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Abstract—In this paper we investigate the use of differential 
signals to monitor changes within the breast. Specifically, we 
focus on the use of machine learning classification algorithms to 
determine whether any malignant tissues are developing. 
Experimental data is obtained from a 16-element antenna array 
that transmits a 2 – 4 GHz broadband pulse. We implement both 
the Linear Discriminant Analysis and Support Vector Machine 
(SVM) detection algorithms to analyze the experimentally 
obtained data. 

Index Terms— cancer detection; classification algorithms; 
microwave sensors. 

I.  INTRODUCTION  
The early detection of breast cancer is pivotal to ensure 

successful treatment [1]. Microwave systems offer the 
possibility of a complementary modality to the current 
standard of X-ray mammography for breast cancer screening 
[1]. These systems offer the advantage of pain-free non-
ionizing scans. The ability to create affordable microwave 
systems would allow for scans to be easily available to an 
increased number of women; additionally, the non-ionizing 
nature of the scan enables the possibility of more frequent 
exams. These factors make microwave systems a strong 
candidate for breast cancer monitoring.  

Recent literature has shown that machine learning 
algorithms can be applied to data obtained from microwave 
systems in order to classify and detect the presence of a tumour 
embedded within the breast [2-4]. In [4], it was shown that 
applying the support vector machine (SVM) classifier to 
numerical differential signals, signals obtained from successive 
scans of the breast over time, improved classification accuracy 
in a heterogeneous breast scenario. These results suggest that 
frequent scans with a microwave system can be used to detect 
changes within the breast tissue, and classify these changes as 
benign or cancerous. However, these papers have only focused 
on numerically obtained data. Most recently, we have 
demonstrated that these classification algorithms, both SVM 
and linear discriminant analysis (LDA), can be applied to data 
obtained from realistic breast phantoms using an experimental 
time-domain system [5].  

In this paper, we apply a machine learning classification 
algorithm to experimentally obtained data to monitor changes 
within the breast. We use a 16-element antenna array to 
perform measurements in the time-domain on dielectrically-
realistic breast phantoms. Unlike in [5], we now investigate the 
use of differential signals from successive scans of the breast 

phantoms over time. In an experimental system, variation of 
both the direct pulse signal (signals travelling directly between 
antennas) and the background environment signal degrades the 
classifier performance as these variations are not associated 
with changes within the breast structure. This results in a direct 
pulse residual after subtraction. We minimize this residual by 
following the calibration procedure proposed in [6]. We apply 
a machine learning algorithm to differential signals obtained 
from our time-domain system and evaluate the ability of the 
system to monitor changes within the breast structure. 

II. METHODOLOGY 

A. System Overview and Data Collection 
A complete description of our time-domain system can be 

found in [7]. The system is composed of a 16-element antenna 
array, specifically designed as a microwave sensor for breast 
cancer detection, and held in place by a hollow hemi-spherical 
bowl-shaped radome into which the breast phantom under test 
is placed. A pulse with spectral content in the 2 – 4 GHz range 
is fed into a 16x2 switching matrix that chooses the specific 
transmitting and receiving antenna pairs, such that, for each 
scan, a total of 240 bistatic signals are recorded by an 
oscilloscope with an equivalent time-sampling rate of 80GSa/s. 
We record 4096 samples; however, during pre-processing, data 
is windowed, based on the longest possible path for a wave to 
travel, to only include 320 samples (4ns). A photograph of the 
experimental system is shown in Figure 1. 

We fabricated tissue phantoms, following the procedure 
proposed in [8], to closely mimic the dielectric properties of 
actual tissues based on the measurements found in [9]. 
Specifically, in this study we focused on homogeneous 
phantoms that mimic adipose tissue. However, despite 
following the same fabrication procedure, significant variation 
in the dielectric properties, from phantom to phantom and 
within a singular phantom, can be seen [10]. This variation 
increases the complexity of the problem and approaches the 
real world problem where no two breasts have the exact same 
composition. 

Multiple breast scans were taken from the same phantom 
over a period of approximately two weeks. As was shown in 
[5] and [8] the dielectric properties of the breast phantom vary 
over time. In [5], measurements over a period of 7 days 
demonstrated that the relative permittivity, εr, at 3 GHz of the 
healthy breast phantom varied between 5.5 and 19.  
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Figure 1:  A photograph of the time-domain microwave system. 

For “healthy” breast phantoms, the radome is completely 
filled with the adipose tissue. To represent a “tumourous” 
phantom, a spherical 1 cm radius tumour (a tumour of this size 
represents the largest possible tumour that can be categorized 
as “Stage 1” breast cancer) is carved from fabricated tumour 
phantoms. The tumour is then embedded in the healthy breast 
phantom in one of two possible locations; Position A at a depth 
of 2 cm and located halfway between the center and radome 
wall, and Position B at a depth of 3 cm and located at a 180° 
rotation from Position A. An illustration of the two possible 
tumour locations is shown in Figure 2. 
 The differential signals are obtained by comparing 
successive breast scans to the initial breast scan. Thus, we are 
able to monitor changes within the breast structure that are 
either due to slight variations of the healthy breast tissue  
(variation of the phantom properties over time) or  the presence 
of a tumour (embedding the tumour phantom into the healthy 
breast phantom). Tumourous differential signal sets are defined 
as the difference between breast scans performed with a 
tumourous and a healthy breast phantom, whereas a healthy 
differential data set is the difference between scans of the same 
healthy breast phantom. 

B. Detection Algorithm 
In this section we describe the steps followed to 

successfully implement the proposed method. Similar to [4], 
[5], we apply both LDA and SVM classifiers, individually, on 
selected data features that are extracted using Principle 
Component Analysis (PCA).  

1) Noise Mitigation 

Inherent in the experimental data are sources of vertical 
and horizontal noise. The primary source of vertical noise is 
due to white noise from the limitations of the measurement 
equipment (oscilloscope). Horizontal noise arises due to jitter 
in the clock and oscilloscope trigger signal. To mitigate these 
sources of noise we use a correlation alignment procedure. 
More detail is documented in [10]. Additionally, we follow the 
method proposed in [6] to minimize the direct pulse residual. 

2) Differential Signals 

A total of 150 breast scans from 10 breast phantoms were 
used to obtain the training data set. Let Xm be the complete 
data set recorded from a specific breast phantom m, where m = 
1, …, 10. We can define the kth differential signal data set, 
ΔXmk, as the difference between the initial breast scan Xm1 and 
some future breast scan, Xmj, of the same phantom, such that: 

ࢄ∆ = ࢄ − ݆ ݎ݂   ଵࢄ = 2, 3, … , ݊ ܽ݊݀ ݇ = 1, 2, … , ݊ − 1   (1), 
where n is the total number of breast scans performed on  each 
specific phantom m. This process is repeated for each of the 10 
breast phantoms; thus, we obtain 140 differential data sets, of 
240 signals each, to train the classifier. The training data is 
evenly divided (70 data sets each) between healthy differential 
data sets and tumourous differential signals. Of the 70 data sets 
representing a tumourous differential, half are obtained from 
scans when a tumour is embedded in Position A and the other 
half from Position B. 

The aim of this study is to mimic a real-life scenario in 
which we make a decision on a new patient based on 
information from other patients of similar breast size. In this 
case the training data represents scans from individuals whom 
we know to have either healthy or unhealthy breasts; the 
testing data represents a scan of a new patient. Thus, to ensure 
there is no overlap between the training and testing data, the 
test data set is obtained from two breast phantoms not included 
in the initial 10 breast phantoms used to train the classifier. 
The first scan of each new breast phantom is used as the 
reference (X1), and each subsequent scan is used to obtain the 
differential data set, ΔXk, for each phantom. The test data set is 
made up of 32 scans, equally distributed between scans when 
no tumour has developed (healthy) and when a tumour is 
embedded at one of the two positions; i.e. 16 scans where no 
tumour is inserted into the phantom, 8 cases where the tumour 
is inserted into the phantom at Position A, and 8 cases when 
the tumour is inserted into Position B. 

An example of the three types of differential signals for a 
specific antenna pair (Antenna 1 transmits, Antenna 3 
receives) is shown in Figure 3. These differential signals 
represent the difference between two successive scans of a 
breast phantom when (i) there are no changes to the tissue, 
shown in blue, (ii) a tumour is embedded in the phantom at 
Position A, shown in red, and (iii) a tumour is embedded at 
Position B, shown in green. From Figure 2 we observe that, 
starting at about 50 samples, there is a region of interest 
(highlighted in the plot with the dashed box) where three signal 
types are very different from each. Thus, prior to any further 
analysis, the data set is windowed to only retain information 
after the first 50 samples. 

 

   
Figure 2.  An illustration showing the breast phantom (yellow), and the two 
possible tumour locations, denoted by the red spherical tumours. A side (left) 
and top (right) view is shown. 
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Figure 3: A comparison of the three types of differential signals obtained for 
a specific antenna pair (Antenna 1 transmits, Antenna 3 receives). We 
highlight a region of interest where the three differential signals are most 
varied. 

3) Feature Extraction and Classifier Optimization 

The dimensionality of the data can be reduced by using 
feature extraction and retaining only a select number of 
features. This procedure allows us to retain the most important 
features of the data set while also reducing the influence of less 
relevant information such as noise. We use Principle 
Component Analysis (PCA) to extract these features from the 
data. The classification algorithms are then applied to these 
extracted features. The choice of using PCA for feature 
extraction is based on the results in [12], where it was shown 
to be the best feature extraction method when paired with 
SVM and on average. The number of principle components to 
retain is chosen based on the results from cross-validation, 
described in detail later in this section. A difference from our 
past work in [5] is that we no longer standardize the data 
before feature extraction due to the variation of the signal 
strength throughout the data; in fact, there are sections of the 
data where the signals are extremely weak, on the order of 
noise. 

A support vector machine (SVM) is a machine learning 
algorithm that is best used when the data has exactly two 
classes. The training data is mapped to a higher dimensional 
space and used to create support vectors such that a 
discriminant hyperplane that separates the two classes can be 
created. The SVM classifier maximizes the distance (margin) 
between this hyperplane and the training data set. The LDA, an 
easier and more simply implemented classification algorithm, 
is used as a benchmark to compare with the performance of 
SVM [3] – [5]. 

The performance of the SVM classifier is optimized by 
choosing specific operating parameters; in particular, we must 
determine the optimal box constraint, C, and the radial-basis 
function sigma value, σ, as well as the number of principle 
components, n, [5]. As described in [12], we use a coarse-the-
fine grid search for these operating parameters. Additionally, 
we perform 10-fold cross-validation to determine these optimal 

parameter values based on the correct classification rates from 
cross-validation. These parameters are then applied to the final 
testing scenario. From our 10-fold cross validation we find that 
the optimal number of principle components is 25 and the box 
constraint and sigma values are 10 and 4, respectively. 

4) Data Fusion 

The above mentioned analysis is done on a signal-to-signal 
basis. All the data recorded from each specific antenna pair, 
over all the breast scans performed, are grouped together. 
Feature extraction and classification is then applied to this 
grouped data. Thus, for each breast scan we must perform 
PCA and then classification 240 times. The resulting output of 
the classification step is then 240 ‘decisions’; for each antenna 
pair the classifier gives a decision of ‘healthy’ or ‘tumour’. 

In [5] we proposed, based on observations in previous 
work, that certain antenna pairs may be more sensitive to 
changes within the breast tissue. Specifically, we investigated 
the idea that the four antennas closest to each other (whose 
signals travel the least distance within the breast prior to 
communicating with each other) would have the best 
performance. We observed that only using the data from these 
48 antenna pairs (4 antennas in each of the 4 quadrants) 
improved the sensitivity to presence of the tumour but 
increased the false-positive rates [5].  

In the here reported work, we aim to take into account the 
recordings of these antenna pairs simultaneously; that is to say 
we will group the data from these antenna pairs prior to feature 
extraction (data from each antenna pair within a group are 
concatenated). Thus, we make use of the information of the 
group of antenna as a whole. Additionally, we do not discard 
the remaining antenna pairs. 

Each breast scan is composed of 240 recorded signals, 
representing the 240 antenna pairs. We group these 240 signals 
into 20 groups of 12 antenna pairs. Four of these groups, 48 
antenna pairs, represent the four quadrants of the antenna 
array. The remaining 192 antenna pairs are randomly 
distributed into 16 groups of 12.  Thus, we need only perform 
feature extraction and classification 20 times per breast scan. 

5) Data Averaging and Thresholding 

The output of the classification algorithm is a numerical 
value, a 0 or 1 depending on the decision made, healthy or 
tumour respectively. The total number of decisions per breast 
scan is equal to the number of antenna pairs, or groups, used in 
the analysis. We propose that it is possible to use information 
from each decision made to determine the type of phantom, or 
breast, being scanned. We can average the result from each 
antenna pair, or group of antenna pairs if we are using data 
fusion, and produce a single numerical value representing each 
specific breast scan. This numerical value is hereafter referred 
to as NV. Depending on the NV value, we can make a decision 
on whether the signals collected for that specific scan represent 
changes within the breast that are benign or malignant.  

In this paper, we will discuss the possibility of using a 
threshold value, th, such that if NV > th, the breast scan contains 
a tumour, and if NV < th, the scan represents a healthy breast 
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phantom. The aim in this paper is to simply present a range of 
threshold values, such that adopting any threshold value within 
that range guarantees a 100% correct decision on the nature 
(healthy or unhealthy) of the phantom being scanned. 
Additionally, we will show that using data fusion will increase 
the range that leads to 100% correct decision making. 

Future work will focus on how to choose this threshold 
value and whether the choice of this th value should favor 
false-positive or false-negative rates, or some medium in 
between. 

III. RESULTS  
The LDA classifier can be implemented without any 

optimization, while the SVM classifier must be trained with 
the optimal parameter values (n, C, and σ) found from the 
optimization procedure. The trained classifiers are tested with 
the testing data set obtained from the two newly fabricated 
breast phantoms. 

In Table 1 we compare the optimized-SVM classifier by 
presenting the overall correctly classified percentage, the false-
positive, and the false-negative rates; additionally, we present 
the range of threshold values for which we can guarantee a 
100% correct decision will be made based on the averaged NV 
values. Results without using differential signals, as presented 
in [5], are shown in parenthesis. When using the differential 
signal analysis the overall correctly classified percentage is 
decreased by 8.6% for the LDA classifier, while it is increased 
by 3.89% for the SVM classifier. 

The results from the data fusion technique outlined in 
Section II.B.4 are shown in Table 2. We compare these results 
to a naïve form of grouping in order to assess performance of 
the data fusion technique. Data fusion groups data prior to 
feature extraction and classification, whereas the naïve 
grouping is performed after analysis. The naïve grouping 
analysis is performed by applying the same grouping as 
implemented in the data fusion technique, but we now use a 
majority-vote on the output of the classifier to obtain a group 
decision.  The naïve grouping results are shown in parenthesis 
in Table 2. 

In comparison to the results presented in Table 1, using 
data fusion provides an increase in performance for both 
classifiers. The overall detection rate is greatly improved for 
both classifiers, and the difference in performance between the 
two classifiers is greatly reduced. Both the false-positive and 
false-negative rates for both classification algorithms are 
greatly decreased. Additionally, it is clear that using the data-
fusion technique provides an increased improvement in 
comparison with a naïve grouping analysis. We also note that 
the naïve grouping widens the gap between the false-positive 
and false-negative rates, in comparison with the no-grouping 
and data-fusion techniques. 

We observe that the threshold range that leads to 100% 
correct decision making is significantly increased, thus 
reducing the burden for choosing the appropriate threshold 
value for decision making. Clearly, the data fusion technique is 
very useful in improving the performance of the classification 
algorithms. Furthermore, we conclude that using the data-

fusion technique in conjunction with a simple and easily 
implemented classification algorithm such as LDA, which 
requires no optimization, can be used to obtain correct 
classification results of almost 90%, with a false-negative rate 
of almost 5%. Additionally, we note that the range of threshold 
values for the LDA classifier with data fusion spans from 
0.222 to 0.944, suggesting that decision making based on 
information from all the antenna groups can be quite 
successful.  

 

TABLE I.  A COMPARISON OF THE CLASSIFICATION RESULTS FOR LDA 
AND SVM WITH AND WITHOUT[5] THE USE OF DIFFERENTIAL SIGNALS. 

RESULTS FROM [5] SHOWN IN PARENTHESIS. 

 

 Correctly 
Classified (%) 

False-
Positive 

(%) 

False-
Negative 

(%) 

Threshold 
Value Range 

LDA 
61.70 

(70.30) 
66.39 

(30.00) 
10.27 

(29.55) 
[0.771, 0.862] 

SVM 
77.53 

(73.64) 
8.33 

(32.52) 
37.41 

(23.29) 
[0.091, 0.605] 

 

TABLE II.  CLASSIFICATION RESULTS FOR LDA AND SVM USING DATA 
FUSION TECHNIQUE FOR SPECIFICALLY GROUPING 12 ANTENNA PAIRS 

COMPARED WITH NAÏVE DATA GROUPING IN PARENTHESIS 

 

 Correctly 
Classified (%) 

False-
Positive 

(%) 

False-
Negative 

(%) 

Threshold 
Value Range 

LDA 
89.58 

(58.51) 
15.28 

(78.82) 
5.56 

(4.17) 
[0.222, 0.944] 

SVM 
91.15 

(80.73) 
5.56 

(2.43) 
12.15 

(36.11) 
[0.056, 0.833] 
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IV. CONCLUSION 
We demonstrate that both an LDA and SVM classifier can 

be used to detect changes within the breast structure using 
differential signals from successive breast scans obtained from 
an experimental time-domain microwave system; additionally, 
we note that using differential signals improves detection 
performance for the SVM classifier. We demonstrate that a 
data fusion technique, which uses information from groups of 
antenna, can greatly improve the performance of both 
classifiers by reducing both false-positive and false-negative 
rates. We propose the idea that a threshold value can be used to 
make a decision on the type of breast, or phantom, being 
scanned by taking into account information from all 
classification decisions (from each antenna pair, or group of 
antenna pairs). 

Future work involves investigating whether such a system 
can detect healthy changes in glandular content and 
differentiate this from the development of breast tumours. We 
aim to investigate if grouping more antenna pairs together can 
improve classification results further, and how to go about 
choosing a threshold value such that we can make a decision 
on the nature of the recorded signals. 
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