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Abstract

The common utilization-based definition of available baittiiwand many of the existing tools to estimate iffeufrom several
important weaknesses: i) most tools report a point estilmfdgerage available bandwidth over a measurement intandatio not
provide a confidence interval; ii) the commonly adopted ndsed to relate the available bandwidth metric to the nredsdata
are invalid in almost all practical scenarios; iii) exigfitools do not scale well and are not suited to the task of rpaltih estimation
in large-scale networks; iv) almost all tools use ad-hobnégues to address measurement noise; and v) tools do nadeenough
flexibility in terms of accuracy, overhead, latency andaiaility to adapt to the requirements of various applicatidn this paper
we propose a new definition for available bandwidth and a hivpamework that addresses these issues. We defiolgabilistic
available bandwidti{PAB) as the largest input rate at which we can sendffidridow along a path while achieving, with specified
probability, an output rate that is almost as large as thetirgte. PAB is expressed directly in terms of the measu@ltigut rate
and includes adjustable parameters that allow the userajot 4ol diferent application requirements. Our probabilistic frardw
to estimate network-wide probabilistic available bandtid based on packet trains, Bayesian inference, fact@hgrand active
sampling. We deploy our tool on the PlanetLab network andresults show that we can obtain accurate estimates with & muc

smaller measurement overhead than Pathload.

Keywords: Bayesian inference, active sampling, belief propagatietyork monitoring.

1. Introduction

Recent work has shown that the performance of applica-
tions such as overlay network routing [1, 2] and anomalydete
tion [3] can be improved significantly when the network-wide
available bandwidth is known. There are many more applica-
tions (SLA compliance, network management, transport pro-
tocols, trdfic engineering, admission control) that could also
benefit from this information, but existing tools that me&su
available bandwidth generally do not meet the requiremaits
these applications in terms of accuracy, overhead, tireséin
and reliability [4]. In addition to the lack of flexibility,»a@sting
models and tools ster from four other major weaknesses:

1. The vast majority report a single value representing av-
erage available bandwidth and the usefulness of this sin-
gle value is questionable. Available bandwidth is typi-
cally defined as the capacity of a path unused by cross-
traffic over a specified time period. Most tools produce a
single point estimate of the available bandwidth by mak-
ing multiple measurements using probes sent throughout
the time period of interest. The crossiiia often fluc-
tuates significantly over the time period, so probes experi-
ence very dierent network conditions; an estimate formed

from such data can be a high-variance quantity making a 3.
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confidence interval very valuable. Service (or response)
curves are more informative than single average estimates;
they present the statistical mean (asymptotic average) of
the output rate for an entire range of input rates [5]. How-
ever, each point on the curve is still an average that does
not really provide a meaningful reflection of the burstiness
of the trdfic and the variability of the available bandwidth
metric. A more robust and practically-relevant manner
to express the available bandwidth is the variation range
(confidence interval) proposed by Jain and Dovrolis [6].

2. The observation model relating measured data to the

utilization-based definition of available bandwidth iséna
curate and biased in most practical situations. As a result,
the value provided by most tools does not genuinely reflect
the gquantity the tools claim to estimate. The fluid cross-
traffic assumption underpins the vast majority of models
used for inference. Liu et al. [5] show that the assumed
relationships between the measured quantities (packet dis
persion, one-way delay, output rate) and the estimated
value (utilization, cross-tféic) are not sound; even for
simple, slightly more realistic scenarios, the adoptioa of
fluid model leads to significant underestimates of the avail-
able bandwidth.

The mechanisms used by most tools to handle measure-
ment noise are ad-hoc and, in many cases, inadequate.
Measurement errors and noise generated by the end-hosts
and routers along the end-to-end path are unavoidable in
practice. Common issues include route changes, out-of-
order packet delivery, packet replications, and errors in

March 29, 2011



the probing packets due to link quality issues, incorrecfrom our simulations and online experiments on the PlartetLa

packet time stamps, and poor Network Interface Card utinetwork. In Sect. 7, we summarize our contributions and dis-

lizations. Although measures can be adopted to preverduss future work.

some of these errors, it is impossible to eradicate them all.

It is important that the model and inference technique are

robust, and that they can tolerate and handle noisy me& Background and Related Work

surements. One example of a technique that does handle

noise more robustly is Traceband [7], which employs a Each linkin a network has a physical capacitywhich does

hidden Markov model that allows the technique to statisti-not change over time, that represents the maximal rate atwhi

cally adjust to noise in the measurements. data can be transmitted on that link. The end-to-end capacit
4. Current tools cannot be applied to larger networks to si®f @ pathc, is equal to the smallest link capacity among all its

multaneously estimate the available bandwidths of mul£onstituent links. As long as the set of links on the path do

tiple paths. Using existing tools, probing all paths con-Nnot change, this value is a constant. The link on a path that

currently not only introduces an unacceptable overheaflas the smallest capacity is called the narrow link. abail-

and overloads hosts, but also leads to significant unde@ble bandwidth £) is the unused portion of the capadity et

estimation due to interference between the probes on linkd(t) be the instantaneous rate of crosstcan bps on a link

shared by multiple paths [8]. The alternative to simultane-oF Path andu(t) = A(t)/c the fraction of the capacity of a link

ous measurements is to sequentially probe each path indet path used by cross-tiec. The available bandwidth of a link

pendently. This is unacceptably time-consuming and very(t) can thus be expressed both in terms of capacity and cross-

inefficient, however, because it ignores the significant coriraffic, ¢, — A,(t), or capacity and utilizatiorg,(1 — uc(t)). For

relations that arise in available bandwidth metrics wher® Mmulti-hop path, the available bandwidti(t) is equal to the
the network paths share links. smallest available bandwidth among all links that contgithe

path. For each path, the tight link is defined as the link along
In this paper, we tackle the problem of network-wide (multi- the path with the smallest available bandwidth. A link might
path) available bandwidth estimation. In developing our ap be tight on one path, but not necessarily on an other. Alsp, th
proach, we strive to address the issues we have identifiagtabo status of tight link can change at any instgntross-tréfic in-
Our solution includes i) a probabilistic-rate-base ddfimifor ~ creasingdecreasing on the link or other links on shared path,
the available bandwidth and ii) a network-wide estimatimolt  or changes in routing matrices that change the set of links of
Our implementation uses the Bayesian inference frameworlpath.
factor graphs and the belief propagation algorithm to filee t  The most popular estimation tools are founded on either the
information obtained from all measurements. We adopt a inodgrobe-gap (PGM) or probe-rate model (PRM). The PGM as-
that relates the PAB of each path to the PAB of its constituensumes a single-hop path with FIFO queuing and fluid cross-
links; the factor graph provides a mechanism for capturing t trafficz. One measurement consists of sampling croseray
model and enables computationalljigient inference. These observing the gap between a packet pair at both the input and
techniques have been successfully used in large-scal®rietw the output. With every measurement, a single point estimfate
problems, such as link loss inference applications [9, 1@] a the available bandwidth can be produced as long as i) the ca-
the computation of conditional entropies for both faultgia-  pacity of the tight link is known, ii) there is only one tighk
sis and most informative test selection [11-13], but notiget and it is the same as the narrow link and iii) the end-nodes can
the context of available bandwidth estimation. transmit faster than the available bandwidth. PGM-basels to
Another novel contribution is our algorithm to determine (e.g., Delphi [17], IGI [18], Spruce [19], ABWE [20], Trace-
which path and rate to probe at each iteration; a process thaand [7]) are lightweight and fast, but are unable to esémat
can be related to sequential Bayesian sampling [14] and aevith acceptable accuracy the available bandwidth of nhdi-
tive/adaptive sampling [15]. This sampling strategy consists opaths [21]. The probe-rate model (PRM) also assumes fluid
selecting the next measurement(s) based on the informetion cross-tréfic, but is more robust. The PRM relies on the princi-
quired previously, such that the expected information gain ple of self-induced congestion probing [22]: if probes ants
maximized. In networking, it has been used in the context ofit a rate smaller than the available bandwidth then the outpu
network tomography to determine the measurements that proate matches the probing rate. However, if the probing ste i
vide the best information gain about the network path prigper greater than the available bandwidth, packets get queugdhw
given their probing overhead [16], but has yet to be applied t results in unusual delays and a smaller output rate. Algast
available bandwidth estimation. constructed using the PRM (e.g., TOPP [23, 24], Pathload [6]
The rest of this paper is organized as follows. In Sect. 2pathChirp [22], PTR [18], Yaz [25], ASSOLO [26]) consist
we review existing techniques to estimate available badtfwi
In Sect. 3, we introduce a new metrgrobabilistic available
bandwidth In Sect. 4, we formally state the estimation prob- *Dynamic (or time-varying) metrics, such as available baidtw can be
lem. In Sect. 5, we detail our novel probabilistic framework ?Xpre.ssed either as averages or instantaneous valuesssutherwise speci-
. . . . . fied, time-varying metrics will be expressed as instantase@lues.
which is the first to combine factor graphs and active sargplin 27yagic is modelled as a continuum of infinitely small packets witraser-
to estimate available bandwidth. In Sect. 6, we presenttsesu age rate that changes slowly.
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of varying the probing rate to identify the boundary thatasep end-to-end paths in a network by monitoring only a small sub-
rates the two dferent behaviours described above: an inputrateset of the paths. The method in [36] reduced this monitoring
where probes start experiencing unusual delays. Accotding cost even further, at the expense of introducing a smallrerro
various empirical studies, these methods generate mote acdn the estimated metrics. For real-time applications nestes
rate estimates than PGM-based tools, but they are also monsust not only be produced with minimal overhead, but also in
intrusive because they require multiple iterations @fedént a timely manner. To meet these requirements, measurements,
probing rates [4, 27-29]. even for a reduced subset of paths, must be scheduled at the
Although the PRM does not require information about thesame time. To avoid simultaneous probes interfering witthea
path capacity (unlike the PGM), it involves sending probies aother and overloading nodes, Song and Yalagandula [39] pro-
a rate as high as the available bandwidth, which can resalt in pose a resource-aware technique that achieves bettemagcur
significant load on the network. To address this issue, Negin  than resource-oblivious methods at the cost of using moee me
et al. [30] propose Forecaster; a technique that sendsmgobi surement data. All of these approaches, as well as the wavele
streams at rates lower than the available bandwidth and meaased methodology described in [40], are only appropriate f
sures the fraction of packets that experienced queuingtto es(approximately) additive metrics, such as loss or delaygneh
mate the available bandwidth. Another weakness of the PGM linear relationship can be constructed between the éaktl
and PRM is that they use a single hop model for paths or modelnd path-level metrics. However, Song and Yalagandula [39]
multi-hop as a sequence of independent hops. Haga et &l. [3suggest that their approach could be extended to availablé-b
develop a new framework based onfli@flows, which enter width estimation by selecting paths such that the load df the
and leave at arbitrary hop, to model multi-hop paths; disperprobes only represents a small fraction of the capacity ofiea
sion curve can be calculated through hop by hop iteration ofink.

the output spacing and thé&ective probe packet size. Another | arge-scale (multi-path) estimation of available bandtvid
multi-hop model is presented by Liebeherr et al. [32, 33yth has not received as much attention as other metrics. To limit
apply the convolution operator of the min-plus algebra tm€o  measurement overhead, BRoute [41] capitalizes on the spa-
pute the service curves of end-to-end paths using the &l&ila tja| correlation between links shared by many paths and the
bandwidth of multiple links. They use service curvesto akpl  observation that 86% of Internet bottleneck links are withi
how bandwidth estimation methods infer information about &our hops (end-segments) from end nodes [42]. The tool first
network and observe that maximal information is obtained aljses traceroute landmarks to identify AS-level end segsifent
a point where the network crosses from a linear to non-lineagach node, and then measures available bandwidth on tigese se
regime. ments by using landmarks with high downstream bandwidth.
Although these techniques can provide accurate results ffjaniymaran and Maheswaran [43] propose a mdieient
single-path available bandwidth estimation, they caneoafp-  |andmark-based approach that is similar to BRoute but has re
plied directly to estimate multiple paths simultaneoustyie  duced storage and inference complexity. Another approach t
multi-path estimation problem can be related to largeesoat-  |arge scale available bandwidth estimation is to explitabr-
work inference. One of the most promising techniques fofrelation between various metrics (route, number of hogsaca
performing large-scale network inferencenistwork tomogra- ity and available bandwidth); since the measurement cast fo
phy?’, which consists of estimating either i) link-level parame-each metric is dferent, monitoring those that have a cheaper
ters based on end-to-end measurements; or ii) path-le#ttr cost can reduce the load on the network [44]. To further reduc
intensity based on link-level tflac measurements [35]. HOW- the amount of probing overhead, Man et al. [45] propose to re-
ever, there are two key fiierences. First, tomography involves shape existing TCP tfic to look like packet pairs, trains or
a mapping from path-level measurements to link-level roetri chirps so that no extra tfféc is injected in the network. Despite
or vice versa; in the network-wide available bandwidth prob these @orts to minimize the overhead of the estimation pro-
lem we are interested in estimating path-level metrics frontedure, most of these network-wide tools do not address any
path-level measurements. Second, in most network tomograf the concerns mentioned earlier; they are neither flexible
phy problems, there is a linear relation of the foyrs Axbe-  ropust to noisy measurements, they produce a single average
tween measuremenysand network parameters whereAis a  value for each path and they are based on an invalid mapping

routing matrix. In our problem, this relationship is nondar;  petween measurements and the inferred metrics.
one of our modelling assumptions is that the available band-

width of a path is the minimum of the available bandwidths of
all its constituent links.
The task is more closely related to the problermefwork 3. Probabilistic Available Bandwidth
kriging [36], which involves estimating (functions of) path-
level metrics throughout a network using end-to-end pata-me
surements. This problem was also addressed in [37, 38],evher We specify thgrobabilistic available bandwidtfPAB) met-
an algebraic approach was proposed for exactly recovaring, ric directly in terms of input rates and output rates offtcaon
der the assumption of no noise, the path level metrics ohall t a path. We are interested in determining the largest inpet ga
at which we can send a ftia flow along a path while achieving
3See [34] and references therein for a review of network tawatyy. an output rate, that is almost (withire) as large as the input




rate, with specified probabilifyat leasty. More formally, for  paths®, we wish to form estimates of the probabilistic avail-
givene > 0 andy > 0, we seek the largest input rate such thatable bandwidths of all paths in the network. Let the PAB of
Pr(r, > rp — €) > y. We denote the largest such ingress rateeach pathp be modelled as a discréteandom variableyp;
by y, and refer to it as the probabilistic available bandwidth fore.g., Pry, = r) being the probability that the PAB on path
pathp: pisr. Then at any given instat our goals are to 1) iden-
Yp = maxXry : Pr(r, > rp—€) =y} tify and execute the most informative measurengrand 2)
o . o compute marginal posteriors Kglz) for every pathp, where
The probal_)|I|st|c gvallable bandW|dt_h is quated atthermary  , _ [2,...,2z] is the vector ok collected measurements (one
of two regions with diferent behaviours (i.e., where we can gt each time step). Rather than forming a point estimateeof th

expect diferent outputs). For smaller ratey, < yp, there is  paB, our goalis to develop a method that produces a confidence
a probability greater or equal tothat the output rate will be  nterval containing the PAB.

within a margin ofe of the input rate. For input rates greater
than the PABr, >y, this probability is not guaranteed.
The values of the two parameterandy are defined by the 5 Meéthodology

user based on application requirements and the network envi Our main challenge is to develop a technique to estimate

ronment. The rate fferencee represents the tolerance in re- robabilistic available bandwidth that idhieient and scales

ductiqn b.etweer) th.? in_put and output rate. In a network Wherg/ell with the number of paths. We can divide this problem
there is high variability in the amount of crossitraor frequent into the following three tasks: i) probe a path and produce a

pacrlﬁ?;dtr(t)kf)s,vltlcan fbt?] prsleBr?b:ﬁ ti?1 cr::orse ? Itz)alrge;r\]/ialaﬁ ?fmeasurement outcome, ii) compute the marginal posterfors o
suchthat tne value ofthe emains more stable. This enoicy, path’s probabilistic available bandwidth from meament
also depends on the rate reduction an application can telera

F licati h dmissi trol and SLA I_outcomes and establish confidence intervals for the PAB, and
or appiications such as admission controt an comp I'iii) identify measurements (choose the path and probire) et
ance that require high accuracy, a smadlevould be a better

) . each iteration that will minimize the overhead on the nekwor
choice. The parameter controls the tightness of the proba-

o K : A general overview of our approach is presented in Fig. 1.
b|||st|c_guarantee provided by the PAB.' If the user trans_r_mt The remainder of this section gives a detailed description o
flow with ratey, or less, then he (gectively) has probability

. . S I h step sh in Fig. 1.
1 — y of causing congestion. The application he has in mlnd,eac step snown in g

and the extent to which he is willing to risk causing cong®sti

in the network, will dictate the value of. It is important to ! Cre?te factor graph using known topology;

mention that there are no optimal values for these paras)eter 2 while 3p 5.1 B, > 5 do

the methodology we present in this paper is valid for anyahoi 3 choose path to probe next;

of e andy. The impact of this choice will become clearer when 4 choose rate to probe;

we describe the likelihood function in Sect. 5.3.3. 5 | take new measurement; . _
We believe that this new definition for available bandwidthi ¢ | Tun belief propagation (update marginal posteriors

more robust and practical for several important reasonst, Fi Pr{y,,lz}); '

it provides a more valid mapping between the measured and’ it maximum number of probes is reached then

inferred quantities. By expressing available bandwidthatly 8 | break;

in terms of the input and output rates, there is no longer d nee 9 end

to bridge the gap between packet dispersion and utilizgéon 10 end

cross-tr#tic) through generally invalid modelling assumptions.

Second, the probabilistic framework gives flexibility tethser Figure 1: Multipath probabilistic available bandwidthiesition algorithm.
and is more resistant to variability (crossffr@aburstiness) and

noise (errors) in the measurements. Last, it representsra mo

practical and concrete quantity: the probability that$raiiting  5.1. Assumptions

data at a given rate will yield the desired output rate. Our method is based on four main assumptions.
1. At the start of each link is a store-and-forward first-come
4. Problem Statement first-served routgswitch that dictates the behaviour of the
link (in terms of delay, loss, utilization). If the network
We focus on the problem of network-wide available band-  uses priority queueing or some other form of router-level
width estimation, but in terms of our newly introduced mgtri Quality-of-Service provisioning, then our method will in-
probabilistic available bandwidth. More formally, for aesp- fer the probabilistic available bandwidth as seen by the
fied (¢, v) and network that consists of a sethfinks £ andM class of packets transmitted as probes.
4The probability is defined over all possible multi-packetvioof average 5We chose to defing, as a discrete, rather than continuous, random variable
rate equal to the input rate that can complete transmissidngithe specified  because it is not practically meaningful to have an infinitecision on the
measurement period. transmission rates.



2. The routing topology of this network is known, as embod- To achieve a given input ratg, we fix the packet size and
ied in the set of path®, and that it remains fixed for the calculate the time intervat, between the departure of consec-
duration of our experiments. More precisely, we construcutive packets according the the following relatiop:= Psize/7.

a MxN binary path matri¥°, whereP(i, j) is equal to one The receiving rate is calculated similarly by dividing tlotat

if link j is on pathi. To populate the matrix, we infer number of bytes received by the amount of time that elapsed be
links and the mapping from IP addresses to routers usingveen the reception of the first and last packet. Howevertaue
traceroute®. If traceroute cannot complete the topol- task interruption on the sender side, there can be unusiagisde
ogy extraction procedure properly, the PAB estimation isbetween the departure of two consecutive packets (-1 + 7
done with an incompletE matrix. wheret; is the departure time of packgt We consider these

3. There is a unique path between each of the hosts involvegackets invalid and exclude them before calculating thpuiut
in probing. If there is per-packet load balancing in therate. Upon reception of the last packet of a train, we couostru
network, ourtraceroute-based procedure will identify a setV of all the indices > 1 of valid packets and calculatg
only one of these paths traversed by packets. This resu#ts follows:ry = (IV|- Psizd/ (Ziev ti — ti-1).

in missing entries (0's that should be 1's) amdmissing The probing rate is selected at every iteration, but therothe
links (rows) in theP matrix. Our method is urfiected by ~ parameters are pre-determined before the beginning obtire e
destination-based load balancing. mation procedure. The choice of these values is made to mini-

4. Like the majority of utilization-based available bandthi mize the overhead while making sure that results are aeurat
estimation tools, we assume that there is only one tighflthough using multiple trainsN; > 1) and taking the median
link on each path that essentially determines the probadf the output rates increases the overhead on the network, it
bilistic available bandwidth of that pathMore formally, i also a way to mitigate the impact of a noisy measurement
each path consists of the set of linkg = {£1, (s, ..., {n) sequence (e.g. packet train w_ith many_invalid packets).n si
and one tight link* € L,. This allows us to i) perform ilar logic applies when choosing the size of each prdhge
efficient inference using path-level data and ii) use logi-and the number of probes in a traibs. Larger probes and
cal topologies (combine all links that are in a series) nathelonger trains provide more samples over which to avergge
than routing topo|ogies to reduce the number of links ancput also leads to a more Significant load on the network and
the complexity of the factor graph. Jain and Dovrolis [6] @ longer sampling period. However, the choice of packet size
show that multiple tight links can lead to an underestima-must be made carefully to make sure that the packet spacing
tion of the available bandwidth. In our case, we interpretis achievable. According to our observations and the ggtiim
the presence of more than one tight link as a modelling?athload [6], it is preferable to keep> 80us. The packet size

inaccuracy that creates noise during the estimation procds then chosen such that this condition is satisfied for epesy
dure. sible probing rate. If a node is unable to send a packet stream

with the desired spacing, the packets will all be considered
In Sect. 6.2, we show how the accuracy and speed of convejhvalid on the receiver side. In Sect. 6, we specify and fysti
gence (number of measurements) afeaed when th® ma-  our choices for each of these parameters.
trix is not accurate (topology extraction errors, loadaloaig,

etc.). 5.3. Computing Marginal Posteriors

5.2. Probing Strategy Bayesian inference is a classical way to update the knoyvl-
) . o . . edge about unknown parameters based on new observations.
_Our probing strategy (line 5 in Fig. 1) is based on the prin-y, s framework, the posterior distribution Pgiz) is pro-
C|ple.of seIf-mdu_ced congestion [22]. A single measuremenportiona| to the product of the conditional probability 2I¥),
consists of sendingy trains OfL? UDP packets 0Psze byt_es also called likelihood function, and the prior probabilg(y):
a_t a constant rate, and obs_ervmg the_raﬂe{J at the receiver Priyolz) o Prizdyp) Priyp)®. To capture the correlations be-
side. We then take the medianrjfobtained from each of the  yeen paths, due to links that are shared by multiple paths,
N tralns_ and determlr]e the b|.nary outcomef the measure- o need to specify a model for Bi(..., ywlz), the joint pos-
ment using the following relationz = 1{ry, > rp — e} Where o5 gistribution of available bandwidth on all paths.€Tjint
Lxjis t_he indicator function (equal to onexfis true and zero probability distribution is complex but it is factorizakded can
otherwisej. therefore be captured with a factor graph (line 1 in Fig. 1). A
factor graph is a graphical model “that indicates how a joint
function of many variables factors into a product of funoto

8traceroute-like methods have been known to inflate the number of ob-
served routers, record incorrect links and bias routeregedrstributions [46].
These errors result in invalid entries in the matfixbut do not prevent our
algorithm from producing PAB estimates. 9Given a discrete prior and a discrete likelihood functidwe, mormalization

"We derive this relationship more formally in Sect. 5.3.2. to construct a posterior lying in [0,1] is trivial (just ddé by the sum of all

8Despite the loss of information, we choose to produce a pinatcome values in the discrete vector). The explicit computatiorPdfy) is unneces-
rather than use the output rate directly for two reasonsst,Fir binary out-  sary. Moreover, an unnormalized posterior ifisient to compute confidence
come is more robust and less sensitive to noisy measurem@eatond, there  intervals and the bisection point, which are the true owstuid operations in
is no available likelihood model for the output rate and iédsier to construct  our estimation procedure. For example, the bisection psijutst the median
empirically an accurate one for the binary outcome. value, which will not change if all entries are rescaled byastant.




of smaller sets of variables” [47]. They are composed of two

types of nodes (variable and factor nodes) and edges that sho ! 2
dependencies between the variables and the factors. lrasey c 5\ /{
the variables are discrete random variables of the prababil ! 3
tic available bandwidth of each link, and pathy,. There 4

are three functions that are represented by factor nodéwin t p

graph: i) the prior knowledge about the linKsg, ii) the relation

between the PAB of links and pathig,; and iii) the likelihood

of an observation on a given pat),. Figure 2: Logical topology of a 4 nodes network with= 3 links (¢1, £, £3)
The marginal posteriors are computed (line 6 in Fig. 1) by2ndM = 2 pathsip; (dashed) ang; (solid).

running belief propagation on the factor graph [48]. Theoalg

rithm starts with each one of the leaf nodes (prior and likeli fe fe 1

hood) sending a message to its adjacent node. Messages are

then computed using the sum-product algorithm and continue ‘ ‘

to propagate until the algorithm stabilizes, i.e. there iisimal

or no variation between a newly computed message and the one £ X e
previously sent of the same edfieUpon completion it is pos-
sible to compute the marginal at the variable node (links and \/\/
paths) by taking the product of all messages incoming on its fry fry
edges.

Example: In Figure 2, we show an example of a simple logi-
cal topology of a network. In this example, there are fourewod o, Vi,

interconnected usiny = 3 different links labeled;, ¢», £3 and

we consideM = 2 paths (dashed linqa, solid line: p,) where ‘
nodes 1 and 2 are the sources and node 4 is the destination.

From the logical topology, we can populate the path ma@rix Fya
and use it to construct the factor graph.

Figure 3: Factor graph representation used to estimate®Befthe two paths

1 0 ] in the topology depicted in Fig. 2.

P= 1

1
0

In Figure 3, we show the factor graph representation of im jo - \hereB,,, andBnaxare conservative estimates of the minimum
distribution used to compute marginal posteriors of the RAB  and maximum probabilistic available bandwidths of linksirO

each of the three links and two paths. The edges show the vaioice is due to the lack of any prior information about th@PA
ables that the factors depend on. In this case, the priotitmc  of |inks or paths.

is identical for all links. So each variable nogeis connected
to a factor nodd, in the graph. However, we could easily use 5.3.2. Relation between links and paths
different functions for each link. Each path and its underlying
set of linksL;, are connected together to a factor ndgg(there

is an edge for everk(i, j) = 1 in the path matrix). Finally, we
see that this specific factor graph includes informatiomfia

single observation that was performed on pathFor each ad-
ditional measurement, a new factor nofjg, is added to the

Our inference procedure relies on a relationship between th
PAB of a path and the PABs of its constituent links. For the
classical utilization-based definition of available baidtby, it

is often assumed that there is a tight link on each path that de
termines that path’s available bandwidth. We develop alaimi
relationship for the probabilistic available bandwidth.

factor graph. - .
grap For a pathp consisting of the set of links, = {1,2,...,n},
. ] it is possible to identify small constantsOe; < X & < €
5.3.1. Prior function and 0< 6 < Ye,6¢ < 1 -y such that:
The first function to define is the pridi. We use a non-
info.rmzlzltive prior model for the PAB of a path; a uniform distr Pri; <re—e) <6, forall r,<yp(ey). 1)
bution in the rangeBmin, Bmax:
but
fx ~ (H[ Bmin, Bmaﬂ,
Pri; <re—e)>06, forall r,>yp(ey). (2)
10Belief propagation will converge in cyclic factor graphsdien certain con- We can apply the union bound on the links to establish:
ditions, but is not guaranteed to do so [49]. Through ourrestie simulations,
we did not encounter any convergence issues. To ensure etomplwe set the
maximum number of messages between two nodes to five duriguorof the Pr U{r; <rp—egl}| < Z Op. 3)
belief propagation algorithm. tel, (e,



The complement of this union bound is that the conditionintuitively, when the probing rate, is well below the PAB, we
r, > r, — ¢ holds for each link. Then we have the following expect the probability of observing= 1 to be very high and,
relationship between the path and link input and outpusrate similarly, whenr is well over the PAB, this probability should
be very close to zero. Based on these intuitive expectations

fi. = Tp and experimental data (Fig. 4), we adopt a sigmoid likelthoo
rp = I1>rM-a model
3 = Ih>lp—€e—e L(z= 1lyp. rp) = logsigt-a(rp - Yp))
for the measurements, wheaeis a small positive constant
n learned empiricalli?.

e = r;>rp—za.

i=1 O data
This relationship and the union bound in (3) imply the fol- 4| e et
lowing:
= 0.6
Pr[r;, >rp- > ef] >1- > 6 @ gl
telp tel,
Moreover, we assume that there ight link £* € L, which 0.2f
essentially determines the probabilistic available badtiwon )
the pathp. This means that it is possible, for dlE L, £ # ¥, —foo 0 i S T
to identify e, < € andd, < 1 — y that satisfy (1). In the case rp = Yp (Mbps)

B 7 .
of 7, however, the smallest. < e andd, <1 Y par that Figure 4: Empirical data and regression fit for the likelilanodel.Pr(z = 1)

S_atiSfy (1) ha_V9 t_he p_roperEy* ~ €andd, ~ 1—y. The tight s function of the dierence between the probing rate and estimated available
link assumption implies thazgeLpe{) ~ ¢ ~ € and deLpéf x bandwidth. Each data point is obtained by averaging thetre$1.0 packet

S0 ~ 1—1vy. This property, together with (1), (2), and (4), trains Withs = 5 over five diferent paths. The best fit is obtained by performing
imply thaty, ~ X. wherex, is the PAB of link¢. Another ~ &'egression for parametersandyp.

way of interpreting this assumption, is that the PAB of ankli
¢ € Lp, ¢ # ¢* is significantly greater thay,. This relationship
is expressed mathematically as

We first gather data from five fierent paths: 500 measure-
ments from non-consecutive packet trains at each rate batwe
Bmin and Bmax We then repeat this experiment five times at
fy(Yp, (Xl € Lp}) = 1{yp = min(x,)}, different periods of the day resulting in 25 sets of 500 measure-

tebp ments. We normalize each of the 25 experiments and combine
all the data in a single plot as a functionrgf-y,. The result is
shown in Fig. 4 where each data point is the result of avegagin
53.3. Likelihood Model all valges Which had the same valuergf—.y;-; all e_xperiments

We specify a likelihood functionfy,, learned from empir- for which the dlstqncg betyvgena andyy 'S identical.  In our
ical training data, that relates a measurement outcomeeto tfase the regression identifies= 0.28 with a_MSE OT (1)8_
probing rate and the underlying PAB of the probed path. More?ver ti]e range from (11.00] Mbps. T_h_e fun(_:tlon depicted is

or y = 0.5, but it can be easily modified (without any further

precisely, it relates the probability that= 1 to the diterence . .
between the probing rate and the PAB of the path. In generapweasurements) for any other valueyofit consists of aligning
we havef,; = L(a, yp, I;), wherea is a set of parameters for the desiredAvaIue of on the curve with the point on the x-axis
the likelihood functiorlL. The strategy is then to identify a para- Whefer_p ~Yp=0. L .
metric functionL and train the parametesisbased on multiple It is important to note that our estimation procedure is not
éensitive to the exact choice of likelihood model (which de-

sets of data collected across the network. Although we éxpe )
g b ends on the probing strategy, the network and the valuég of

the parameteras to be the same for all measurements, the PABP

y, (Which is also unknown) varies from path to path. We decidelf the empirical data collected in a particular scenario ar

to co-jointly estimate the values gf along with the parameters fit tg tlhe S|gmo_||d rt?odel zres_ﬁ]r?ted heret,_ gg:.em Ill_Fﬁllkt]ooc_id .
a through a single regression procedure where we determine tf 0¢€! ¢ah €aslly be used within our estimation. that said, in
: R the experiments conducted (over multiple weeks dfedént
best fit by minimizing the MSE. topolodies. d dt - h b diteat t
Example: We construct a likelihood model for the network we opologies, days and times-of-day), we have observe

used (PlanetLab) for our experiments using 5 Mbps and a

range of values wherBpn = 1 Mbps anBpyax = 100 Mbps™. 12The sigmoid function rapidly decays to zero when the probiaig is
greater than the available bandwidth, even for the bestilgegsarameter fit.
We wish to be careful and prefer a slightly less aggressiyerageh where

11The choice of directly afects the likelihood function. We choose 5 Mbps we assign some likelihood to unexpected measurement oatcatrall ingress
because it is the smallest value for which the level of ngideé empirical data  rates. For that reason, we introduce a small congtant bound our likelihood
is acceptable to train a parametric function accurately. function to lie in the rangex| 1 — «]; in our experiments = 0.02.

wherel{x} is the indicator function.




values ofa, which specifies the rate of decay of the sigmoidstepk is not dfected by previous measurements. These strate-
function, occupy a small range. For this reason, the likelth  gies are simple and easy to implement, but can bfianent.
model only needs to be trained rarely and it can be employred foAdaptive (active) selection algorithms, which use infotima
a long period of time. Furthermore, once the initial likeldd  extracted from previous measurements to make decisiong abo
model is trained, it is possible to refine it without any futh the future, can provide important reductions in the numifer o
measurements by using probes from the bandwidth estimatigorobes.
procedure as training data.
5.5.1. Path Selection

5.4. Producing Confidence Intervals We designed two greedy active learning procedures to select
the path to probe at each iteration (line 3 in Fig. 1). Bottoalg
tithms are probabilistic in nature: they determine the piob
ity that each path is chosen, and then the choice is accdmeplis

y making a random selection according to the specified proba
bilities. The first algorithm is called weighted entropy (WE
For each path, we can calculate the entropy of the marginal
posterior distribution of its PAB. The entropy is an indioat
of the uncertainty associated with the current estimatéVg&o
assigns a probability that a path is selected is propottiana

8 the entropy of the distribution. The second algorithm, ezhll

| P ; weighted confidence interval (WCI), assigns a selectiobh@ro
bility to each path that is proportional to the size of thereat
confidence intervas, of the path’s PAB; it then chooses a path
at random according to the assigned probabilities. In bbth a
gorithms, paths are more likely to be probed if there is more
uncertainty about their PABs and the probability of probing
path that already satisfies our stopping criteia<€ ) is zero.

For a given distribution, such as the one depicted in Fig. 5
the confidence interval of sizg, with confidence limits
[Bmin, Bmax IS the smallest interval that has a confidence leve
(fraction of probability mass) greater than or equaktoThe
confidence level is the probability thaty, lies in the confi-
dence interval.

Pr(y,|z)

Pr{ﬁmin < Yp < Bmax} =1

Yp
Prin Prax 5.5.2. Rate Selection
To decide on the probing rate (line 4 in Fig. 1), previous es-

Figure 5: Graphic representation of the probabilistic labéé bandwidth. The  timation tools either use deterministic binary search owpdy
probability thatyy, lies in the confidence rangBrin, Smax Of size 8y is equal increase the probing rate (Iinearly or exponentially) Liiiis
to n (confidence level). - . .

greater than the available bandwidth. Our Bayesian framewo
allows us to adopt a mordfeeient and informative approach.
We choose the rate that bisects the marginal posterioti-distr
bution of the path. By probing at the median, there is equal

We decide to us@, as one of our stopping criteria for the
estimation procedure (line 2 in Fig. 1); it terminates whiea t

size of the confidence interval of each path is smaller fhan o )
) - probability (according to our current knowledge) that tiveay
(VP - Bp < ). For the cases when the variability of the mea-, utcome will bez. = 1 orz = 0. We therefore maximize the

surements is too high to meet the desired tightness for C.onf'e'xpected information gain from our measurement; it is esuiv
dence intervals, the procedure also stops when the maximu

. . . ) o [8nt to conducting a probabilistic binary search for thelae
num_be_r of iterations is reached (lines 7-9 in Fig. 1). bandwidth on pa?rp [p15]. By using a p>r/0babilistic rather than
It 1S important to note that these parameteisi( anq _the deterministic approach in rate selection, hard decisiamsch
maximum number of probes) are not part of the definition Ofcould be incorrect) are not enforced.
the PAB. They are defined by the user to control how many

measurements should be taken to produce the estimates; i.e.
how fast, accurate and intrusive the tool is. In Sect. 6.1, wé. Resultsand Discussion
show how the choice ¢f andy impact the accuracy and intru-

. 6.1. Path Selection Simulations
siveness (number of measurements) of the tool.

The purpose of the simulations described in this subsection
is to assess the accuracy and speed of convergence of our pro-
posed active sampling strategies. These are not network sim

The estimation of available bandwidth based on self-inducelations, so they do not test modelling assumptions at &t fth
congestion is an iterative process. At every iterationpited-  the purpose of the simulations in Sect. 6.2 and the onlinerexp
ing rate is chosen according to some rules. In the case dfents in Sect. 6.3).
network-wide estimation, we must also determine which path We use the HOT topology generated using Orbisvhich
to probe. The possible sampling rules used to make these smcludes 939 nodes (896 end nodes) and 988 links. From this
lections can be divided in two groups: adaptive (active)ar-n
adaptive (passive). Non-adaptive sampling means thatethe S 13, //uww. sysnet . ucsd. edu/~ pnahadevan/topo_research/
guence of measurements is pre-determined; the probingtrate topo.html
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Figure 7: Simulated average number of measurements astaofun€the num-
Figure 6: Simulation results: measurements required aodracy achieved.  ber of tight links in the topology. Both values are normatizey the number of
Results are averaged over 500 topologies of various sizedifferent confi- ~ PpathsM. We show all the simulated values and a first degree polyridinfar
dence levelg and intervalss. each technique.

We investigate the number of iterations for the case where
set of links and nodes, we construct a distance matrix betweey = 0.95,8 = 10 in Fig. 7; we show the average number of mea-
all the nodes using shortest path routing and identify 22889 surements per path as a function of the number of tight links
(source-destination pairs) that consist of at least sewds.l  per path in the network. Due to the nature of our model, we
For our simulations, we wish to test our algorithm on topagdsg can identify the PAB of each path if we know the PAB of all the
of different sizes and vary the number of paths over the rangtght links in the network. Therefore, we expect to make tgea
M = 50,100,150 200, 250. For each value dfl, we randomly  savings in terms of number of probes when the total number of
select ten dferent subsets ol paths from the entire set of tight links is small relative to the total number of paths, (ar
2232 paths. For each of these 50 topologies, we assign linither words, when the number of paths that share a single tigh
PABs using a uniform distribution between [D0] and repeat link is high). The average number of measurements per path
this process ten times to generate a total of 500 topologies. required by WCI is between 46 73% lower than the number

At each iteration, probe outcomes are generated accomling fequired by RR and 39 55% lower than SEQ. WE and WCI
the likelihood model we constructed empirically in Sect.3.3 Provide important savings in terms of time and measurements
(o = 0.28, € = 5). For all simulationsy = 0.5, which means Without afecting the accuracy, but since WCl is slightly better
that the value of the likelihood function g = r, is 0.5. We  in terms of average number of measurements, we use WClI for
compare three path selection algorithms (Round Robin (RRPUr online experiments. As expected, when tight links are lo
WE and WCI) and also show the average number of measuréated on non-shared links, more measurements are reqaired t
ments and accuracy required when our active learning algcachieve the same level of accuracy.
rithm is run independently and sequentially on each patliSE
We use diterent values o andn as stopping criteria; the al-
gorithm stops when the size of the confidence intepls
smaller tharg for all pathsp. If these conditions are not met,  One of the main conditions for our methodology to work is
the algorithm stops after 10000 iterations. that the logical topology is known and that we can construct

Fig. 6 shows the number of measurements per path requiredpath matrixP. However, there are many factors that can af-
for the algorithm to terminate, as well as the accuracy (&n es fect the accuracy of this matrix (e.g., incorrect or incoetel
mate is considered accurate if the real PAB lies within the co extraction usingcraceroute, load-balancing, changes in the
fidence limits: Bmin < Yp < Bmay- IN Most cases, SEQ re- topology during the estimation procedure, etc.) that alieha
quires fewer measurements than the round-robin stratetyy wi similar impact: missinguperfluous links (rows iR) and miss-
the graphical model. This is due to the fact that not all pathdng/superfluous entries (flipped bits B). In this section, we
require the same number of measurements. In the RR case, tegplore how noise (errors) in the path matriXegts the accu-
algorithm iterates through all paths, including those thete  racy and speed of convergence of our methodology.
already met the required confidence criteria, which is net th Let TE be the probability that pathis incorrectly extracted
case in SEQ. Both data-driven approaches, WCI and WE, sigisingtraceroute. For each erroneously extracted path, there
nificantly reduce the number of measurements required whiles a probabilitygsip that each link in the sel is mistakenly
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identified as either present or missing from ppth More con-
cretely, for each row oP, there is a probability TE that every
column entry is flipped with probabilitgsi,. The result is a
noisy factor graph (path matrix) that propagates inaceurat

simulation results show that, for topologies of any sizdpag
as thetraceroute methodology produces a matrixwith a
similarity codficient greater than.B, 85% of the paths are es-
timated accurately on average. Therefore, even when itarses

formation because of invalid edges between path and link varinaccurate path matrix, our methodology can generate neaso
able nodes.

ably precise estimates without any significant inflationkie t
number of probes required.

12 Another part of our assumption is tHatloes not change dur-
—8-M=50 . RS . "
; 1]-a-M=100 ing the estimation procedure, which does not necessarjyyim
"r- 1| M=150 that the physical topology remains unchanged. This is tke ca
, meigg because we work with a logical topology and the mapping to a

specific node or link is irrelevant. We have not performed any
simulations to validate this assumption, but we have stuiie
empirically. Before each of our online experiments, we gene
ated the matri)P and observed that it was almost always iden-
tical to previous matrices extracted from the same set oésod
(Song and Yalagandula [39] made similar observations about
the PlanetLab network). This evidence igfgient to conclude
that the path matrix does not féer significant modifications

during the time interval over which the estimation procedar
For each of the 500 topologies we used in Sect. 6.1performed.

we generate seven topologies by varyii§ over the range
0%, 5%, 15% 25% 50% 75% 90%. For the simulations, we 6.3. Online experiments
use WCI for path selection, the same likelihood model withg 3. 1. Experimental Setup

@ = 0.28 and sey = 0.5, ¢ = 5 Mbps,; = 0.95,5 = 10 Mbps, For our online experiments, we have deployed our measure-
Bmin = 1 MbpS, Bmax = 100 Mbps. In Fig. 8, we show the et software coded in C on various nodes on the PlanetLab
average number of measurements per path as a function of Thatoriks. We use a topology with six nodésM = 30 paths

As expected, the number of iterations required to achieee thy 4N = 65 logical links. For all our experiments, the like-
requested confidence level and tightness increases folotopo ihq0d model is the one presented in Sect. 5.3 0.28,

gies with a greater probability afraceroute error. However, _ _ 5) and WCl is used to select the path to probe at each it-
thi; augmentatiqn is not significant; even withe = 90%, the 4 4tion. We ch00SBmin = 1 Mbps andBmax = 100 Mbps
estimation requires only 1.5 more measurements per path Qfy conservative estimates of the PAB of each link (we assume
average. that the links with the highest capacity are 100 Mbps links).
make sure that > 80us even when probing @2 We choose
Psize = 1000 bytes. Each measurement consists;cf 3 trains

Average number of meas./path

0 15 30 45 60 75 90
Traceroute error TE (%)

Figure 8: Average number of measurements per path as adoraftthe tracer-
oute error for topologies with tferent number of pathis!.

100 T
: l of packets.
OB o 3 ..'. X £ .: A °
. RGN 'E{ . ,
P W0k : — 6.3.2. Testing Procedure
“““““ ﬁ.&t SO Since we are not testing in a controlled environment, we

[or]
(4]

do not have access to the true value of the PAB (or even of

the available bandwidth). Although some tools are known to
provide accurate estimates of the available bandwidthe rodn
them have established themselves as a true reference dr-benc
mark. Therefore, to validate our results, we propose a nadetho
that consists of sending trains of 2400 packets of 1000 bytes
(the equivalent of 60 seconds of video encoded at 320 kbps),

: Lo . . [ ' L= rp—€h
To quantify the similarity between topologies and provide ob_servmg the output rate and caI_Cl.JIatmg:- Lrp 2 p - €}

X . .. “This test assesses whether or not it is possible to achigvem g
more meaningful metric than TE, we use the Jaccard simyilarit . o ; : ; .

, . : . : robing rate, which is the information we are interested in.
codficient. It is equal to the size of the intersection (numberp ] : . .

: L L : ; Because it would be impractical to probe every single rate
of correctly identified links) divided by the size of the unio in [Bumin, Bras], We choose four dierent rates that correspond
(all links from both topologies) [50]. We display the avesag min> maxi: P
accuracy of our estimates over all topologies in Fig. 9. Our

15Although the PlanetLathgtp: //www.planet-1lab.org/) network was
once believed to be too heavily loaded, Spring et al. [51]arpd that Planet-
Lab has evolved and this is no longer true.

18planetlab3.csail.mit.edu, planetlab-1.cs.unibas.tmlabl.cs.caltech.edu,
planetlab2.acis.ufl.edu, planetlabl.cs.stevens-t@ehm@anetlab2.csg.uzh.ch.
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Figure 9: Average estimation accuracy (Jaccard Simil&@ipgticient= |AN
B|/|A U BJ) as a function of the topology accuracy for all topologies.

14This probability is chosen such that the average path leregtrains con-
stant. Based on the topologies we used for our simulatidris,probability
depends on the number of links in the network and varies teetvie3%.



to potential estimates of the PAB. These rates are chosen fro r
the confidence intervals produced with our estimation proce =
dure: the lower bound of the confidence intergak, the mid-
dle of the confidence intervAhean= (Bmin + Bmax)/2, the upper
boundBmax and 5 Mbps above the upper bound. For each of | I
these rates, we choose four disjointed paths and compute the™ ™

empirical probabilityPr(z = 1|rp). This testing procedure is /!
performed when the estimation terminates (stopping @itme = 0-25
met;8p < 10Mbps andy,, > 0.95). )

0.751

€lrp —

Pr

0
6.3.3. Train size Tp — Jp (Mbps)
In this first experiment, we set = 0.5 and compute the
empirical probability of succesBr(z = 1|rp), for the difer-  Figure 11: Empirical probability of observing= 1 averaged over 17966 mea-
ent values Ofp probed in our testing procedure averaged ovepurements as a function of theference between the probing rate and the esti-
20 runs. We vary the number of packets in each train in thgrated PAB (MAP of the marginal posterior).

rangels = [25,50,100 150,200 250]. The results are shown

in Fig. 10. The first observation is that the number of packetgg equal to the PABT(, — §, = 0). However, what we observe

used in trains induces very little variation in empiricadpabil- g that the probability is closer to.T6 at that point, which is

ity for all the probing rates._Thls suggests that, for thisvoek approximately the average empirical probabilityaf + € in

atleast, 25 packets per train wouldisce. Fig. 10. This confirms a slight underestimation of the PAB,
which is probably due to an inaccurate likelihood model. The

1T figure also shows that as the train size is reduced, the mea-
surements become noisier and the bias (underestimatien) be

p
S b o .
-5 0.8 P comes more significant. In future work, we will explore other
| 4= Prvax likelihood models (possibly a combination of two sigmoitts)
206 G\S\ﬂ\/e/e <= Brnax™ match the asymmetry observed here.
N N\\/MA
\2\&1 04,

F=t 13—
= g
& 2
12+ .
(& s E
V\/G\V\V/V g il i
o— ‘ ‘ ‘ ‘ o
25 50 100 150 200 250 210 i
Train size (num. packets)
Figure 10: Empirical probability that the output rate ishirte Mbps of the 10000
input rate. Each point represents the average of 80 tedtg€2Q runs). ‘g 7500
= - |
X
For all the train sizes we tested, the desired probability £ 5000 8
05is inclupled in the probability _interval B nin and,B,T_]aX. This S 25000 i
result confirms that our method is able to produce intervels t z
include the value of the PAB accurately. The fact that 0.5 %25 50 100 150 200 250
is very close to the upper bound suggests that we might under- Train size (num. packets)

estimate the PAB (we discuss possible reasons for this helow_
Figure 12: Number of measurements (TOP) and bytes (BOTTCddd ywer

Howeyer, when the prok_)i_ng rate is SMbpS over the upper bOU”E’am (averaged over 20 runs for each train sizgluring the estimation pro-
of the interval, the empirical probability of success droyl cedure.

below 02, which indicates that we are not drastically underes-
timating the PAB. Figs. 10 and 11 indicate that the accuracy obtained when us-
We investigate the impact of the train size by using the rawing Ls = 25 andLs = 250 packets is similar. In Fig. 12, we
data collected at each node during the 20 runs (18000 measurghow the average number of measurements and bytes per path
ments for each value dfs). In Fig. 11, we show the average required to complete the estimation procedure as a funofion
empirical probability of observing= 1 as a function of the dif- the train size. Since the number of measurements is constant
ference between the probing rate and our estimate of the PAfr all values ofLs, we observe a linear growth in the number
(we use the marginal maximum a posteriori (MAP) estimate)of bytes required to achieve the desired accuracy. Fronethes
We anticipate this plot to be comparable to the likelihoodielo results, it is now clear that using 25 packets per train igmgdt
depicted in Fig. 4. Since we sgt= 0.5, we expect the proba- as it provides similar accuracy to larger train sizes wigngi-
bility of observingz = 1 to be near & when the probing rate cant savings in terms of number of probes.
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6.3.4. Probability of success just above the identified estimate and assessing how often co
We investigate the accuracy and the intrusiveness of olir togestion is avoided at the two rates. It is important to mentio
wheny is increased from 6 to 09. We perform the same test- that the size of the variation range varies whereas the candil
ing procedure as before and show the results, averaged 0ver ihtervals produced by our approach is at m@st 10Mbps. Al-
runs, in Tab. 1 (with standard deviations) and Tab. 2. We obthough the variance is greater, the median size for Patisload
serve that increasing leads to a greater empirical probability variation ranges (@6Mbps) is smaller. For that reason, the dif-
of success at the expense of overhead and time. However, tfgrence between the empirical PAB (shown in Tab. 2) at the
overhead is still significantly smaller than using Pathlsad lower bound and the mean of the variation range is very small.
quentially. It is encouraging to see that by modifying a Bng  The results show that we meet our probabilistic guarantees
parameter it is possible to obtain estimates of the PAB wifth d and that Pathload’s estimates avoid congestion 60% ofriies ti
ferent probability of success, which was our initial objegt  To show that our estimates are not too conservative and tdose
We are currently working on aflierent probing strategy based the maximum rate at which we can send while avoiding con-
on chirps that will provide the same flexibility and accuracygestion (with probabilityy), we also test at rates that exceed
with much more acceptable and practical overhead costs.  the identified rates. By probing at rate 5Mbps over the upper
bound of the confidence interval (variation range in the cdise
Pathload), we see that the probability of success decrsagses

Table 1: Average (over 20 runs) overhead and latency showm standard - . .
ge ( ) Y nificantly and drops below. This suggests that the maximum

deviation as a function of compared with Pathload (PL).

Averages per patf| y =05 y =09 PL[6] rate lies without our confidence interval (for any valuey)f
Latency (sec)) || 93+09 25x2 34+ 2 whereas Pathload’s would overestimate the available biitialw
Overhead (kB) H 869+ 82 2483+ 38 4664+ 410 in cases wherg > 0.65. As opposed to our approach, there

is no parameter that explicitlyfi@cts the probability avoiding
congestion to make Pathload suitable for these scenarios.
Furthermore, as we can see from Tab. 1, Pathload is signif-
Table 2: E_mpirical probability_ of avoiding congestion (eaged over 20 runs) icantly more intrusive and time consuming than our methodol
as a function of compared with Pathioad (PL). ogy. In the case of = 0.5, the probability of success of our
Prie=1rp) || y=05 y=09 PLI6] approach is greater than Pathload’s and still providesifsign
Fp = Bmin 0.89 097 065 cant gains in terms of measurement latency (73% savings) and
Mo = Bmean 0.70 086 063 overhead (81% savings).
fp = Bmax+ 5 0.13 Q44 45 Comparing the overhead of our technique with Pathload’s
confirms that previous tools are not well suited to multikpat
. . estimation. The only other approaches that can prodfice e
6'3'5_" _C:omparlson with other tools o cient network-wide XB estimgtgs are BRoute [41]pand band-
Itis |ntereSt|ng to compare our estimation meth0d0|ogy tO\NIdth Iandmarking [43] In both cases, little detail is pItdEd
another tool based on the classical definition of availabtedb regarding the actual overhead incurred by their technianels
vyidth to examine the extent of correlation t_)etween the tvyo ME their software is not publicly available. Hu and Steenkjétg
rics. We choose to compare our results with those obtained Ug|qim that 80% of the available bandwidth estimates obthine

ing Pathload (version 1.3.2) [6] because it is one of the mosf,m BRoute are accurate within 50% when using a subset that
accurate techniques [4, 27, 29]. We run Pathload sequentialiy | ges only 79 of all paths. However, there is no mention of

on every single path (of the topology described in Sect1$.3. | ., many measurements are required for each path.
We then run the testing procedure outlined in Sect. 6.3.2 and

assess accuracy, overhead and latency of both techniques.
The first observation is that Pathload fails to provide ariy es ) ) . .

mate far more often than our approach. In the 20 runs, Pathloa In Fig. 13, we display the confidence intervals as well as the

only converged to valid bounds for 62% of the paths wherealESt 'esults (probe rate and output rate) for one of the rens p

our approach always converges to a confidence interval ef siormed withLs = 25 andy = 0.5. The outcome of this partic-
B for every path’. To compare overhead and accuracy weular run demonstrate the clear heterogeneity of the PlafetL

only consider the paths for which Pathload's variation mng NEWOrk; over 25% of the paths have small (less than 20 Mbps)

has valid bounds. PAB whereas the other 75% have PAB greater than 80 Mbps.
The two techniques estimatefidirent metrics (PAB ver- 1he tight links on the paths with lower PAB could either be

sus utilization-based available bandwidth) but in practice heavily utilized 100 Mbps links or, more likely, 10 Mbps lisk

Pathload metric is often used to answer the same question, | With Small amounts of cross-tic. These findings about the

what is the maximum rate at which a flow can be sent along & anétLab network correspond to those of Lee et al. [52].

path without inducing congestion? Based on this, we can com-

pare the accuracies of the tools by sending¢fizdlows at and

6.3.6. PlanetLab Observations

7. Conclusion

17The Pathload algorithm fails to converge when there areufratjcontext In thi.S_ paper, we present(?d a novel teChn_ique based ona
switches at the sender or receiver or when the packet lasssrigo high. probabilistic framework to estimate network-wide probhiabc
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Figure 13: Bounds of the confidence intervals for a 30 patpslegy ina  [16]

sample run performed fdrs = 25 andy = 0.5.
(17]

available bandwidth. We introduced PAB, a new metric with
adjustable parameters that addresses issues related dy-the [18]
namics and variability of available bandwidth. Our method-
ology based on factor graphs and active sampling is the firsﬁg]
to combine both techniques in the context of available band-
width estimation. To further reduce the overhead of our4ech
nique, we are currently working on a new measurement sirated20l
and likelihood model based on chirps rather than trains ckpa
ets, which, from our preliminary results, can achieve digant
savings in terms of probing overhead. Furthermore, we @an t
extend our block-based estimation framework to track thB PA
in time.
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