
104 IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, VOL. 1, NO. 2, JUNE 2015

Optimal Forwarding in Opportunistic Delay Tolerant
Networks With Meeting Rate Estimations

Shohreh Shaghaghian and Mark Coates

Abstract—Data transfer in opportunistic delay tolerant net-
works (DTNs) must rely on unscheduled sporadic meetings
between nodes. The main challenge in these networks is to develop
a mechanism based on which nodes can learn to make nearly opti-
mal forwarding decision rules despite having no a priori knowledge
of the network topology. The forwarding mechanism should ide-
ally result in a high-delivery probability, low-average latency, and
efficient usage of the network resources. In this paper, we propose
both centralized and decentralized single-copy message forward-
ing algorithms that, under relatively strong assumptions about the
networks behavior, minimize the expected latencies from any node
in the network to a particular destination. After proving the opti-
mality of our proposed algorithms, we develop a decentralized
algorithm that involves a recursive maximum-likelihood proce-
dure to estimate the meeting rates. We confirm the improvement
that our proposed algorithms make in the system performance
through numerical simulations on datasets from synthetic and
real-world opportunistic networks.

Index Terms—Delay tolerant networks (DTNs), opportunistic
forwarding, meeting rate estimation.

I. INTRODUCTION

D ELAY or Disruption Tolerant Networks (DTNs) are a
class of wireless mobile node networks in which the

communication path between any pair of nodes is frequently
unavailable. Nodes are thus only intermittently connected.
DTNs were first studied in the 1990s when the research com-
munity considered how the Internet could be adapted for space
communications [1]. Later, it was recognized that DTNs were a
suitable model for several terrestrial networks.

DTNs can be categorized according to whether the node
connections are scheduled (thus predictable) or random (hence
unpredictable). Space communication networks fall into the
first group. Networks belonging to the second category, which
are the focus of this paper, are also referred to as opportunis-
tic networks, because nodes seize the opportunity to trans-
fer data when a communication channel becomes available.
Opportunistic networks have been studied intensively in recent
years (e.g., [2]–[4]) because they can fulfil a number of use-
ful purposes, such as non-intrusive wildlife tracking (e.g.,
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ZebraNet [5] and SWIM [6]), emergency response in disaster
scenarios (e.g., ChaosFIRE [7]), provision of data communi-
cation to remote and rural areas (e.g., DakNet [8]), and traffic
offloading in cellular networks (e.g., [9]).

In most opportunistic networks, the nodes are highly mobile
and have a short radio range, and the density of nodes is low. In
many cases, nodes have limited power and memory resources.
These attributes combine with the intermittent connections to
make routing traffic challenging. Routing is usually based on
a store-carry-forward mechanism that exploits node mobility.
In this mechanism, the source transmits its message to a node
it meets. This intermediate node stores and then carries the
received message until it meets another node to which it can
forward the message. This process is repeated until the mes-
sage reaches its destination. The key ingredients in designing
an opportunistic network routing protocol are the forwarding
decisions: should a node forward a message to a neighbour it
meets? should it retain a copy for itself?

Although much research effort has been devoted to the devel-
opment of opportunistic network routing algorithms [10]–[27],
the algorithms are either centralized, have no performance guar-
antees, or ignore the need to estimate network parameters. Our
work focuses on the mobile ad-hoc network (MANET) setting,
where node speed is much reduced compared to the vehicu-
lar ad-hoc (VANET) case, and we can assume that there are
fewer restrictions on the amount of data that nodes can transfer
when they meet. In this paper, we derive a decentralized routing
algorithm that has performance guarantees (under simplifying
assumptions about the network behaviour). When the meeting
times between nodes are independent and exponentially dis-
tributed, the routing algorithm minimizes the expected latency
in sending a packet from any source node to a specific destina-
tion. We examine the behaviour of the routing algorithm when
the meeting rates are learned online using a recursive maximum
likelihood procedure. We show that, for a stationary network,
the decision rules and achieved expected latencies converge to
those obtained when there is exact knowledge of the meeting
rates. We present the results of simulations that compare the
performance of the proposed algorithm to previous approaches,
and examine how the algorithm is affected by practical net-
work limitations (finite buffers, restrictions on data exchange,
message expiry times).

Organization: The paper is organized as follows. In the fol-
lowing subsection, we discuss related work. In Section II, we
describe our system model and formulate the routing problem.
In Section III, we present the forwarding algorithms and discuss
their optimality under the network modeling assumptions. We
present numerical simulation results in Section IV and make
concluding remarks in Section V.
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A. Related Work

The first proposed approaches for routing in opportunistic
networks were based on extending the concept of flooding to
intermittently connected mobile networks. In these replication-
based methods, a node forwards the messages stored in its
buffer to all of (or to a fraction of) the nodes it encounters.
There is no attempt to evaluate the capability of a given node
to expedite the delivery. These routing algorithms have few
parameters: they determine only how much replication can
occur and which nodes can make copies of packets. One of the
earliest algorithms was epidemic routing [10], in which a node
forwards a message to any node it meets, provided that node has
not previously received a copy of the message. Thus messages
are quickly distributed through the connected portions of the
network. Other replication-based approaches ([11], [12], [28],
[29]) manage to reduce the transmission overhead of epidemic
routing and improve its delivery performance through modifi-
cation of the replication process and prioritization of messages.
Models have been developed that allow an analytical character-
ization of the performance of the epidemic routing techniques
[30], [31]. Replication-based approaches result in a high proba-
bility of message delivery since more nodes have a copy of each
message, but they can produce network congestion.

A step towards achieving more efficient routing approaches
is to consider the history of node contacts in the network
instead of blindly forwarding packets. History-based (also
called utility-based) routing algorithms assume that nodes’
movement patterns are not completely random and that future
contacts depend on the frequency and duration of past encoun-
ters. Based on these past observations, both the source and the
intermediate nodes decide whether to forward a message to
nodes they encounter or to store it and wait for a better opportu-
nity. An early example is [13], which extends epidemic routing
to situations with limited resources, incorporating a dropping
strategy for the case when the buffer of a node is full. The drop-
ping decisions are based on the meeting history of the node.
PRoPHET [14] assigns a delivery probability metric to each
node which indicates how likely it is that the message will be
delivered to the destination by that particular node. This met-
ric is updated each time two nodes meet, and thus takes into
account the history of meetings in the network. MaxProp [15]
and MEED [16] are other examples of history-based algo-
rithms proposed for vehicular DTNs. In these networks, nodes
move with higher speeds, reducing the amount of time they
are in each other’s radio range. Hence, the two main limiting
resources are the duration of time that nodes are able to transfer
data and their storage capacities.

Other researchers have examined whether it is possible
to exploit other characteristics of opportunistic networks to
improve the performance of routing algorithms. Since social
interactions often determine when connections between nodes
occur, several algorithms strive to use social network concepts
like betweenness centralities (e.g., [17]), or community forma-
tions (e.g., [18]–[20]). Other algorithms have attempted to take
advantage of the strategic behaviour of nodes (e.g., [21], [22]).
Our work focuses on routing a message to a single destination,
but there are connections to research that addresses the task

of spreading information to multiple nodes in a network. Of
particular interest is the gossip-based approach in [23], which
greatly reduces the number of message copies in the network
while achieving near-optimal dissemination.

The experimental-based studies demonstrate the efficiency
of their proposed methods by running simulations on traces
recorded from real world opportunistic networks. Experimental
analyses are valuable and take into account practical consider-
ations, but they can leave us with an incomplete understanding
of how an algorithm operates and how it will perform in other
untested network conditions. For example, the behaviour of
PRoPHET has been shown to be very sensitive to parameter
choice [32]. It is also useful to design an optimal algorithm
under slightly less realistic modeling assumptions, and then
consider how it can be adapted to address the practical limi-
tations, without completely losing its desirable features. More
recent studies have focused on deriving a forwarding process
whose optimality (in some sense) can be mathematically proved
under assumptions about network behaviour. [24] extends the
two hop relay strategy of [11] by considering the expected
delivery time to the destination as a metric to find the best
set of candidate relays. By increasing the number of relaying
steps recursively, a centralized single-copy multi-hop oppor-
tunistic routing scheme is proposed for sparse DTNs. The main
defect of a centralized approach is that global knowledge of the
network is required in order to make forwarding decisions.

There have been some efforts towards migrating to decentral-
ized solutions that still provide performance guarantees. [25]
proposes a decentralized time-sensitive algorithm called TOUR
in which message priority is taken into account in addition to
nodes’ expected latencies when making forwarding decisions.
Although in TOUR each node only needs to be aware of the
local information about the rates of contacts with its own set
of neighbours, the algorithm assumes that the node knows the
exact contact rates. In most practical scenarios, this assumption
is not valid.

Some researchers have explored how imprecision in the mea-
surement or estimation of network parameters can impact the
performance of opportunistic network routing algorithms. In
[26], [27], Boldrini et al. discuss different sources of errors
that may exist in parameter estimation like missed encounters,
incorrect combination of short contacts, and memory limita-
tions. They model these errors as a random variable with a
normal distribution and evaluate the performance of four differ-
ent forwarding schemes under this model. Although this error
analysis is useful, Boldrini et al. do not specify how param-
eters should be estimated in order to obtain a performance
that approaches what can be achieved when perfect a-priori
knowledge of the network parameters is available.

Some of the results in this paper were presented in an ear-
lier conference paper [33], but here we include more extensive
experimental analysis and additional theoretical results.

II. SYSTEM MODEL

We consider a network of N mobile nodes which aim to send
messages to a particular destination node d. The set of nodes
is denoted by N . We assume that the random inter-meeting
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times of nodes are independent and exponentially distributed
with parameter λij for nodes i and j.

Although the aggregate intermeeting distributions of nodes
in mobile ad-hoc networks often follow a truncated power law
[34], [35], there is evidence that the intermeeting times of
individual pairs of nodes can be adequately modeled by expo-
nential distributions with heterogeneous coefficients [36]–[39].
In particular, Conan et al. [36] and Gao et al. [37] conduct
statistical analyses of mobile social network data traces, includ-
ing the Infocom data set [40] that we analyze in Section IV.
They demonstrate that most pairs of nodes have intermeeting
times that are approximately exponentially distributed. In [38]
and [39], approximately exponential distributions of individ-
ual meeting times are detected through statistical analyses of
car/taxi mobility traces.

We associate with the network a contact graph which is
formed by adding a link between any two nodes that meet. We
assume that the contact graph is connected and denote the set
of neighbors of node i in this graph by Si. Since the contacts
between nodes are not pre-scheduled, we cannot identify end-
to-end paths ahead of time. Hence, solving the routing task is
equivalent to identifying the forwarding decisions that nodes
should make when meeting each other. We assume that nodes’
buffer sizes are unlimited, message Time To Live (TTL) is infin-
ity and that nodes’ speed and message lengths are such that any
number of messages can be forwarded during each meeting. We
consider only algorithms that do not involve replication. In the
class of algorithms we consider, each time node i meets one of
its neighbors j ∈ Si, it forwards a message destined for d with
probability pij . Considering the matrix PN×N comprised of all
pairs i and j, we set pij = 0 if nodes i and j never meet and are
thus not neighbors in the contact graph. We denote the forward-
ing probabilities of node i by the vector pi; this is the i-th row
of the matrix P.

The expected latency from node i to destination d is a func-
tion of the probability decision matrix P and we denote it by
Lid(P). Our goal is to find the matrix P∗ such that the sum
of the expected latencies of all the nodes in the network to
the specified destination d is minimized. Let us call this utility
function U(P) =

∑
i∈N Lid(P). We assume that the network

topologies and meeting rates are such that the solution P∗ is
unique. If not, our algorithms guarantee that we reach one of the
optimal matrices, but the proofs are more complicated. The first
step towards achieving this goal and finding matrix P∗ is to dis-
cover how the expected latency of an arbitrary node i, Lid(P),
depends on the elements of the probability decision matrix P in
general. Lemma 1 provides an expression for Lid(P) in terms
of P and λij , j ∈ Si. The proof is available in Appendix V.

Lemma 1: The expected latency of a node i ∈ N to the
destination d is

Lid(P) =
1 +

∑
j∈Si

pijλijLjd(P)∑
j∈Si

pijλij
(1)

Based on the expression derived in Lemma 1, the expected
latency of each node to the destination depends on the expected
latencies of its neighbours. This result raises a substantial ques-
tion: Does the probability decision matrix that minimizes the
sum of expected latencies of all nodes of the network (P∗), also

minimize the expected latency of each individual node? Before
continuing to propose algorithms for finding P∗, we answer this
question and make two points about the structure of P∗ through
the following theorem. The proof is provided in Appendix V.

Theorem 1: Suppose P∗ = argminP∈[0,1]N×N

∑N
i=1Lid(P).

Then:
(1) P∗ is a binary matrix (its components are either 0 or 1).
(2) For any i ∈ N , the matrix P∗ also minimizes Lid(P):

∀i ∈ N : P∗ = arg min
P∈[0,1]N×N

Lid(P). (2)

Theorem 1 shows that the minimization problem is actually
a binary problem. Each time node i meets one of its neighbours
j ∈ Si, it either forwards the message or keeps it. From now
on, we change our notation and use the binary indicator matrix
B instead of P to capture this binary decision. Therefore, the
optimization takes the form:

B∗ = arg min
B∈{0,1}N×N

N∑
i=1

Lid(B). (3)

Theorem 1 also states that the optimum solution matrix
B∗ can be equivalently achieved by minimizing the expected
latency of each of the network nodes to the destination. This
is the main idea of developing centralized and decentralized
algorithms for finding B∗. In the next section, we introduce
the algorithms we have proposed for solving this optimization
problem and prove that they find the optimal solution.

III. ALGORITHMS

In the first part of this section, we try to to find B∗ in a cen-
tralized fashion where the whole topology and meeting rates of
the network are available at a central unit. This unit calculates
a binary matrix B and informs the nodes about the neighbours
they should forward their buffered messages to. We prove that
the solution achieved upon completion of this algorithm is the
same as the optimum solution B∗. In the second part of the
section, we introduce a decentralized algorithm and prove that
it converges to the same global solution with probability 1. The
advantage of the decentralized approach is that no node needs
to have a global knowledge of the network and each node can
learn its own optimal forwarding decisions. The only piece of
information a node needs to know is its meeting rates with
its own neighbours. Finally in the last part of the section, we
make our model more realistic by assuming that nodes have no
a-priori knowledge of any meeting rates. In this more practi-
cally realistic scenario, each node estimates the meeting rates
with its neighbours, updating its estimates each time a contact
occurs.

A. Centralized Approach with Global Knowledge

Suppose for each node i ∈ N , the set of neighbours Si and
their meeting rates λij , j ∈ Si are known at a central calcula-
tion unit. Algorithm 1 presents an iterative procedure to identify
a binary decision matrix B. In this algorithm, we first decide
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Algorithm 1. Centralized Greedy Latency Minimization

1: // Initialization
2: A = {d}, B = 0N×N , Ldd = 0, Ljd = ∞ for j �= d
3: // Iteratively add nodes to the set
4: while A �= N do
5: for each node i /∈ A do
6: Identify SiA = Si ∩ A
7: Calculate Gid for m∗

i ∈ {0, 1}|SiA|

Gid = minmi

1+
∑

j∈SiA mijλijLjd∑
j∈SiA mijλij

8: Denote Di = {j|j ∈ SiA,m∗
ij = 1}

9: end for
10: Identify v = argmini∈N/A Gid

11: Set Lvd = Gvd

12: Set bvj = 1 for all j ∈ Di

13: Set A = A ∪ {v}
14: end while

on the forwarding rules of the node that has the most frequent
direct contacts with the destination. We refer to this node as
node A. In order to achieve the minimum expected latency
to the destination, node A should forward its generated or
received messages only to the destination, ignoring its meet-
ings with any other nodes. All other nodes that A encounters
meet the destination less frequently and, if they forward their
messages to the destination through other nodes, these other
nodes also meet the destination less frequently than A. In sub-
sequent steps of the algorithm, we consider all the nodes that
have direct contacts with the nodes whose forwarding deci-
sion rules have already been made (the set A) and calculate
the minimum latency that each of them can obtain by for-
warding through nodes in A to the destination. At the end of
each iteration, we finalize the forwarding decision for the one
node that can achieve the minimum latency and add it to A.
We repeat the procedure until the decision has been made for
all the nodes of the network and the elements of the binary
matrix B have all been specified. The next theorem states that
the binary matrix B resulting from applying this procedure, as
specified concretely in Algorithm 1, achieves the minimum sum
of expected latencies to the destination. The proof can be found
in Appendix V.

Theorem 2: Suppose all meeting rates are different and there
exists a unique solution B∗ for the optimization problem (3).

1) After each iteration of Algorithm 1,
(a) ∀i ∈ A, ∀j ∈ N : bij = b∗ij
(b) ∀i ∈ A : Lid(B) = Lid(B

∗)
(c) maxi∈A Lid(B

∗) < mini�∈A Lid(B
∗)

(2) Upon completion, Algorithm 1 identifies a labelling B
and associated expected latencies Lid such that B = B∗

Theorem 2 demonstrates that the iterative optimization pro-
cedure expressed in Algorithm 1 finds the solution of the
minimization problem in (3). If there is not a unique solution,
then at some point in Algorithm 1, there will be multiple i that
solve the optimization in line 7. It is straightforward to show
that choosing any one of these i leads to a decision matrix B
that achieves the minimum expected latencies.

B. Decentralized Approach with Partial a priori Knowledge

Suppose no central unit exists and each node is just aware
of its own Si and the meeting rates λij , j ∈ Si. Algorithm 2
demonstrates how nodes can make their binary forwarding
decisions based on this local information. Since the expected
latency of each node depends on the expected latency values
of its neighbours, nodes need to have an estimation of their
neighbours’ expected latencies to be able to make forwarding
decisions. We denote by L̂id(j) the estimate at node j of the
latency from node i to the destination. In Algorithm 2, each time
two nodes meet, they update these estimates and then recal-
culate their optimum forwarding rules. Theorem 3 proves that
this decentralized approach results in the same global optimum
solution. The proof of Theorem 3 is provided in Appendix V.

Algorithm 2. Decentralized Greedy Latency Minimization

1: // Initialization
2: B = 0N×N

3: ∀i ∈ N/d, ∀j ∈ N : L̂dd(j) = 0, L̂id(j) = ∞
4: while Nodes continue to meet do
5: // Nodes i and j meet at time t
6: Set L̂id(j) = L̂id(i)

7: Set L̂jd(i) = L̂jd(j)

8: Update L̂id(i) = minmi∈{0,1}|Si|
1+

∑
k∈Si

mikλikL̂kd(i)∑
k∈Si

mikλik

and Lidentify the minimizing m∗
i

9: Update L̂jd(j)=min
mj∈{0,1}|Sj |

1+
∑

k∈Sj
mjkλjkL̂kd(j)∑

k∈Sj
mjkλjk

and identify the minimizing m∗
j

10: Set bi = m∗
i and bj = m∗

j

11: end while

Theorem 3: The decision matrix B identified by Algorithm 2
converges to B∗ with probability 1.

We refer to our proposed decentralized greedy latency min-
imization algorithm (Algorithm 2) as MinLat and evaluate its
efficiency in different random and real-world networks based
on certain performance metrics in Section IV. Regarding the
computational complexity of finding the minimum expected
latency in MinLat, the following lemma shows that the opti-
mizations in lines 8 and 9 of this algorithm are linear fractional
programs and can be solved quickly using variants from linear
programming. Further details are available in Appendix V-A.

Lemma 2: The minimization problem in Algorithm 2,

L̂id(i) = min
mi∈{0,1}|Si|

1 +
∑

k∈Si
mikλikL̂kd(i)∑

k∈Si
mikλik

, (4)

can be converted to a linear programming problem.
Assuming that (4) can be solved in polynomial order P (|Si|),

the worst case complexity order of Algorithm 1 is O(N2)P (N)
because in the ith round of this algorithm, (4) should be solved
for each of the N − i nodes that are not in the set A. In
Algorithm 2, each time node i meets one of its neighbours,it
solves a problem of complexity P (|Si|). The only information
that a node needs to share when it meets another node is its
estimate of its own expected latency to the destination. In the
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general case where messages can be destined to any node in the
network, this exchangable message could be a length N vector
of expected latencies to all nodes.

The following proposition provides a bound on the expected
convergence time of Algorithm 2. The brief proof is provided
in Appendix V. The bound depends on the slowest meeting rate
between each node and its candidate relay nodes. This is a con-
servative bound, since in practice, a node only needs to meet
the relay nodes to which it actually forwards data under the
optimum forwarding rule.

Proposition 1: The expected convergence time, E(TN ),
of Algorithm 2 is bounded as E(TN ) < 1

λ1d
+
∑N

l=2
l−1

min
i∈{1,...,l−1}

λli>0

λli
.

C. Decentralized Approach with No a priori Knowledge

In part III-B, we assumed that as soon as a node meets
another node, it has a perfect knowledge of its meeting rate
with that node. In practice, a node will need to estimate its
meeting rates with the neighbours and periodically revise the
estimation as meetings occur (or fail to occur). Consider an
arbitrary pair of nodes that meet each other with rate λ. We
denote the ith intermeeting time, which is the time between
ith and i+ 1th meetings, by xi ≥ 0. For this specific pair of
nodes, xi is an independent sample of an exponentially dis-
tributed random variable with parameter λ. Using the maximum
likelihood (ML) approach we can estimate the parameter λ
after n samples. The likelihood function L(λ|x1, . . . , xn) =
λne−λ

∑n
i=1 xi is maximized by

λ̂ =
n∑n

i=1 xi
. (5)

Hence, under the exponential model, a node only needs to
remember the last time it met its neighbour and the number
of times it has met that neighbour. With these two pieces of
information, it can update its estimation of the meeting rate (λ̂n)
from the previously estimated value (λ̂n−1) using the following
equation.

λ̂n =
nλ̂n−1

n− 1 + λ̂n−1xn

. (6)

Based on this argument, we develop a more practical ver-
sion of MinLat in which an arbitrary pair of nodes i and j use
their estimated meeting rates λ̂ij in their calculations and mod-
ify this estimation each time they meet. We refer to this version
of MinLat as MinLat-E.

Let t denote the time since the network began operating, and
denote by B̃t the decision matrix achieved by MinLat-E at time
t. Further, denote by L̃id,t(B̃t, i) the estimate at node i at time t
of the expected latency to the destination, when the forwarding
decision matrix is B̃t. This estimate differs from that obtained
in Algorithm 2, L̂id(i), because the distributed algorithm cal-
culates them using estimated meeting rates λ̂i,j . The following
theorem states that the achieved expected latencies, Lid(B̃t)

and the estimated expected latencies, L̃id,t(B̃t, i), converge in

probability to the optimum expected latencies Lid(B
∗). The

proof is provided in Appendix V-A.
Theorem 4: For any node in the network, the sequences

of estimated and achieved latencies converge to its optimum
expected latency in probability, i.e., {L̃id,t(B̃t, i)} p−→ Lid(B

∗)
and {Lid(B̃t)} p−→ Lid(B

∗). More precisely for any ε > 0

lim
t−>∞P (|L̃id,t(B̃t, i)− Lid(B

∗)| < ε) = 1 (7)

lim
t−>∞P (|Lid(B̃t)− Lid(B

∗)| < ε) = 1. (8)

We check the claims of Theorem 4 and investigate the con-
vergence speed of MinLat-E through simulations in Section IV.

IV. SIMULATION RESULTS

In this section, we investigate the efficiency of our proposed
approach in modeling and solving the forwarding/routing prob-
lem in different opportunistic network scenarios. We first test
our algorithms using three different networks to model the
contacts between N = 41 mobile nodes. The characteristics
of the networks are derived from the Infocom05 dataset [40].
This data set is based on an experiment conducted during the
IEEE Infocom 2005 conference in Miami where 41 Bluetooth
enabled devices (Intel iMote) were carried by attendees for 3
days. The start and end times of each contact between partici-
pants were recorded. The average time between node contacts
in the Infocom05 dataset is 1.3× 104 seconds (3.7 hours).
In our processing, we only consider the contacts in which
both devices recognized each other so that an acknowledged
message could be transfered between them.

In the first network, (Net I), we construct a contact graph
using an evolving undirected network model based on the pref-
erential attachment mechanism. We start with a small fully
connected graph of m0 = 5 vertices and add vertices to it one
by one until the graph consists of N = 41 nodes. At each step,
the new vertex is connected to m = 5 previously existing ver-
tices. The probability that the new vertex is connected to vertex
i is ki∑

j kj
where ki is the degree of i up to this stage. After

building the contact graph, we assign a parameter λij to each
pair of nodes i and j which are connected in the contact graph
and assume that they meet with exponentially distributed inter-
meeting times with parameter λij . We choose the parameters
λij from a uniform distribution with the same expectation as
the average of node meeting rates observed in the Infocom05
dataset.

In Net II, we set λij to be equal to the inverse of the aver-
age intermeeting time between nodes i and j in the Infocom05
dataset. We are interested in the behaviour of the algorithms in
relatively sparse networks, so we limit the number of neigh-
bours of each node: node i is only connected to node j in
the contact graph if the meeting rate λij is among the largest
K = 10 meeting rates of either node i or node j. In our sim-
ulations, the meeting times between nodes i and j for Net II
are then chosen from an exponential distribution with param-
eter λij . In the third experimental network, Net III, we use
the actual meeting times recorded in the Infocom05 dataset.
The analysis in [37] indicates that the distribution of individual
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TABLE I
TEST NETWORK PROPERTIES

intermeeting times for most pairs of nodes can be approximated
reasonably well by an exponential distribution; on the other
hand, the aggregate distribution of contact times shows heavy-
tailed behaviour and is better approximated using a truncated
power distribution [34], [35]. Table I summarizes the properties
of the test networks.

As mentioned in Section III, we call our proposed decen-
tralized greedy latency minimization algorithm MinLat and
refer to its more practical version with meeting rate estima-
tions as MinLat-E. In these two algorithms, the decisions that
nodes make for future forwarding rules depend on the (esti-
mated) meeting rates, which are derived from the frequency
of past contacts between nodes. Thus, MinLat and MinLat-E
can be identified as history-based routing algorithms. In order
to evaluate their performance, we compare them with exist-
ing history-based routing protocols that can be implemented
in a distributed fashion and do not need a-priori knowledge
of the network topology. As mentioned in Section I, the fixed
point algorithm proposed in [24] is proved to result in the min-
imum expected latency (which is expected to be the same as
the result of our proposed centralized Algorithm 1). However,
the proposed algorithm in [24] is centralized and needs to be
performed in a control unit where the whole topology of the
network is known. The TOUR algorithm proposed in [25] is
decentralized, but each node needs perfect a-priori knowledge
of its meeting rates with other nodes. Also, the main focus of
TOUR is to find the optimum way to make forwarding deci-
sions based on the priorities of messages. We have chosen
PRoPHETv2 [32] and MaxProp [15] as the most appropri-
ate candidates for comparison. We also compare to Epidemic
routing [10], which is expected to result in a high delivery
probability at the expense of high usage of network resources.
The parameters of PRoPHETv2 are set to those suggested
in [14] and [32], i.e., Pinit = 0.75, β = 0.25, γ = 0.98, and
time step = 1. In order to put the focus on evaluation of the
performance efficiency of forwarding rules and eliminate the
effect of the buffer management technique on this performance,
we first test the algorithms on ideal network scenarios where
the message life times, buffer sizes and data exchanges have
no restriction. Therefore for these simulations, the dropping
rules proposed for MaxProp in [15] are not applied. We then
study the network behaviour when these practical challenges
are added to the simulation setups.

We divide the Infocom05 dataset into slots of 12 hours. In
each of these time slots, we build networks I to III using the
nodes that are present in that period. The intermeeting time

Fig. 1. Comparison Metrics in Test Networks with N = 41.

exponential parameters (λijs) are estimated based on the meet-
ings that occurred in that specific time slot and networks I
and II are constructed using these estimated parameters. For
each of the first four 12-hour periods (the first two days of
the conference), we send 1000 messages, spaced by 5-second
intervals, from randomly chosen source nodes to a particular
destination. We terminate the simulation at the end of the 3-
day period, and calculate the fraction of messages successfully
delivered by each of the single copy (PRoPHETv2, MinLat)
and multi-copy (Epidemic, MaxProp) forwarding algorithms.
For each algorithm, we also calculate the average latency of the
messages that are delivered by all four algorithms; the average
number of hops that messages pass to reach the destination;
and the average buffer occupancy of the nodes. For each of
the 41 nodes of the network, we calculate the average of per-
formance metrics over the time slots when that node has been
chosen as a destination. Fig. 1 shows the average and the 95%
confidence intervals of the four performance metrics for dif-
ferent destinations in the three test networks using Epidemic,
PRoPHETv2, MaxProp, and MinLat forwarding algorithms.
There is no restriction on message life time or buffer size that
can cause message dropping in these simulations. However, the
delivery rates in some cases are less than 1 because the sim-
ulations are terminated before all of the generated messages
are successfully delivered. We observe that in all the three test
networks, MinLat has a better performance than the other exist-
ing history-base single copy algorithm, PRoPHETv2, in terms
of delivery rate and average latency. Its performance is also
comparable to MaxProp which is a history-based multi-copy
algorithm. Also, noting that the scale of the vertical axis of
Fig. 1(d) is logarithmic, we see that MinLat occupies much less
memory of nodes’ buffers in average. For networks I and II,
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Fig. 2. Evolution of average delivery latency with time (both in seconds).

where the assumption of exponentially distributed intermeet-
ing times holds, delivering a higher rate of messages with
lower average latencies than PRoPHETv2 is expected from
Theorem 3. However, we observe that this result also holds for
network III where the actual meeting times are used. All algo-
rithms display slightly poorer performance in network III; this
is probably due to heavy-tailed and non-stationary intermeeting
times.

In order to explore how the incorporation of meeting rate
estimations in MinLat-E affects the message delivery perfor-
mance, we conduct further simulations with a different message
generation scenario on network II. Fig. 2 displays the average
delivery latency as a function of time for the history-based rout-
ing algorithms PRoPHET, MaxProp, MinLat, and MinLat-E.
The delivery latency values are averaged over 32 simulation
runs while the destination node and message generation times
are fixed in all the runs. Messages are generated with interar-
rival time of t seconds at randomly chosen source nodes where
t is uniformly distributed in [0, 5]. Each point on the curves
represents the average latency of the 1500 most recently sent
messages. As Fig. 2 shows, in all of the three single copy
routing algorithms (PRoPHET, MinLat, MinLat-E), the aver-
age time it takes for a message to be delivered at the destination
decreases as time goes by. This decreasing trend is due to the
fact that the forwarding rules discovered by nodes improve
as the nodes have more contacts and their information con-
cerning their neighours’ message delivery capabilities becomes
more accurate. However, in the multi-copy routing algorithm,
MaxProp, the average message delivery time increases in the
beginning. In MaxProp, the weights assigned to the links are
initialized to be equal, which means that nodes forward mes-
sages to more of their neighbours. There is thus a high level
of message replication which leads to messages reaching the
destination sooner on average. As time passes, the level of repli-
cation decreases and the average delivery time increases. We
also observe that MinLat-E and MinLat eventually achieve the
same average delivery latencies, as expected from Theorem 4.
However, the convergence to the optimum point is slower in
MinLat-E due to the time it takes for nodes to obtain accurate
estimates of their meeting rates.

We examine the performance of the forwarding algorithms
in larger networks by extending network I to 100 nodes but

Fig. 3. Effect of TTL on performance metrics.

with the same average λ parameter for exponential intermeeting
times. We also make our model more realistic by adding some
practical restrictions to the network model. First, we assume
that messages have finite TTL, i.e., a message is discarded
when its lifetime exceeds a certain threshold. Fig. 3 displays
the performance of routing algorithms for different values of
TTL varying from 0 to as large as the simulation time (almost
2.5× 105seconds). Simulations are run 100 times and in each
round, a different destination is randomly chosen from network
nodes based on a uniform distribution. The average latency and
average hop count are calculated only for the messages that
reach the destination.

The simulation results in Fig. 3(b) show that decreasing the
TTL has a similar overall effect on all of the algorithms. For
larger TTLs, the delivery rate increases, but the buffer occu-
pancy, average latency and hop count also increase. MinLat
outperforms PRoPHET and MaxProp in terms of delivery rate,
average latency, and buffer occupancy even in a scenario with a
restricted message life time. Although intermeeting times are
exponentially distributed and the contact graph is based on
preferential attachment, in this larger network of 100 nodes,
PRoPHET cannot reach 100 percent delivery rate even without
any restriction on TTL.

The next step towards a more realistic network model is to
consider limits on buffer size. In the next set of simulations,
we assume that TTL is 105 seconds so that all algorithms reach
their best possible delivery rate. We also assume that each node
has a limited capacity for keeping the messages. When the
buffer occupancy of a node reaches its limit, messages from
other nodes are not forwarded to it. Moreover, any generated
messages at the fully occupied node are immediately dropped.
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Fig. 4. Effect of buffer size on performance metrics.

Fig. 4 shows the performance of algorithms for buffer sizes in
the range of 0 to 1250 messages. We see that increasing the
buffer size improves the delivery rate for all algorithms. It also
reduces the average latency because as the buffer size increases,
nodes can more frequently follow their optimum forwarding
rules.

Finally, we assume that the contact duration is limited so that
the number of messages during any meeting is restricted by an
exchange limit. We set the buffer size to 1000 messages so that
all the algorithms reach their best possible delivery rate. This
buffer size implies 50 MB of node memory if each message
is 50 KB. We check the effect of varying the exchange limit
on the network performance. Fig. 5 shows the four comparison
metrics for exchange limits in the interval 0 to 500 messages.
As we see in the figure, MinLat cannot achieve the optimum
average latency for some values of exchange limit, but it still
has the best performance in terms of buffer occupancy.

The simulation results displayed in Fig. 3–5 illustrate that
although MinLat has been designed for an ideal network model,
it has an acceptable performance when we impose realistic con-
ditions such as finite TTL, buffer size, and exchange limit.
Our final set of simulations explores the impact of includ-
ing the recursive maximum likelihood estimation of meeting
rates. We conduct experiments using both the centralized and
decentralized algorithms operating on the extension of network
I to 100 nodes. We select the λ parameters of intermeeting
times from a uniform distribution U [0, 0.01]. The destination
node is randomly chosen from the N nodes of the network
based on a uniform distribution and is fixed throughout the
simulation. We run the simulation for 5× 104 seconds. We
examine the error terms in Theorem 4, averaging over all nodes.

Fig. 5. Effect of exchange limit on performance metrics.

Fig. 6. Absolute Errors of Estimated and Achieved Latencies. The central mark
of each box is the median, the edges of the box are the 25th and 75th percentiles,
the whiskers extend to the highest values not considered as outliers, and outliers
are plotted individually.

Fig. 6(a) shows the average absolute difference between the
estimated expected latencies and the true minimum latencies,
i.e., 1

N

∑
k |L̃kd,t(B̃t, k)− Lkd(B

∗)|. Fig. 6(b) shows the dif-
ference between the achieved average latencies and the true
minimum latencies, i.e., 1

N

∑
k |Lkd(B̃t)− Lkd(B

∗)|. Fig. 6
indicates that the decentralized algorithm achieves almost the
same estimation error as the centralized algorithm, suggest-
ing that the limiting effect is the convergence of the meeting
rate estimates rather than the dissemination of latency estimates
through the network. As expected from Theorem 4, we see that
the estimated and achieved errors both decay to zero as the time
goes by (for achieved latencies, it is almost zero for all nodes
of the network after t = 7000 seconds).

Comparing Fig. 6(a) and (b) shows that for both centralized
and decentralized scenarios, the average difference between
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the achieved latency and the minimum latency is less than the
average difference between the estimated latency and the mini-
mum latency. This is expected, because the estimated latencies
are based on incorrect decision matrices and estimated meet-
ing rates, whereas the achieved latencies are derived from the
actual meeting rates. The results suggest that even when there
remains substantial inaccuracy in the expected latency esti-
mates (e.g. at time t = 3000 seconds), the algorithm identifies
a close-to-optimal forwarding decision matrix.

V. CONCLUSION

In this paper, we used an analytical framework to model
the opportunistic data transfer among mobile devices in Delay
Tolerant Networks. In our model, the random intermeeting
times of nodes are assumed to be independent and exponentially
distributed. We formulated the routing/forwarding problem as
an optimization problem in which the goal is to minimize the
sum of expected latencies from all nodes of the network to a
particular destination. We proved that the solution of this prob-
lem is binary, i.e., when an arbitrary node meets any other node
in the network, its optimum forwarding rule dictates either to
always forward its messages to the encountered node or to never
forward any messages to it. We also showed that the solution
of this optimization problem minimizes the expected latency
from each node of the network to the destination as well. Based
on these results, we proposed centralized and distributed ver-
sions of an algorithm to find the optimum forwarding decision
rules and proved that each of these algorithms result in the same
solution. In order to evaluate the performance efficiency of
the suggested algorithms in different synthetic and real-world
networks, we chose four performance metrics as comparison
metrics and compared our proposed decentralized algorithm
(MinLat) with the most similar existing approaches. In order to
evaluate the performance of MinLat in more realistic scenarios,
we conducted simulations in larger networks with practical con-
straints like limited message life (TTL), buffer size and message
exchange.

One of the main contributions of this work is relaxing the
condition of having complete knowledge of meeting rates at
each node for making the forwarding decisions. We used a
recursive maximum likelihood procedure (MinLat-E) to learn
the meeting rates online and proved its convergence in probabil-
ity to the same optimal solution. The validity of this theoretical
result was assessed through simulations. Moreover, we com-
pared the convergence speed of the proposed centralized and
decentralized algorithms when the meeting rates are estimated
online. The simulation results show that the decentralized algo-
rithm has almost the same convergence rate as the centralized
algorithm, even though the network topology is not known at
individual nodes.

In future work, we aim to explore the effect of time-varying
meeting rates between nodes, which would motivate the use of
filters to track the rates. We also hope to examine whether it
is possible to derive similar expressions for expected latencies
and optimal forwarding rules for cases when the intermeeting
times are not exponentially distributed or are correlated.

APPENDIX A
PROOF OF LEMMA 1

When node i commences in its routing of a packet, it must
first wait a time Tw before it meets one of its neighbors. The
amount of time before node i meets a specific neighbor j is
an exponentially distributed random variable with parameter
λij . The time Tw is equal to the minimum of the exponentially
distributed random variables corresponding to all neighbours
k ∈ Si and its expected value is

E(Tw) =
1∑

k∈Si

λik
. (9)

The probability that j is the first node that i meets is
λij∑

k∈Si
λik

. Hence Lid(P) is

Lid(P) = E(Tw) +
∑
j∈Si

λij∑
k∈Si

λik

× [pijLjd(P) + (1− pij)Lid(P)].

(10)

The last term in (10) follows from the memoryless property
of the distributions. Subsituting (9) into (10) leads to (1). �

APPENDIX B
PROOF OF THEOREM 1

Let us assume that the nodes, excluding d, are labelled
in ascending order of their expected latency under P∗, i.e.,
L1d(P

∗) < L2d(P
∗) < · · · < LN−1d(P

∗). For a given matrix
P, we denote by Pī all rows of P except i. If we fix pi and
Lkd for k ∈ Si, k �= j for some j ∈ Si, then Lid is monotoni-
cally increasing with respect to Ljd (see (1)). This implies that
if we commence with any P and change only pj to decrease
Ljd, then all other Lid such that j ∈ Si either decrease or
remain the same. The matrix P∗ must therefore satisfy p∗

j =
argminLjd(P

∗̄
j
,pj) for all j. Otherwise we could choose an

alternative p′
j that reduces Ljd and hence achieves U(P′) <

U(P∗).
We can examine the partial derivative of Lid with respect to

pij at P′ = (P∗̄
i
,pi):

∂Lid

∂pij
=

λij

[∑
k∈Si

λikpik(Ljd(P
′)− Lkd(P

′))− 1
]

(
∑

k∈Si
λikpik)2

.

(11)

This derivative has the same sign as: Ljd(P
′)−

1+
∑

k∈Si
λikpikLkd(P

′)∑
k∈Si

λikpik
, or equivalently Ljd(P

′)− Lid(P
′).

This expression for the derivative, together with the require-
ment that p∗

i = argminLid(P
∗̄
i
,pi), implies that p∗

ij = 0
if Lid(P

∗) < Ljd(P
∗) and p∗

ij = 1 if Lid(P
∗) > Ljd(P

∗).
Our assumption that the solution is unique implies that
Lid(P

∗) �= Ljd(P
∗). Otherwise, from (10), it is clear that we

could choose any p∗ij between 0 and 1 and achieve the same
Lid(P

∗), without affecting any other Ljd(P
∗). This establishes

statement (1) of the theorem.
Although we have established that Lid(P

∗̄
i
,p∗

i ) =
minLid(P

∗̄
i
,pi), we have not yet shown that P∗ globally
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minimizes Lid. We establish this by contradiction. Suppose P∗

does not minimize the expected latency for some non-empty
set of nodes N ′ ⊂ N . In other words, denoting the minimum
expected latency achieved via the minimization in (2) for node
i by L∗

id, we have

∀i ∈ N ′ : L∗
id < Lid(P

∗). (12)

Let node s be the node in N ′ such that L∗
sd < L∗

kd for
all k ∈ N ′, k �= s. Denote by � the ranking of the node with
greatest expected latency under P∗ such that L�d(P

∗) < L∗
sd.

Based on the discussion above, for each node i ∈ {1, 2, . . . , �},
p∗ik = 0 for all k > � and hence p∗is = 0. Node s must have
at least one neighbour in the set {d, 1, 2, . . . �}. Otherwise, it
could not achieve an expected latency under P∗ that is less than
all nodes �+ 1, . . . , N − 1 (observe from (1) that Lsd(P

∗) >
minpsj>0 Ljd(P

∗)).
The matrix P′ that achieves the minimum L∗

sd must sat-
isfy p′sk = 0 for all k ∈ N ′, since for any matrix P′ we have
Lkd(P

′) ≥ L∗
kd > L∗

sd. We also have p′sk = 1 for k ∈ Ss ∩
{d, 1, 2, . . . , �} if Lkd(P

′) < Lsd(P
′). For a fixed choice of p′

s

the value Lsd(P
′) decreases if we can reduce Lkd(P

′) for any
k such that p′sk = 1. The matrix P∗ minimizes Lkd for all k ∈
{1, 2, . . . , �}, implying that p′

k = p∗
k for all k ∈ {1, 2, . . . , �}.

Since Lkd(P
′) = Lkd(P

∗) for all k ∈ Ss ∩ {d, 1, 2, . . . , �}, it
follows that p′

s = p∗
s . For node s, the values of p′

j for j /∈
{1, 2, . . . , �, s} have no impact on Lsd, so we have Lsd(P

∗) =
Lsd(P

′) = L∗
sd. This contradicts the original assumption that

P∗ does not minimize the latency for all nodes s ∈ N ′, and
thus establishes statement (2) of the theorem. �

APPENDIX C
PROOF OF THEOREM 2

We observe that for all i ∈ N , Gid ≥ L∗
id (since the opti-

mizations are the same). Based on Theorem 1 and its proof, the
equality holds only if j ∈ A for all j ∈ Si such that L∗

jd < L∗
id.

The statements in the theorem follow based on an induction
argument.

Suppose, without loss of generality, that the nodes are
labelled in ascending order of expected latency under B∗. For
node 1, the only neighbour with lower expected latency is
the destination. In iteration 1, the destination is included in
A and must be in S1. Recall that L∗

1d > minb∗1j=1 L
∗
jd. Node

1 has the minimum expected latency according to the cho-
sen labelling and Theorem 1, except for the destination itself.
The relationship thus implies that d ∈ S1. We therefore have
G1d = L∗

1d < L∗
jd ≤ Gjd, and node 1 is selected to be added

to A, with b1d = 1 and bjd = 0 for all j �= d. Statements 1a)-
c) in the theorem clearly hold after one iteration, i.e., after the
addition of node 1 to A.

Assume the same statements hold after the addition of node
k − 1 to A. Then, for node k we must have j ∈ A for all j ∈ Sk

such that L∗
jd < L∗

kd. Again this implies that Gkd = L∗
kd <

L∗
jd ≤ Gjd for all j > k. Thus, node k is correctly selected

for addition to A and the statements 1a)-c) hold at the end of
iteration k.

It follows that the statements hold for all iterations of the
algorithm, and after completion, when A = N , the second
statement follows. �

APPENDIX D
PROOF OF THEOREM 3 AND PROPOSITION 1

A. Proof of Theorem 3

Assume that the nodes are labelled in order of ascending
expected latency under B∗, i.e., L1d(B

∗) ≤ L2d(B
∗) ≤ · · · ≤

LN−1d(B
∗). Denote by T1 the moment of time at which node

1 meets the destination node. For k = 2, . . . , N denote by Tk

the earliest time by which node k has met all nodes in the
set {1, . . . , k − 1} ∩ Sk in the time period (Tk−1, Tk]. Due to
the assumption that the inter-meeting times are exponentially
distributed, TN is finite with probability 1.

At T1, node 1 learns its meeting rate with the destination
(λ1d). Since the estimated latencies are initialized to ∞ and
due to the update equations in Algorithm 2, the estimation
that node 1 has at T1 of the latencies of its neighbors i ∈ S1

are upper-bounds, i.e. L̂id(1) ≥ Lid(B
∗). As discussed in the

proof of the previous theorems, the minimizer b∗
1 has b1d = 1

and b1j = 0 for all j �= d. At time T1, since the term involv-
ing d in the update equation of Algorithm 2 has its minimum
value, the vector m∗

1 = b∗
1 identifies the same minimum latency

L̂1d(1) = L1d(B
∗). Hence, immediately after time T1 we are

guaranteed that b1 = b∗
1.

At Tk, node k is aware of the minimum expected laten-
cies L̂sd(k) = Lsd(B

∗) for the nodes in the set Vk =
{d, 1, . . . , k} ∩ Sk. All other expected latencies are upper
bounds, i.e. L̂jd(k) ≥ Ljd(B

∗) for j /∈ Vk. The solution b∗
k

takes value 1 only for nodes in Vk. The minimizer m∗
k at

time Tk is thus equal to b∗
k and achieves L̂kd(k) = Lkd(B

∗).
Therefore, imediately after Tk we will have bk = b∗

k. This
argument applies until just after TN , at which point we have
B = B∗. Since TN is finite with probability 1, the statement of
the theorem follows.

B. Proof of Proposition 1

Algorithm 2 has converged when all of the nodes have met
all of their relay candidates and have identified their optimum
forwarding rules. Thus, E(TN ), where TN defined above in
the proof of Theorem 3, is the expected convergence time.
Considering the worst case where an arbitrary node k > 1 is
connected to all the nodes in the set {1, . . . , k − 1}, we have

E(Tk − Tk−1) = E

(
max

i∈{1,...,k−1}
xi

)
(13)

where xi denotes the intermeeting time of node k with its
neighbour i and follows an exponential distribution with param-
eter λki. Using a standard result for the expected value of
the maximum of non-identical independent exponential random
variables, we have

E(Tk − Tk−1) =

k−1∑
i=1

1

λki
−

k−1∑
i=1

k−1∑
j=i+1

1

λki + λkj

+
k−1∑
i=1

k−1∑
j=i+1

k−1∑
l=j+1

1

λki + λkj + λkl
− · · · .

(14)
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An upper bound on this value is E(Tk − Tk−1) <
∑k−1

i=1
1

λki
< k−1

min
i

λki
Therefore, an upperbound on the convergence time

of Algorithm 2 is E(TN ) < 1
λ1d

+
∑N

l=2
l−1

min
i∈{1,...,l−1}

λli>0

λli
. �

APPENDIX E
PROOF OF LEMMA 2

Let’s return to considering the probability decision vari-
able vector p instead of binary decision variable vector. (We
still expect the optimal solution to be of the binary form).
Without loss of generality, we relabel the nodes k ∈ Si by labels
1, . . . , |Si|. The optimization problem that node i tries to solve
in Algorithm 2 follows this general form which is known as
linear fractional optimization problems:

L̂id(i) = min
pi

cTpi + α

dTpi + β

subject to Api ≤ b

(15)

where pi
|Si|×1 = [pi1, . . . , pi|Si|]

T , α = 1, c|Si|×1 = [λi1

L̂1d(i), . . . , λi|Si|L̂|Si|d(i)]
T , β = 0, d|Si|×1 = [λi1, . . . ,

λi|Si|]
T , b2|Si|×1 = [1, . . . , 1, 0, . . . , 0]T , and the elements of

the matrix A2|Si|×|Si| are

Aij =

⎧⎪⎨⎪⎩
1 if i < |Si| & j = i

−1 if i > |Si| & j = i− |Si|
0 otherwise.

After applying the following parameter changes (the
Charnes-Cooper transformation), we have

x =
1

dTpi
pi y =

1

dTpi
(16)

and the optimization problem 15 converts to

min
x,y

cTx+ αy

subject to dTx = 1

Ax ≤ by

y ≥ 0

(17)

which is a linear optimization problem and can be solved using
Linear Programming (LP) solution methods. �

APPENDIX F
PROOF OF THEOREM 4

We first prove the statement of the theorem for estimated
latencies. Without loss of generality, we relabel the nodes
such that L1d(B

∗) < L2d(B
∗) < . . . < LNd(B

∗). At node i,
MinLat-E forms estimates of the meeting rates with the contact
graph neighbours, λ̂ik for k ∈ Si, and the expected latencies
from each neighbour L̃kd(B̃t, i). The result is a sequence of
random variables {L̃id(B̃t, i)}, with a variable being added to
the sequence each time node i meets another node. [41] shows

that the maximum likelihood estimator of the meeting rates is
consistent, i.e., ∀i, j ∈ N , λ̂ij

p−→ λij . More precisely,

∀εij > 0 : lim
t−>∞P (|λ̂ij − λij | < εij) = 1 (18)

Equivalently, writing εij = ε0λij , we have for any δ > 0 and
ε0 > 0, there exists a t0 > 0 such that for all t > t0:

P ((1− ε0)λij < λ̂ij,t < (1 + ε0)λij) > (1− δ) (19)

where λ̂ij,t denotes the estimate of the meeting rate between
nodes i and j at time t.

We show that for any set of meeting rates {λij}i,j∈N , there
exists an ε = ε0 for which the optimum forwarding decision
matrix in MinLat-E (B̃t) is the same as the optimum forwarding
decision matrix in MinLat (B∗) with desirably high probability.
In order to do so, we find upper and lower bounds (that apply
with high probability) on the estimated expected latencies for
the optimal decision matrices identified by both MinLat and
MinLat-E. We first demonstrate a relationship between the esti-
mated and true expected latencies that would hold if the nodes
employed the optimal decision matrix B∗. We show that there
exists a tδ,i such that for each node i ∈ N , with probability
greater than 1− δ, for any positive δ, we have for all t > tδ,i:

(1− ε0)
i−1

(1 + ε0)i
Lid(B

∗) < L̃id,t(B
∗, i) <

(1 + ε0)
i−1

(1− ε0)i
Lid(B

∗).

(20)

We derive (20) by induction. From the arguments made in
Theorem 3, we know that under B∗ an arbitrary node i will not
forward any messages to a node that does not belong to the set
{1, . . . , i− 1, d}. For i = 1, after time tδ,1 such that (19) holds,
we have, with probability greater than 1− δ for t > tδ,1:

L1d(B
∗)

1 + ε0
=

1

1 + ε0

1

λ1d
< L̃1d,t(B

∗, 1)

=
1

λ̂1d,t

<
1

1− ε0

1

λ1d
=

L1d(B
∗)

1− ε0
. (21)

Suppose (20) holds for all the nodes 1, . . . , k − 1. Denote
by tjk > t the last meeting between node j and k that occurs
subsequent to tδ,k−1 but prior to a considered time t. Then we
can identify a tuδ,k so that the following relationship holds with
probability greater than 1− δ for t > tuδ,k:

L̃kd,t(B
∗, k) =

1

Σj∈Sk
b∗kj λ̂kj

×
(
1 + Σj∈Sk

b∗kj λ̂kjL̃jd,tjk(B
∗, j)

)
(22a)

<

(
1

1− ε0

1

Σj∈Sk
b∗kjλkj

)

×
(
1 + Σj∈Sk

b∗kj(1 + ε0)
(1 + ε0)

k−2

(1− ε0)k−1
Ljd(B

∗)
)

(22b)

<
(1 + ε0)

k−1

(1− ε0)k
Lkd(B

∗). (22c)
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Here we have chosen tuδ,k to be sufficiently large such that the
inequality on the second line holds with probability exceeding
1− δ. Similarly we can identify a t�δ,k so that the lower bound
in (20) holds with probability greater than 1− δ for t > t�δ,k. By
taking tδ,k = max{t�δ,k, tuδ,k}, we see that (20) holds for node k
as well, and by induction, holds for all nodes i ∈ N .

We now turn our attention to the forwarding matrix deter-
mined by MinLat-E (B̃t). We first consider a scenario where
the estimates of the meeting rates are frozen after a certain
time tf . The minimization procedure in MinLat-E is the same
as in MinLat, but operates on the estimates of the meeting
rates. If these estimates are held constant, then the results in
Theorems 1–3 apply, with the substitution of λ̂ij anywhere we
make use of λij . With probability 1, the optimization algo-
rithm will thus converge after a finite time t′, and the estimated
expected latencies will be consistent across the network. Hence,
there exists a labeling {1̂, 2̂, . . . N̂} for which L̃1̂d(B̃tf+t′ , 1̂) <

L̃2̂d(B̃tf+t′ , 2̂) < · · · < L̃N̂d(B̃tf+t′ , N̂) We can now employ
the same argument that was used above for B∗ to determine that
there is a finite time tδ,k̂ such that the following bound holds for

all k̂ ∈ N with probability greater than 1− δ for all t > tδ,k̂

(1− ε0)
k̂−1

(1 + ε0)k̂
Lk̂d(B̃t) < L̃k̂d(B̃t, k̂) <

(1 + ε0)
k̂−1

(1− ε0)k̂
Lk̂d(B̃t).

(23)

In the actual MinLat-E algorithm, the meeting rates λ̂ are not
frozen after t0, but continue to be updated as more meetings
occur. This only results in the probabilistic bounds on λ̂ being
tighter, and hence can only tighten the bounds on Lk̂d(B̃t, k̂).

To avoid having node-specific bounds on the accuracy of the
estimates, we can rewrite the bounds as:

(1− ε0)
N−1

(1 + ε0)N
Lkd(B) < L̃kd(B, k) <

(1 + ε0)
N−1

(1− ε0)N
Lkd(B).

(24)

This bound holds for both B = B∗ and B = B̃t with proba-
bility at least 1− δ0 after some time t0.

Our goal is to show that there exists a moment of time after
which B̃t = B∗ is true with desirably high probability. We can
accomplish this by showing that there exists an ε0 (and thus an
associated time t0) for which the upper-bound on L̃id(B

∗, i) is
less than the lower-bound on L̃id(B̃t, i) for any B̃t �= B∗ for
all t > t0. If this is the case, then with probability exceeding
1− δ0, the optimization procedure that derives B̃t will set it
to B∗, because it minimizes the estimated latencies. Hence, ε0
should satisfy

Lid(B
∗) <

(
1− ε0
1 + ε0

)2N−1

Lid(B̃t) , (25)

which leads to

ε0 <
e

ln(K)
2N−1 − 1

e
ln(K)
2N−1 + 1

, (26)

where K =
minB �=B∗ Lid(B)

Lid(B∗) .

Now that we have established that after a finite amount of
time B̃t = B∗ occurs with a probability desirably close to
one, we can show that {L̃id(B̃t, i)} p−→ Lid(B

∗) for any i ∈ N
using the following properties:

1) If Xn
p(or d)−−−−→ X , then g(Xn)

p(or d)−−−−→ g(X) (Continuous
Mapping Theorem);

2) If Xn
p−→ X , then Xn

d−→ X;

3) If Xn
d−→ c ∈ R, then Xn

p−→ X;

4) If Xn
d−→ X and Yn

d−→ c ∈ R, then g(Xn, Yn)
d−→ g(X, c)

(Slutsky’s Theorem),

where
d−→ denotes the convergence in distribution and g : R×

R → R is an arbitrary continuous function.
Again consider the node labelling such that L1d(B

∗) <
L2d(B

∗) < · · · < LNd(B
∗). For node 1, {L̃1d(B̃t, 1) =

1

λ̂1d
} p−→ L1d(B

∗) = 1
λ1d

which is obvious from property 1. For

any node k > 1, if {L̃jd(B̃t, j)} p−→ Ljd(B
∗) holds for any

j ∈ {1, . . . , k − 1}, then due to properties 2-4 we have

∀j ∈ {1, . . . , k − 1, d} ∩ Sk :

{λ̂kjL̃jd(B̃t, k)} d−→ λkjLjd(B
∗) ∈ R ,

(27)

and{
Σj∈{1,...,k−1,d}b̂∗kj λ̂kj

}
p−→ Σj∈{1,...,k−1,d}b∗kjλkj . (28)

Property 1 in combination with (27) and (28) results in the
statement of the theorem.

For the achieved expected latencies, Lkd(B̃t), as opposed
to those estimated at the nodes, the proof is more straightfor-
ward. For a given decision matrix, B̃t, the expected latencies
Lkd(B̃t)s are functions of the true meeting rates λ and are thus
not random variables. Thus, the sequence {Lid(B̃t)} is only a
function of the random sequences {λ̂ij}, j ∈ Si via the opti-
mization that determines B̃t. Since we have established that
B̃t converges in probability to B∗, it follows that {Lid(B̃t)}
converges in probability to Lid(B

∗) due to property 1. �
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