk,τ̄ )‖p(xk|W1:k
k ,Zk))+

D(p(xk|W1:k
k ,Zk)‖p(xk|W1:k

k ,Zk,τ̄ ))
)
/2 (16)

We estimate the KL-divergence using Gaussian ap-
proximations: p(xk|W1:k

k ,Zk,τ̄ ) ≈ N (xk,µk,Rk) and
p(xk|W1:k

k ,Zk) ≈ N (xk, µ̂k, R̂k). Both distributions
are obtained by applying forward EKF recursions start-
ing from time τ . To obtain the latter distribution we
first apply a measurement update step at time τ and
then calculate standard EKF recursion. The former dis-
tribution is obtained by calculating the standard EKF
recursion and excluding the measurement yτ .

5 Numerical Experiments
In our simulations we consider a two-dimensional sce-
nario with a single target that makes a clockwise co-
ordinated turn of radius 500m with a constant speed
200km/h. It starts in y-direction with initial position
[−500m, 500m] and is tracked for 40 seconds.

The target motion is modeled in the filters by the
nearly coordinated turn model with unknown constant
turn rate and cartesian velocity. The state of the tar-
get is given as xk = [pxk, p

y
k, v

x
k , v

y
k , ωk]T , where p, v and

ω denote the position, velocity and turn rate respec-
tively. The dynamic model for the coordinated turn
model fk+1|k(.) is

xk+1 =


1 0 sin(ωk)

ωk

cos(ωk)−1
ωk

0
0 1 1−cos(ωk)

ωk

sin(ωk)
ωk

0
0 0 cos(ωk) − sin(ωk) 0
0 0 sin(ωk) cos(ωk) 0
0 0 0 0 1

xk + vk+1|k



where vk+1|k is Gaussian process noise, vk+1|k ∼
N (0,Vk+1|k), Vk+1|k = diag([302, 302, 102, 102, 0.12]),
the sampling period is 1 second. We assume that all
of the filters initially know little about the state of
the target and therefore they are initialized with the
state value x0 = [0, 0, 0, 0, 0]T and a large covariance
R0 = diag([10002, 10002, 302, 302, 0.12]).

There are three sensors S1, S2 and S3 sending
bearing-only measurements of the target to a com-
mon fusion centre. The sensor locations are [Sx1 , S

y
1 ] =

[−200, 0], [Sx2 , S
y
2 ] = [200, 0], [Sx3 , S

y
3 ] = [−750, 750] and

the bearings-only measurement function is

hk(xk) = arctan(
pyk − S

y
j

pxk − Sxj
) j = 1, 2, 3 (17)

The measurements from the sensors are corrupted
with additive independent Gaussian noises with zero
mean and standard deviation σs = 0.05. All sensors
are assumed to have communication issues leading to
OOSMs. An OOSM arrives at the fusion centre from a
given sensor with probability posm and delay d. The de-
lay d is uniformly distributed in the interval [0, 5]. The
probability posm is set to 0.7, which characterizes the
reliability of OOSM delivery (a portion of the OOSMs
are lost on the way to the fusion centre).

5.1 Benchmarked Filters

We have implemented six different particle filters, all
based on the Sampling Importance Resampling (SIR)
filtering paradigm [10]. The prior distribution is used as
the importance function. The filters were implemented
in Matlab and the code was highly optimized.

PFall : collects all measurements from all active sen-
sors (no OOSMs). This is an idealized filter that pro-
vides a performance benchmark.

PFmis: discards all OOSMs and therefore only pro-
cesses the measurements with zero delay.

PFEKS : Storage efficient particle filter using EKS
smoothing as described in [1] (see Section 3.2).

PF-GS : The OOSM-GARP algorithm described in
Algorithm 2.

PF-MI : Selective OOSM processing based on the mu-
tual information metric.

PF-KL: Selective OOSM processing based on the KL-
divergence metric.

We use the root mean-squared (RMS) position error
to compare the performances of particle filters. Let
(pxk, p

y
k) and (p̂xk,i, p̂

y
k,i) denote the true and estimated

target positions at time step k for the i-th of M Monte-
Carlo runs. The RMS position error at k is calculated
as

RMSk =

√√√√ 1
M

M∑
i=1

(p̂xk,i − pxk)2 + (p̂yk,i − p
y
k)2 (18)
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Figure 1: Tracking performance of the particle filters as
a function of time using RMS error as a performance
metric. The curves show the means of 1000 Monte-
Carlo trials. (a) Filters use 2000 particles; (b) Filters
use 5000 particles.

5.2 Results and Discussion

The computational complexity versus accuracy trade-
off can be tuned by adjusting the thresholds. We illus-
trate this in our experiment, where we vary the compu-
tational complexity of the proposed algorithms PF-KL
and PF-MI by varying the respective thresholds and
plot the RMS vs. complexity curve measured in MAT-
LAB. γ1 = 0 : 0.2 : 1.8 for PF-MI and γ1 = 0 : 0.5 : 4.5
for PF-KL. γ2 = 2.5% for both of them. These re-
sults are reported in Fig. 3. In this figure we show
the relationship between complexity and performance
for the proposed algorithms PF-KL and PF-MI with
ten values of the first stage threshold γ1 and results
of 10 simulations for other algorithms. Each simula-
tion involves 1000 Monte Carlo runs. We compare the
performance of all particle filters when they use 2000
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Figure 2: Errorbars showing the variation of position
RMS for PFEKS, PF-GS and PF-MI, when they use
5000 particles. The box has lines at the lower quartile,
median(red line), and upper quartile values. Outliers
(red ’+’) are values beyond the range of 5 times the
interquartile range from the ends of the box.

and 5000 particles. When the thresholds are chosen so
that the selective processing filter has the same com-
putational complexity as the storage efficient particle
filter of [1], it achieves significantly better tracking per-
formance. Alternatively, for the same fixed RMS error
performance, the selective processing algorithm reduces
the computation time by approximately 50%.

From Fig. 3, we can see that the following thresholds
optimize the trade-off between complexity and accu-
racy: γ1 = 0.4 for PF-MI and γ1 = 0.5 for PF-KL.
In Fig. 1, we plot the RMS position performance for
40s of the algorithms with these settings. From the re-
sults, the number of individual OOSMs to be processed
by the EKS after the first threshold γ1 is 30.66% and
30.88% for PF-MI and 35.67% and 35.92% for PF-KL
with 2000 and 5000 particles respectively. After the sec-
ond threshold the number of most informative OOSMs
processed by rerunning the particle filter is 1.42% and
1.34% for PF-MI and 3.13% and 2.86% for PF-KL with
2000 and 5000 particles respectively. Errorbar plots of
RMS performance of PFEKS, PF-GS and PF-MI with
5000 particles are shown in Fig. 2, which indicates that
the performance of PFEKS is not as stable as PF-GS
and PF-MI. Despite processing only a relatively small
fraction of the OOSMs, the proposed algorithm per-
forms almost as well as the much more complex OOSM-
GARP algorithm (PF-GS ). The calculation of the se-
lection criterion has minimal overhead, so discarding
the uninformative measurements results in significant
computational savings.

6 Conclusions
This paper presents a computationally efficient algo-
rithm for delay-tolerant particle filtering that has lim-
ited memory requirements. By identifying and discard-
ing the uninformative delayed measurements, the algo-
rithm reduces the computational requirements. By pro-
cessing the most informative measurements with a re-
run particle filter, the algorithm achieves better track-
ing performance than the storage efficient particle filter
of [1]. In future work we plan to develop an adaptive
process that modifies the thresholds during operation
until a satisfactory balance between computational load
and accuracy is achieved. We will also explore whether
the fusion centre can provide feedback to the sensor
nodes so that they can locally assess measurement in-
formativeness. This would allow sensor nodes to avoid
unnecessary energy expenditure by discarding uninfor-
mative measurements prior to transmission.
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(a) N = 2000, t = 10
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(b) N = 5000, t = 10
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(c) N = 2000, t = 20
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(d) N = 5000, t = 20
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(e) N = 2000, t = 30
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(f) N = 5000, t = 30

Figure 3: RMS vs Complexity from 10 simulations with different γ1 for PF-MI (from 0 to 1.8) and PF-KL(from
0 to 4.5). Each simulation shows the average of 1000 MC runs.We select three timesteps, t = 10, 20, 30 for filters
with 2000 and 5000 particles. The complexity is measured by running time for tracking 40s of each filter. The
results are run on a Dell laptop with Genuine Intel(R) CPU T2400 1.83GHz, 0.99GB RAM and Win-XP OS.


