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Abstract—We address the problem of distributed filtering in a
wireless sensor network and develop distributed approximations
of three variants of the ensemble Kalman filter. We express the
update equations in an alternative information form in order to
formulate a distributed measurement update mechanism. The
distributed filters use randomized gossip to reach consensus
on the statistics needed to perform an update. Simulation
results suggest that in the case of linear measurements and
high-dimensional nonlinear measurements (with measurement
model parameters known network-wide) with nonlinear state
dynamics the proposed schemes achieve accuracy comparable
to state-of-the-art distributed filters while significantly reducing
the communication overhead.

I. INTRODUCTION

Distributed filters are attractive in sensor networks because
they do not have a single point of failure. Local processing of
measurements can reduce the communication overhead when
the data dimension is high; it also eliminates the need for
centralized knowledge of sensor measurement models and
allows any sensor node to be queried to retrieve a state
estimate. Distributed Kalman filtering approaches [1] perform
poorly when the state dynamics and/or measurement model
are nonlinear. The distributed unscented Kalman filter [2] and
distributed particle filters [3]–[7] are more suitable for non-
linear and non-Gaussian problems, but require much more
computation and communication.

In this paper, we focus on filters that lie between the
Kalman filter and the particle filter. We develop distributed
approximations of three forms of the ensemble Kalman fil-
ter [8], [9]. The ensemble Kalman filter (EnKF) uses a set
of samples to approximate the first two moments of the
state probability density function. To derive the distributed
EnKFs, we express the update equations in an alternative
information form. We use randomized gossip [10] to calculate
in a distributed fashion the statistics required to perform the
update. Simulation results show that in the case of linear
measurements or high-dimensional nonlinear measurements
(with measurement models known network-wide) the pro-
posed algorithms achieve accuracy comparable to state-of-the-
art methods while significantly reducing the communication
overhead.

The rest of the paper is organized as follows. Section III
presents the problem statement and Section II provides back-
ground information. Section IV explains the distributed filter-
ing approach. We present the simulation results in Section V
and conclude in Section VI.

II. BACKGROUND: ENSEMBLE KALMAN FILTERING

We now present a short review of ensemble Kalman fil-
tering. The ensemble Kalman filter (EnKF) was introduced
in [8]. Similar to the particle filter, the EnKF uses a set of
state realizations (samples), but they are not weighted and
they are used to approximate only the mean and covariance
of the state probability density function. In order to obtain
an estimate at time k, the samples from time k − 1 are first
forecast (propagated) using the system model and then their
weights and locations are updated based on the measurements.

Compared to the (extended) Kalman fiter, the advantage of
using the EnKF is that the samples are propagated using the
nonlinear system function f(·) rather than a linear approxi-
mation. However, the algorithm continues to assume a linear
measurement function h(·) (in the case of a nonlinear function
a linearization has to be performed). All flavours of the EnKF
use the same forecast step and differ only in the update step.

In the original EnKF [8] the i-th state sample is updated as
follows:

K = P̂fHT (HP̂fHT +R)−1, (1)

xu(i) = xf(i) +K(y(i) −Hxf(i)) . (2)

Here xu(i) is the updated sample, xf(i) is the forecast sample, P̂f

is the forecast sample covariance, R is the measurement noise
covariance and the matrix H defines the linear measurement
function. K represents the Kalman gain and y(i) = y+ ε(i) is
a perturbed measurement, generated by adding a realization of
the modelled measurement noise to the original measurement.

The ensemble square root filter (ESRF) [9] is a variant of
the EnKF that uses a linear transformation to map the forecast
samples to the updated samples. The update is given by

x̂u = x̂f +K(y −Hx̂f ), (3)

T = (I−KH)1/2, (4)

xu(i) = x̂u +T(xf(i) − x̂f ) . (5)

Here x̂f is the mean of the forecast samples, y is the
measurement, I is the identity matrix, and (·)1/2 denotes
the unique positive definite square root of a positive definite
matrix. The deterministic ensemble Kalman filter (DEnKF) [9]
is similar to the ESRF with the advantage that the computation
of the transformation matrix does not involve a matrix square
root. In this approach the transformation matrix is given by
T = I− 1

2KH.
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III. PROBLEM STATEMENT

We consider a set of V wireless sensor nodes denoted
by V . At each time step, the sensor nodes acquire local
measurements related to the system state. We assume one
of the following scenarios: (i) the measurements are lin-
ear but the sensor nodes are unaware of the measurement
parameters (or modalities) of the other nodes; or (ii) the
measurements are non-linear and high-dimensional, but there
is global knowledge of the local measurement functions.
Either assumption renders filtering based on sharing of raw
measurements impractical. The goal is to compute an estimate
of the system state based on all the measurements. The relation
between the measurement and the system state is defined by
the measurement model

yv = hv(x) + εv, v ∈ V, (6)

where x ∈ RM is the system state, and hv(·) is the sensor-
dependent measurement function (possibly nonlinear) and and
εv is the measurement noise. We assume that it is possible
to identify a linearization Hv(i) of the measurement function
hv at a specific location in the state-space x(i). The sensor
nodes have uncorrelated measurement noise and the noise for
each sensor follows a Gaussian distribution with mean zero
and covariance Rv . The system state evolves according to a
discrete-time Markov process with state dynamics defined by

xk = f(xk−1) + nk−1, (7)

where f(·) is a nonlinear system function and nk−1 is a
Gaussian noise with zero mean and covariance Q.

IV. DISTRIBUTED ENKF ALGORITHMS

In the distributed approximations of the EnKFs we develop
here, every sensor node runs a local copy of the filter and
the nodes communicate via randomized gossip to compute a
global estimate. In order to do this we require two conditions
to hold. First, the random number generators of all the nodes
must be synchronized (initialized with the same seed). Second,
the nodes must be aware of the network size. We can use a
decentralized routine [4] to accomplish both tasks before the
start of the distributed estimation activity.

Every node can calculate its local forecast by propagating
the updated samples from the previous time step using the
system model (7). The forecast is given by

xf(i)k = f(xu(i)k−1) + n(i)k−1, (8)

P̂fk =
1

N − 1

N∑
i=1

(xf(i)k − x̂fk)(x
f
(i)k − x̂fk)

T , (9)

where n(i)k−1 is a system noise realization and N is the
number of samples. Since the random number generators are
synchronized the sensors will produce identical noise samples
and consequently identical forecast samples if they have the
same updated samples at the previous time step.

The main challenge in formulating a distributed update step
lies in the fact that the update equations (1)-(5) require the
knowledge of the complete set of measurements, measurement

functions and measurement noise statistics. Sensor nodes
only have access to their local measurements and may only
be aware of their own measurement model parameters. We
address this challenge by expressing the update equation in an
alternative form.

In the derivation that follows, we exclude the common time
index subscript k from the notation. In the information filter
form, we write the Kalman gain as

P̂u = [(P̂f )−1 +HTR−1H]
−1
, (10)

K = P̂uHR−1. (11)

We can substitute the above expressions (10) and (11) into the
update equation of the EnKF (2) and then express it in terms
of the measurements and measurement model parameters of
the individual sensor nodes,

P̂u = [(P̂f )−1 +
∑
v∈V

(HT
v(i)R

−1
v Hv(i))]

−1, (12)

xu(i) = xf(i) + P̂u
∑
v∈V

[HT
v(i)R

−1
v yv(i) −HT

v(i)R
−1
v Hv(i)x

f
(i)].

(13)

Here the subscript v denotes sensor-specific versions of the
correlation and measurement matrices; and the subscript (i)
denotes sample-specific quantities.

A. Linear Measurements

In the linear measurement scenario, Hv(i) = Hv does not
depend on the state value. We can express several of the
computations involved in the update (13) as network averages
over local sensor variables. In the local update step of the
EnKF, each sensor node v ∈ V initializes local variables:

{Yv(i)}Ni=1 = {|V|(HT
v(i)R

−1
v yv(i))}Ni=1, (14)

Sv = |V|(HT
vR
−1
v Hv). (15)

Two randomized gossip procedures [10] are applied to these
local variables. First, the sensor nodes perform an averaging
gossip routine to compute approximately the element-wise
average of these variables over the sensor network. Then the
sensor nodes run a max-gossip routine to try to ensure that
all the nodes have exactly the same values. In each iteration
of the max-gossip routine, the local update operation is an
element-wise maximum. Each sensor node can then compute
a local update using the equation

xu(i) = xf(i) + [(P̂f )−1 + S̃]−1(Ỹ(i) − S̃xf(i)), (16)

where Ỹ(i) and S̃ are the values obtained after running av-
erage and max gossip routines on {Yv(i)}v∈V and {Sv}v∈V ,
respectively.

A similar approach can be used to develop a distributed
update procedure for the ESRF and DEnKF algorithms. In
these algorithms sensor nodes need to perform gossip on the
following local variables

Yv = |V|(HT
vR
−1
v yv), (17)

Sv = |V|(HT
vR
−1
v Hv). (18)
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After running the gossip routines on these local variables, each
sensor node can compute the mean of the updated samples:

x̂u = x̂f + [(P̂f )−1 + S̃]−1(Ỹ − S̃x̂f ). (19)

If the sensor nodes possess an estimate of the transformation
matrix they can locally update the samples using the equa-
tion (5). In the ESRF approach the transformation matrix can
be locally computed as

T = (I− [(P̂f )−1 + S̃]
−1

S̃)1/2. (20)

Similarly, in the DEnKF a local computation of the transfor-
mation matrix can be performed as follows

T = I− 1

2
[(P̂f )−1 + S̃]

−1
S̃. (21)

B. Non-linear measurements with globally-known models

The other scenario we address involves non-linear measure-
ments, but we assume that there is network-wide knowledge
of the local measurement models and parameters. In this case,
there is no longer a need to gossip to calculate S̃, since each
node can compute it locally. Note, however, that we use a
sample-dependent S̃(i) in the distributed EnKF update (16),
because the linearization is performed at the sample state
value. Similarly, in the distributed DEnKF and the ESRF, a
different operator T(i) in (20) and (21) must be calculated for
each sample.

C. Communication Overhead

In the case of a linear measurement model, the distributed
ensemble Kalman filter requires the communication of NM+
M2 scalars by each node per gossip iteration (recall that
M is the state dimension and N is the number of samples
in the ensemble). For the deterministic ensemble Kalman
filter and the ensemble square root filter, this communication
requirement is reduced to M+M2. For these latter filters, the
removal of the dependence on the number of samples enables
the filters to perform accurate tracking even when exchanging
relatively few values between nodes.

When the measurement models are non-linear, but known
network-wide, the communication overhead reduces to NM
for the distributed ensemble Kalman filer and M for the
distributed ESRF and DEnKF.

V. SIMULATIONS

In order to examine the efficacy of the proposed approach
we conduct a set of numerical simulations using Matlab.
In this study we consider two measurement functions: (i) a
linear function defined by H = [1 0 0 0; 0 1 0 0], such that
yv = Hx − xv + εv , where xv is the location of node v;
and (ii) a nonlinear radio-frequency (RF) tomography mea-
surement function to demonstrate the case of high dimensional
measurements (see [11] for a complete description of the RF
tomography model). The standard deviation of the system
noise is 0.25 and the standard deviation of the measurement
noise is 0.25 for the linear model and 0.50 for the RF

tomography model. The parameters of the RF tomography
model, σλ is set to 0.05 and φ is set to 5.

In our simulation setup we deploy sensor nodes in a square
region of length 50m. In the case of linear/range models
25 sensor nodes are uniformly spaced on a grid. For the
RF tomography model 24 sensor nodes are deployed at the
boundary of the square region. Hence, in the RF tomography
setup each sensor node acquires a measurement consisting of
23 scalars. A pair of nodes can communicate if their separation
is less than the transmission range (15m). The sensor nodes
track a single target for 50 seconds. The target makes multiple
clockwise turns, and its state is given by x = [x1, x2, ẋ1, ẋ2]

T ,
where x1 and x2 represent the position and ẋ1 and ẋ2 represent
the velocity along the x and y axes, respectively. The target
motion is modeled by the nearly coordinated turn model,
which assumes unknown cartesian velocity but known turn
rate. The sampling period is 1 second. A sensor node only
acquires a measurement if the target is within its sensing range
of 10m. All sensor nodes use the same measurement function
and noise statistics.

We compare our proposed algorithms to the follow-
ing distributed tracking techniques: Gaussian approximation
(GA) [4], SIR version of likelihood consensus (LC) [5]; set
membership (SM) filter [6], top-m selective gossip (Top-
m) [7], and the distributed unscented Kalman filter (UKF) [2].
In the set membership approach we use the same oversampling
parameter value (10) as in [6]. For the top-m approach we
set m = N/4, where N is the number of samples in the
particle filter. In the distributed UKF we use just one mixture
component in order to minimize communication cost. For the
particle filter approaches, we tune parameter choices (number
of particles, gossip iterations) to optimize performance. For the
algorithms proposed in this paper, we do not tune, but adopt
default choices. Specifically, we choose a moderate number
of samples, since practical experience suggests that even for
very high dimensional problems the EnKF requires around 50
samples to reach its best performance [12].

We compare performance using the root-mean-squared
(RMS) position error. We average results over 100 Monte
Carlo trials; each trial has a different measurement realization
and a different particle initialization. For all particle filters we
generate initial samples by adding zero mean Gaussian noise
of standard deviation 0.25 and 1 to the starting position and
velocity of the target, respectively. If in any trial, the RMS
error exceeds 2m we consider it as a lost track and exclude it
from the error analysis.

In Table I we present the average RMS error ± standard
deviation and percentage track loss as a function of the number
of scalars transmitted for all the distributed filters for the linear
measurement model. We include the results for a centralized
bootstrap particle filter with 2000 samples as a performance
benchmark. In some cases we are unable to find any operating
point of a filter for a particular communication cost. We
mark these cases with a dash. For a high communication
cost all filters achieve tracking accuracy close to that of the
centralized filter. As the number of scalars is decreased all

2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)

219



TABLE I
PERFORMANCE (LINEAR MEASUREMENT MODEL).

Ave. RMSE ± Std. Dev. (% track loss)

Scalars 1000 500 200

GA [4] 0.26 ± 0.02 0.26 ± 0.03 0.28 ± 0.02(1)
LC [5] 0.24 ± 0.02 0.24 ± 0.02 0.83 ± 0.14
SM [6] 0.36 ± 0.14 0.45 ± 0.16 0.49 ± 0.17(1)
Top-m [7] 0.26 ± 0.04 0.32 ± 0.08 0.69 ± 0.33(14)
UKF [2] 0.24 ± 0.02 0.26 ± 0.03 0.96 ± 0.52(6)
EnKF 0.41 ± 0.28(12) 0.41 ± 0.27(13) 0.47 ± 0.29(15)
ESRF 0.24 ± 0.02 0.24 ± 0.02 0.27 ± 0.02
DEnKF 0.24 ± 0.02 0.24 ± 0.02 0.28 ± 0.02
Centr. PF 0.24 ± 0.02 0.24 ± 0.02 0.24 ± 0.02

TABLE II
PERFORMANCE (RF TOMOGRAPHY MEASUREMENT MODEL).

Ave. RMSE ± Std. Dev. (% track loss)

Scalars 1000 500 200

GA [4] 0.17 ± 0.01 0.20 ± 0.02(2) 0.35 ± 0.18(22)
LC [5] 0.33 ± 0.22 - -
SM [6] 0.26 ± 0.18(3) 0.33 ± 0.19(7) 0.36 ± 0.25(16)
Top-m [7] 0.27 ± 0.22(2) 0.34 ± 0.20(11) 0.70 ± 0.41(50)
UKF [2] 0.21 ± 0.09(18) 0.61 ± 0.49(74) 0.40 ± 0.26(95)
EnKF - - -
ESRF 0.19 ± 0.05 0.18 ± 0.05 0.22 ± 0.10(6)
DEnKF 0.23 ± 0.09 0.21 ± 0.08 0.22 ± 0.09(1)
Centr. PF 0.10 ± 0.01 0.10 ± 0.01 0.10 ± 0.01

the filters except for the ESRF and the DEnKF experience
significant performance degradation. The SM and the Top-m
schemes gossip on particle weights so they have a much higher
communication overhead. The LC and the UKF gossip on
low dimensional variables but require more gossip iterations
to ensure that there is an accurate consensus for these values.
The GA method performs well but is prone to occasional track
loss and is sensitive to the choice of its algorithmic parameters.
The EnKF gossips on twice as many scalar values as the ESRF
and the DEnKF, so its RMS error increases more sharply.
The ESRF and the DEnKF require fewer gossip iterations and
exchange low dimensional variables, so they perform well at
lower communication costs.

In Table II we present the results for the RF tomography
measurement model. In this case the sensor nodes are aware
of the model parameters of the other nodes in the network.
Hence, the EnKF, the ESRF, the DEnKF and the UKF schemes
only need to gossip on the local variables that involve the
measurements. The distributed ensemble Kalman filters can
compute the linearized approximations locally and update
the corresponding statistics. However, the distributed particle
filtering methods experience no change in the dimensionality
of the data on which they have to gossip. The distributed
ESRF and DEnKF show a similar performance trend as in
the case of the linear measurement model and outperform
the existing distributed filters at lower communication costs.
Figure 1 shows the target trajectory and the median estimate
of the distributed DEnKF for 200 scalars.
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Fig. 1. RF tomography sensor network, target trajectory and the DEnKF track
corresponding to the median error performance (200 scalars communicated).

VI. CONCLUSION

We developed distributed approximations of three ensem-
ble Kalman filters for the scenario where measurements are
distributed over a sensor network. The proposed distributed
schemes express the measurement update equation in an
alternative, information form, and employ randomized gossip
between sensor nodes to perform distributed computation of
the statistics required to perform an update. Simulation results
suggest that for linear measurements and high-dimensional
nonlinear measurements (model parameters known locally)
two of the proposed algorithms can achieve performance
similar to the state-of-the-art distributed filtering methods
while significantly reducing the communication cost.
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