
Chapter 10
Distributed Approximation and Tracking
Using Selective Gossip

Deniz Üstebay, Rui Castro, Mark Coates and Michael Rabbat

Abstract This chapter presents selective gossip which is an algorithm that applies
the idea of iterative information exchange to vectors of data. Instead of communicat-
ing the entire vector and wasting network resources, our method adaptively focuses
communication on the most significant entries of the vector. We prove that nodes
running selective gossip asymptotically reach consensus on these significant entries,
and they simultaneously reach an agreement on the indices of entries which are
insignificant. The results demonstrate that selective gossip provides significant com-
munication savings in terms of the number of scalars transmitted. In the second part
of the chapter we propose a distributed particle filter employing selective gossip. We
show that distributed particle filters employing selective gossip provide comparable
results to the centralized bootstrap particle filter while decreasing the communication
overhead compared to using randomized gossip to distribute the filter computations.

10.1 Introduction

Many applications of wireless sensor networks require collection and processing
of large amounts of data. The main challenge in fulfilling these tasks is preserv-
ing network resources such as lifetime and bandwidth. One approach to fuse and

D. Üstebay (B) · M. Coates · M. Rabbat
Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
e-mail: deniz.ustebay@mail.mcgill.ca

M. Coates
e-mail: coates@ece.mcgill.ca

M. Rabbat
e-mail: michael.rabbat@mcgill.ca

R. Castro
Department of Mathematics, Eindhoven University of Technology, Eindhoven, The Netherlands
e-mail: rmcastro@tue.nl

A. Y. Carmi et al. (eds.), Compressed Sensing & Sparse Filtering, 325
Signals and Communication Technology, DOI: 10.1007/978-3-642-38398-4_10,
© Springer-Verlag Berlin Heidelberg 2014

326 D. Üstebay et al.

process large amounts of data without draining network resources is to reduce the
data dimensionality. We present an algorithm called selective gossip to approximate
high dimensional vectors of network data in an efficient manner. Our method is based
on gossip algorithms which are decentralized methods studied extensively for scalar
network data. In essence, gossip algorithms utilize iterative information exchange
between pairs of nodes, and asymptotically all nodes reach consensus on a network
aggregate. Selective gossip applies the idea of iterative information exchange to
vectors of data. Instead of communicating the entire vector and wasting network
resources, our method adaptively focuses communication on the most significant
entries of the vector. We prove that nodes running selective gossip asymptotically
reach consensus on these significant entries, and they simultaneously reach an agree-
ment on the indices of entries which are insignificant.

Selective gossip can be taken as a building block and used in various distributed
signal processing algorithms. Here we study the distributed target tracking problem
where the nodes of a sensor network collaboratively track a moving object. For
problems involving nonlinear dynamics, nonlinear measurements, and non-Gaussian
noise, particle filtering is the current state-of-the-art-estimation method. We propose a
distributed particle filter implementation using selective gossip. In this setting, nodes
maintain a shared particle filter to sequentially estimate the state of the target. The
measurements taken by sensors are fused by reaching a consensus on the likelihood
associated with the each particle. Selective gossip efficiently identifies particles with
large weights and focuses communication resources on computing these important
weights. Through a simulation study we demonstrate that selective gossip requires
lower communication overhead while achieving similar accuracy as compared to
the state-of-the-art distributed particle filtering approaches on a scenario involving
bearings-only measurements of a maneuvering target.

This chapter is organized as follows. Section 10.2 reviews gossip algorithms.
Section 10.3 discusses the distributed averaging problem for vectors. Section 10.4
proposes the selective gossip algorithm in its three versions and also provides the
convergence results. Section 10.5 introduces distributed tracking problem and pro-
poses the distributed particle filter using selective gossip. A distributed target track-
ing scenario is presented to illustrate the performance of this algorithm. Section 10.6
concludes the chapter with a discussion of the results.

10.2 Gossip Algorithms

Operating under energy and bandwidth constraints, wireless sensor networks require
efficient and reliable methods for processing. The traditional approach of central-
ized processing has several drawbacks. It introduces a single point of failure to the
network. Furthermore, in dense networks, the links close to the central authority can
become bottlenecks. To avoid congestion and, also, to exploit processing capabilities
of sensor nodes, in-network processing algorithms are proposed. In-network process-
ing can be performed using spanning trees or Hamiltonian cycles. These are effective

10 Distributed Approximation and Tracking Using Selective Gossip 327

methods when the network topology does not change over time. However, since they
require forming and maintaining routes, these methods also have significant com-
munication overhead when nodes are mobile or wireless networking conditions are
not reliable. Gossip algorithms, on the other hand, are decentralized methods which
do not require specialized routes. They are known to provide robust and scalable
solutions for in-network processing.

Gossip algorithms have been widely studied as solutions to distributed consensus,
a problem which dates back to early work of Tsitsiklis et al. [32, 33]. This problem
requires nodes to reach an agreement by using only local exchanges. It is acknowl-
edged as a canonical problem in distributed control and signal processing (see, e.g.,
the surveys [7, 23]). Some example applications are cooperative control of multiple
autonomous vehicles [18], parameter estimation [30], distributed optimization [22],
and source localization [26].

The standard example of distributed consensus is the average consensus problem,
where in a network of n nodes, each node v has a scalar value xv ∈ R, and the goal
is to compute the average

x = 1

n

n∑

v=1

xv, (10.1)

at every node. Although averaging of scalars is a basic problem, it can be generalized
to computation of any linear function of the node values and to averaging of vectors.
Due to this capacity for generalization, algorithms that solve average consensus are
attractive for a wide range of wireless sensor network applications.

Gossip algorithms can be synchronous or asynchronous. The synchronous version
requires that at each iteration all nodes broadcast their values [37]. Having received
the values of its neighbors, each node then updates its value with a weighted average
of its value and the values it received. The asynchronous version, on the other hand,
does not require synchronization and only one pair of nodes update at each iteration.
In the remainder of this chapter when we refer to gossip algorithms, we refer to
asynchronous gossip.

Randomized gossip algorithm describes a randomized and asynchronous version
of gossip [3]. This algorithm restricts information exchange at each iteration to only
a pair of neighboring nodes. Below we summarize the randomized gossip algorithm.

For a network of n nodes, let the undirected graph G = (V, E) represent the
network connectivity where V = {1, . . . , n} is the set of nodes, and E ⊆ V × V
is the set of edges such that (u, v) ∈ E if and only if nodes u and v can perform
bidirectional wireless communication. The set of neighbors of node u (not including
u itself) is denoted by Nu = {v : (u, v) ∈ E}. The gossip iterations are indexed
using k = 1, 2, . . . , where k = 0 corresponds to the initial state. Each node v ∈ V
maintains a gossip value xv(k) which is initialized with xv(0) = xv .

Asynchronous time model [2]. A clock ticks at each node according to an inde-
pendent rate-1 Poisson process. Since there are |V | = n nodes, this is equivalent to
there being a network coordinator running a Poisson clock with rate n, and when the
coordinator’s clock ticks, it assigns the tick to a node drawn uniformly from V . Each

328 D. Üstebay et al.

tick of the coordinator’s clock corresponds to one iteration and we assume that the
communication and update steps involved in each iteration occur instantaneously so
that no two iterations overlap.

In a practical setting, the updates take some non-trivial amount of time. One could
either tune the rate of the Poisson clocks at each node so that two updates overlap (e.g.,
leading to interference) with probability zero, or one could adopt a more complex
scheduling mechanism to avoid interference. These issues are beyond the scope of
this work.

Communication model. There is a pre-defined communication matrix P with
entries Pu,v ≥ 0 and

∑
v∈V Pu,v = 1. In addition, Pu,v > 0 if and only if (u, v) ∈ E .

Suppose the kth clock tick occurs at node u. Then u contacts a random neighbor v

which is drawn according to the distribution {Pu,v}v∈V , and nodes u and v perform
an update.

Update rule. When nodes u and v gossip, they update their values with the
average,

xu(k + 1) = xv(k + 1) = 1

2

(
xu(k) + xv(k)

)
. (10.2)

All other nodes v′ ∈ V \ {u, v} remain unchanged; i.e., xv′
(k + 1) = xv′

(k).
Intuitively, the convergence of randomized gossip is guaranteed if there exists

a path between each pair of nodes so that information can flow between each pair
infinitely often. Hence, one can show that, for a connected graph G, under mild
conditions on the way a random neighbor, v, is chosen, the values xu(k) converge
to x at every node u as k → ∞ [37]. The number of randomized gossip iterations
required to achieve consensus scales with the number of nodes in the network; the
rate of scaling depends on the network topology. For topologies that are generally
used to model wireless sensor networks such as grids and random geometric graphs,
randomized gossip converges slowly [3]. Motivated by this fact, there has been a
body of work studying faster versions of gossip, e.g., [1, 6, 19, 24, 35].

Another research direction involves using gossip algorithms as a building box in
complex signal processing applications (see [7] and references therein). Motivated
by applications in distributed estimation, we study gossiping on vectors of data.
Below we state this problem and propose selective gossip for efficient distributed
approximation of vectors.

10.3 Gossiping on Vectors

The scalar average consensus problem described in the previous section can be imme-
diately generalized to distributed averaging of vectors where, initially, each node
v ∈ V has a vector xv ∈ R

M and the aim is to compute the average

x̄ = 1

n

n∑

v=1

xv, (10.3)

10 Distributed Approximation and Tracking Using Selective Gossip 329

at each node v.
The basic solution to this problem is to run one scalar gossip algorithm for each

dimension of the vector in parallel such that the entire average vector is computed
at all nodes. Parallel gossip sessions can be implemented using the standard gossip
setup with a modified update rule which involves exchanging and averaging vectors
instead of scalars. Note that in practical sensor network scenarios, each wireless
packet can carry only a certain amount of data and, consequently, exchanging long
vectors may require several packets to be transmitted. Since energy consumption is
proportional to the number of packets transmitted, exchange of long vectors instead
of scalars increases the energy consumption of wireless communication. Increased
number of packet transmissions also increases the bandwidth consumption of gossip
updates.

However, often we only care about computing the largest entries of the average
vector and not the entire vector. One example is decentralized field estimation where
sensor nodes are deployed in an area to take scalar measurements [34]. Starting with
local measurements, the goal is to reach a network state where each node has an
approximation of the field. Transform coding is based on the idea that many natural
signals are sparse (or nearly sparse) when they are transformed into a suitable domain.
Hence, the signal representing the field can be well-approximated using only a few
transform coefficients (those with the large magnitude). Assuming that a suitable
transformation is available, one can use gossip algorithms to reach a consensus on
the transform coefficients in a decentralized manner. Since only a few of the transform
coefficients have large magnitudes, reaching a consensus only on these coefficients
is satisfactory. The problem is that we do not know which coefficients have large
magnitudes before actually computing them. Thus, any gossip algorithm that aims
to decrease the communication cost by computing only these coefficients needs to
also identify their locations.

Another example is the scenario where nodes must collectively decide among
one of a large number of hypotheses. Initially, each node has its own data. Under
the assumption that the likelihood of the data at different nodes is conditionally
independent given the hypothesis, the network-wide log-likelihood of any hypothesis
is simply the sum of the log-likelihoods at each node. However, if the number of
hypotheses is very large, then it is more efficient for the nodes to focus their resources
on computing the log-likelihood of only the most likely hypothesis or hypotheses,
rather than all of them. In Sect. 10.5, we will consider the related setting of distributed
particle filtering, where nodes gossip on the weights of particles which can be viewed
as hypotheses.

Motivated by these applications in distributed signal processing and decision
making, we study a method which adaptively identifies the largest elements of a
vector while computing their values. The next section describes this method and
provides results related to its performance.

330 D. Üstebay et al.

10.4 Selective Gossip

To address the average consensus problem in multi-dimensional setting, we propose
an efficient distributed averaging algorithm called selective gossip [34, 36]. Selective
gossip conceptually builds on the randomized gossip algorithm described in [3]. In
particular, we adopt the asynchronous time model and the communication model,
explained in Sect. 10.2. The update rule, on the other hand, is where selective gossip
differs from randomized gossip.

Each node v ∈ V maintains a gossip vector xv(k) ∈ R
M at iteration k and this

vector is initialized with xv(0) = xv . Let xv
j (k) represent the j th entry of xv(k). The

gossip vectors in the entire network at iteration k are denoted by X (k) = {xv(k)}v∈V .
Let x̄(i) denote the i th highest entry of x̄, so that x̄(1) ≥ x̄(2) ≥ · · · ≥ x̄(M).

We aim to reach a consensus on the locations and values of the largest entries of
x̄. Depending on how the concept of largest entries is defined, the problem statement
and the solution changes. Here we consider two possibilities:

1. Threshold. Given a non-negative threshold τ , let Hτ be the set of entries larger
than the threshold, i.e.,

Hτ = { j : x̄ j ≥ τ }. (10.4)

The goal is to have the iterates X (k) approach X ∗
τ as efficiently as possible, where

X ∗
τ =
{
{xv} : for all v ∈ V,

xv
j = x̄ j if j ∈ Hτ

xv
j < τ if j /∈ Hτ

}
. (10.5)

If X (k) ∈ X ∗
τ then we say that the network has reached consensus on x̄ for entries

larger than the threshold τ .
2. Top-m. Given a non-negative integer m < M , let Htop-m be the set of entries of

the highest m entries of x̄, i.e.,

Htop-m = { j : x̄ j ≥ x̄(m)}. (10.6)

Note that the cardinality of Htop-m , denoted |Htop-m |, may in fact be larger than
m, e.g., if x̄(m+1) = x̄(m). Similar to above, the goal is to have the iterates X (k)

approach X ∗
top-m as efficiently as possible, where

X ∗
top-m =

{
{xv} : for all v ∈ V,

xv
j = x̄ j if j ∈ Htop-m

xv
j < x̄(m) if j /∈ Htop-m

}
. (10.7)

If X (k) ∈ X ∗
top-m then we say that the network has reached consensus on x̄ for

the largest m entries.

Our goal is to efficiently reach a state X (k) ∈ X ∗
τ or X (k) ∈ X ∗

top-m . Our measure
of efficiency aims to capture the amount of data communicated between nodes over
the network. Specifically, we count the total number of scalar values transmitted. Of

10 Distributed Approximation and Tracking Using Selective Gossip 331

course, in order to obtain X (k) ∈ X ∗
τ or X (k) ∈ X ∗

top-m , one could run a standard
distributed averaging algorithm [2, 3, 23] on each dimension, in which case standard
results guarantee that xv(k) → x̄ as k → ∞ for all v ∈ V . Since x̄ ∈ X ∗

τ and
x̄ ∈ X ∗

top-m , this achieves our objective in both cases. However, if |Hτ | 	 M or
m 	 M , then this is wasteful since the nodes expend communication resources
calculating entries which are not relevant. Selective gossip aims to achieve a network
state in X ∗

τ or X ∗
top-m , but not necessarily one where any node computes the entire

vector x̄. The main challenge is that the nodes do not know, a priori, the index
set (Hτ or Htop-m) as it depends on the initial values, X (0), and so it must also be
estimated.

Below we present three versions of selective gossip; the first version addresses
the threshold-based problem and the next two versions address the top-m problem.

10.4.1 Threshold Selective Gossip

Threshold selective gossip algorithm employs a threshold τ , which is fixed and
known by all nodes, to determine which entries to communicate and update at each
iteration. For a node v ∈ V , let Hv

τ (k) represent the entries with values higher than
τ , i.e.,

Hv
τ (k) = { j : xv

j (k) ≥ τ }. (10.8)

When nodes u and v wake up according to the asynchronous time model and
communication model described in Sect. 10.2, they update entries that at least one
of them believes to be one of the largest. Namely, they update only the entries
j ∈ Hu

τ (k − 1) ∪ Hv
τ (k − 1) by setting

xu
j (k) = xv

j (k) = 1

2

(
xu

j (k − 1) + xv
j (k − 1)

)
. (10.9)

No change is made to entries j /∈ Hu
τ (k − 1) ∪ Hv

τ (k − 1), and these values are not
transmitted in order to save energy. Also, all other nodes v′ ∈ V \ {u, v} keep their
gossip vectors unchanged.

Threshold selective gossip asymptotically converges to the correct values for
entries j ∈ Hτ . Since there is no coupling between the different entries of the
vector x̄, we treat each entry individually and focus on analyzing the behavior of
the algorithm for a single scalar entry. Without loss of generality, let xv(0) denote
the initial value for this entry at node v, let x̄ denote the average, and let τ > 0
be the given threshold. It is well known that, under the assumptions stated above,
randomized gossip converges asymptotically to the average consensus [3]. Selective
gossip differs from randomized gossip in that, at some iterations, two nodes may
not update a particular entry. Thus, intuitively, to show convergence when x̄ ≥ τ we
just need to show that nodes gossip sufficiently often so that eventually they all have
xv(k) ≥ τ ; at that point selective gossip is identical to randomized gossip.

332 D. Üstebay et al.

Theorem 1 [34]. Let S(k) =∑n
v=1(xv(k) − x̄)2 and suppose x̄ ≥ τ . Then

E[S(k)|S(0)] ≤
(

1 − 1

n4 diam(G)2Δmax

)k

S(0), (10.10)

where diam(G) is the diameter of the network G and Δmax = maxv |Nv| is the
maximum degree.

Sketch of proof When a pair of neighboring nodes (u, v) decide to gossip at the
kth iteration, S(k) decreases such that S(k +1) = S(k)− 1

2

(
xu(k)− xt (k)

)2. Taking
the expectation over all pairs of neighboring nodes with non-zero probability of
gossiping at iteration k, we get

E[S(k + 1)|S(k)] ≤ S(k) − 1

nΔmax

(
xu(k) − xv(k)

)2
. (10.11)

Since consensus is not reached yet, there exists at least one node a with xa(k) ≥
x̄ + 1

n

√
S(k)

n . Constructing a path from node a to any node b with xb(k) < x̄ , we find

that there exists a pair of neighboring nodes (a′, b′) on this path for which

(xa′
(k) − xb′

(k))2 >
S(k)

n3 diam(G)2 ,

and with (10.11) the statement of the theorem follows. �
Theorem 1 shows that for entries j ∈ Hτ , selective gossip always computes

the correct value in expectation. Furthermore, since E[S(k + 1)|S(k)] ≤ S(k) and
S(k) ≥ 0 for all k, the sequence {S(k) : k ≥ 0} is a non-negative supermartingale
with respect to itself. Using the Martingale convergence theorem, one can show
that the limit S∞ = limk→∞ S(k) exists almost surely [12]. Moreover, standard
arguments [3] based on Markov’s inequality can be applied to this result to show
convergence in probability. Next we give the result for entries j /∈ Hτ .

Theorem 2 [34]. Let G = Kn be the complete graph. Suppose that x̄ < τ and
τ − x̄ = c > 0. If S(0) > 0 and there exists at least one node with non-zero
probability of gossiping, then there exists a finite constant K < ∞ such that after
k ≥ K iterations, xv(k) < τ for all nodes v with probability 1.

Sketch of proof In this case, one can find two nodes (u, v) such that (xu(k)

− xv(k))2 ≥ c2. Since Δmax = n − 1 for the complete graph and using the
bound (10.11), we get E[S(k)|S(0)] ≤ S(0)− kc2

n(n−1)
. Applying Markov’s inequality

yields

Pr
(
S(k) ≥ c2|S(0)

) ≤ S(0)

c2 − k

n(n − 1)
.

Therefore, if k ≥ K = n(n−1)

c2 S(0), then xv(k) < τ , for all v with probability 1. �

10 Distributed Approximation and Tracking Using Selective Gossip 333

Theorem 2 addresses the case where x̄ < τ only for the complete graph. This
approach does not directly extend to general connected topologies. In particular, in
the proof of Theorem 2, one cannot guarantee that the nodes u and v will be neighbors
in a general topology. However, the convergence can be shown using an approach
similar to that presented below for the proof of Theorem 3.

It is also worth noting that the bounds given in Theorems 1 and 2 are extremely
loose since we only consider the gossiping of one pair of nodes instead of all pairs,
and hence these bounds should not be taken as an indicator of the rate of convergence.
In fact, it is easy to see that once all nodes agree that an entry j is in Hτ , threshold
selective gossip behaves identically to randomized gossip, and so asymptotically
the rates of convergence are the same as reported in [3] for randomized gossip.
As illustrated in the simulations presented below, the error decay rate of threshold
selective gossip, as a function of the number of scalar values transmitted, is in fact
substantially faster than running randomized gossip in parallel for all entries.

10.4.2 Adaptive Threshold Selective Gossip

Threshold selective gossip requires a fixed preset threshold, τ , to determine the
entries to be computed. However, having a fixed threshold is typically not practical
since we may not have accurate prior knowledge of the distribution of values in
the average vector. To address this problem, we describe a heuristic called adaptive
threshold selective gossip which aims to find the appropriate threshold at each node
in a decentralized way. By appropriate threshold, we mean τ ∈ (x̄(m), x̄(m+1)), where
m is given as input to the algorithm. In other words, our heuristic deals with the top-m
problem and tries to reach the index set Htop-m by adaptively changing the threshold
at every node. For this, each node keeps an estimate of the threshold as well as the
gossip vectors xv(k).

Let the threshold estimate of each node v be denoted by τv(k) at time k. The
threshold estimate of each node is initialized with the mth largest entry of its gossip
vector, i.e., τv(0) = xv

(m)(0). When two nodes u and v perform a gossip update, they
modify the entries j ∈ Hu

τ u(k−1)(k − 1) ∪ Hv
τv(k−1)(k − 1) by setting

xu
j (k) = xv

j (k) = 1

2

(
xu

j (k − 1) + xv
j (k − 1)

)
. (10.12)

All other entries remain unchanged and all other nodes keep their gossip vectors
unchanged. After the update, nodes u and v reassess their approximation quality.
If the current threshold of node v provides fewer than m entries in Hv

τ (k), then the
node decreases its threshold. If the node has more than m entries in Hv

τ (k), then the
threshold value is increased. Specifically, node v updates its threshold according to
the following rule

334 D. Üstebay et al.

τv(k + 1) =

⎧
⎪⎨

⎪⎩

(1 + c1)τ
v(k) |Hv

τ (k)| > m

(1 − c2)τ
v(k) |Hv

τ (k)| < m

τv(k) |Hv
τ (k)| = m

(10.13)

where c1, c2 > 0 are predefined constants. Note that we choose c1 �= c2 as having
c1 = c2 may cause undesirable oscillations in the threshold estimates.

The adaptive threshold heuristic does not have any convergence guarantees but
intuitively should be more efficient than randomized gossip since it aims to compute
only the largest entries of the average vector. We present simulation results in the
upcoming sections to illustrate the performance of this method.

10.4.3 Top-m Selective Gossip

Since the adaptive threshold version of selective gossip is a heuristic without con-
vergence guarantees, we propose another variation of gossip that solves the top-m
problem and also has provable guarantees. Top-m selective gossip takes a positive
integer m as an input and adaptively focuses communication on the largest m entries
of the gossip vectors.

Let xv
(m)(k) denote the mth largest value in the gossip vector xv(k) at node v, and

let Hv
top-m(k) denote the set of largest m indices of node v, i.e.,

Hv
top-m(k) = { j : xv

j (k) ≥ xv
(m)(k)}. (10.14)

When nodes u and v perform an update, they first exchange those entries of their
gossip vectors which at least one of them believes to be among the m largest; i.e.,
they exchange values for entries j ∈ Hu

top-m(k − 1) ∪ Hv
top-m(k − 1). Then, they

update

xu
j (k) = xv

j (k) = 1

2

(
xu

j (k − 1) + xv
j (k)(k − 1)

)
, (10.15)

for entries j ∈ Hu
top-m(k − 1) ∪ Hv

top-m(k − 1), and they set xu
j (k) = xu

j (k − 1)

and xv
j (k) = xv

j (k − 1) for entries j /∈ Hu
top-m(k − 1) ∪ Hv

top-m(k − 1). Likewise,
the gossip vectors of all nodes v′ ∈ V \ {u, v} who do not participate in the update
remain unchanged; i.e., xv′

(k) = xv′
(k − 1).

Although the threshold and top-m approaches appear similar at first glance, there
are subtle differences which make top-m selective gossip considerably more chal-
lenging to analyze. When the aim is to compute all entries which exceed a threshold,
the updates applied to each entry of the vector can be decoupled, since the final
result only depends on whether the average for that entry does or does not exceed
the threshold. On the other hand, when the aim is to compute the largest m entries
of the average vector, all entries are coupled since the final result depends on the
rank ordering. Subsequently, a different approach is required to show convergence.

10 Distributed Approximation and Tracking Using Selective Gossip 335

The following theorem shows that this algorithm converges asymptotically on any
connected graph to a state where all nodes agree on the indices and values of the m
largest entries, where m is a given parameter.

Theorem 3 [36]. The gossip vectors generated by top-m selective gossip converge
to a limit {xv(k)}v∈V → {x̃v}v∈V as k → ∞, where

x̃v
j = x̄ j , for j ∈ Htop-m, v ∈ V,

x̃v
j < x̄(m), for j /∈ Htop-m, v ∈ V .

Sketch of proof Let x j (k) ∈ R
n denote the j th entry at each node, xv

j (k), stacked
into a vector. Observe that the update Eqs. (10.14) and (10.15) for top-m selective
gossip, can be written as a collection of linear updates,

x j (k) = W j (k)x j (k − 1), for j = 1, 2, . . . , M (10.16)

where W j (k) is time-varying and depends on the entire state X (k) through the sets
Hv

top-m as described next. Let [W]u,v the (u, v)th entry of the matrix W. Suppose that
nodes u and v perform the kth gossip update. If j ∈ Hu

top-m(k−1)∪Hv
top-m(k−1), then

[W j (k)]u,u = [W j (k)]u,v = [W j (k)]v,u = [W j (k)]v,v = 1

2
, (10.17)

and
[W j (k)]u′,u′ = 1, [W j (k)]u′,v′ = 0, (10.18)

for all u′, v′ /∈ {u, v}, since only nodes u and v update their gossip vector, and all
other nodes make no changes. If j /∈ Hu

top-m(k − 1) ∪ Hv
top-m(k − 1), then no node

updates this entry of the gossip vector, and W j (k) = I . In particular, note that every
matrix W j (k) is symmetric and doubly stochastic with non-zero entries at least 1/2.

Recent theory [16, 31] for time-varying linear systems of the form (10.16) makes
it possible to characterize the behavior of the limit limk→∞ x j (k). Specifically,
for matrices such as W j (k) satisfying the properties mentioned above, the limit
x̃ j = limk→∞ x j (k) exists. In addition, consider the graph G j = (V, E j) with
(u, v) ∈ E j if [W j (k)]u,v infinitely often. If G j is connected (i.e., if there is a path
in G j connecting every pair of nodes), then x̃u

j = x̃v
j for all u, v; i.e., all nodes

asymptotically reach a consensus on the j th entry of the gossip vector. Moreover,
since every W j (k) is doubly stochastic, x̃v

j = x̄ j = 1
n

∑
u xu

j (0), and the nodes reach
a consensus on the average. Thus, to determine which entries of the gossip vectors
converge to the average (if any), we need to characterize which entries are updated
infinitely often as k → ∞.

From the definition of the asynchronous time model, since all nodes initiate
updates according to a rate-1 Poisson process, it follows that as k → ∞, every node
will participate in an infinite number of updates. Each time an update is performed,
the nodes u and v update those entries in the set Hu

top-m(k − 1) ∪ Hv
top-m(k − 1),

336 D. Üstebay et al.

which contains at least m elements (more if the two sets are not identical). Thus,
there exists a set of indices J which are updated infinitely often, and thus for j ∈ J ,
the limit x̃ j is the consensus vector with all elements equal to x̄ j . Moreover, those
indices i /∈ J are only updated a finite number of times. It remains to be shown that
J ≡ Htop-m .

Suppose that j ∈ Htop-m . It follows that at every iteration k there exists a node
uk such that xuk

j (k) ≥ x̄ j ≥ x̄(m), and so j ∈ Huk
top-m(k). Thus there is a non-zero

probability of element j being updated at every iteration (since there is a non-zero
probability that node uk will participate in the update), and it follows that j ∈ J and
x̃v

j = x̄ j for all v ∈ V and j ∈ Htop-m .
Next, suppose that j /∈ Htop-m and j ∈ J . Since j /∈ Htop-m , we have

x̄ j < x̄(m). As more updates are performed on entry j , the entries xv
j (k) for all

nodes v approach x̄ j . At some time k′, it is necessarily true that maxv xv
j (k

′) <

minv mini∈Htop-m xv
i (k′) ≤ x̄(m). But then j /∈ Hu

top-m(k′) for any node u, and so
entry j will no longer be updated. Thus, the values of entries j /∈ Htop-m converge
to a limit x̃v

j < x̄(m) which may be different at every node. �
Note that the goals stated above can also be generalized to cases where one aims to

reach a consensus on the largest entries in absolute value; i.e., entries with |x̄ j | ≥ τ ,
or sorting the entries according to magnitude, |x̄(1)| ≥ |x̄(2)| ≥ . . . , when defining
which are the m most significant. For example, in the decentralized field estimation
application where transform coefficients can be computed via selective gossip, it
may be more meaningful to compute the m entries (transform coefficients) with
largest magnitude, rather than simply the largest m coefficients. All three versions of
selective gossip can be modified to address this formulation, at the expense of more
cumbersome notation. This extension has been performed for threshold selective
gossip and the results, along with a comparison to the corresponding version of
adaptive threshold selective gossip, are reported in [34]. We expect that a similar
extension for top-m selective gossip should be possible using similar techniques.

10.4.4 Simulation Results

In this section we demonstrate the performance of selective gossip through numerical
experiments. The simulation setup consists of a network of n = 50 nodes which are
distributed uniformly at random in the unit square. The communication topology is
a random geometric graph, i.e., there is an edge between two nodes that are within
a distance r from each other. This distance is set to r = √

2 log n/n so that the
graph is connected with high probability [14]. The dimension of the gossip vectors
is M = 25.

To generate an initial network state, X (0), we first determine the average vector,
x̄. The top panels of Figs. 10.1 and 10.2 show two different vectors x̄ used in our
experiments. The first one has a clear separation between the averages of the first 5

10 Distributed Approximation and Tracking Using Selective Gossip 337

5 10 15 20 25
0

20

40

dimension index, sorted

x̄

5 10 15 20 25
−50

0

50

100

dimension index, sorted

X
(0

)

Fig. 10.1 Top: The average vector x̄ in descending order for initialization 1. Bottom: The initial
state of the network with indices in the same order as x̄ above. Diamonds represent xv

j (0) and those
that belong to the same node are connected with a solid line

5 10 15 20 25
0

5

10

dimension index, sorted

x̄

5 10 15 20 25

−10

0

10

20

dimension index, sorted

X
(0

)

Fig. 10.2 Top: The average vector x̄ in descending order for initialization 2. Bottom: The initial
state of the network with indices in the same order as x̄ above. Diamonds represent xv

j (0) and those
that belong to the same node are connected with a solid line

indices and the rest, making m = 5 a natural choice. The second average vector is
more smoothly distributed across its dimensions.

Motivated by applications in sensor networks, we assume that the node values
represent measurements of natural phenomena. For each index j , we select a point μ j

uniformly at random in the unit square. Then for each node v we generate xv
j (0) such

that the nodes geographically closer to μ j will have higher values and the average
over all nodes is equal to x̄ j . The initial values are distributed such that the highest
m indices at each node are not necessarily the same as Htop-m . The bottom panels

338 D. Üstebay et al.

of Figs. 10.1 and 10.2 illustrate the vectors {xv
j (0)}v∈V and how they are distributed

over the network.
We compare the performance of adaptive threshold selective gossip and top-m

selective gossip with the performance of randomized gossip [3]. Randomized gossip
is guaranteed to converge to x̄, but it is wasteful since the nodes gossip on every entry
of the gossip vector at every iteration. Since randomized gossip computes every entry
of x̄ it is equivalent to running top-m selective gossip with m = M .

The performance is measured with the mean squared error which is defined as

M SE(k) = 1

n

∑

v∈V

∑

j∈Htop-m

(
xv

j (k) − x̄ j
)2

.

Since we are interested in the amount of data that is communicated during the
course of gossip, we plot the error against the number of scalars that are transmitted
instead of the iterations k. Figures 10.3 and 10.4 compare the M SE of the three
algorithms for different values of m. The results show the average performance over
500 different realizations of gossip.

Since randomized gossip updates all entries of gossip vectors at every iteration,
its performance is the same as the performance of selective gossip for m = 25. In
fact, for m = 25 all three methods perform the same, and hence their MSE curves
overlap. For other values, we can see that the performance of top-m selective gossip
is always better than that of adaptive threshold selective gossip.

0 0.5 1 1.5 2

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E

number of scalars transmitted

m = 3
m = 5
m = 7
m = 15
m = 25

Fig. 10.3 A comparison of error performances for initialization given in Fig. 10.1. The algorithms
that are compared are top-m selective gossip (solid) and adaptive threshold selective gossip (dashed)
for varying m values and randomized gossip (corresponds to m = 25 in the plot as it updates all
entries at each iteration). The plot illustrates the performance averaged over 500 realizations of
gossip

10 Distributed Approximation and Tracking Using Selective Gossip 339

0 0.5 1 1.5 2
x 10

4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E

number of scalars transmitted

m = 3
m = 5
m = 7
m = 15
m = 25

Fig. 10.4 A comparison of error performances for initialization given in Fig. 10.2. The algorithms
that are compared are top-m selective gossip (solid) and adaptive threshold selective gossip (dashed)
for varying m values and randomized gossip (corresponds to m = 25 in the plot as it updates all
entries at each iteration). The plot illustrates the performance averaged over 500 realizations of
gossip

The effects of varying m can be seen in Fig. 10.4 for the initialization shown
in Fig. 10.1. The difference between the top-m and adaptive threshold versions of
selective gossip is minimal when m is equal to the number of entries of x̄ that are
significantly higher than the rest. For the initialization of Fig. 10.2, the adaptive
threshold version performs worse for every m. In particular, for low values of m,
top-m selective gossip computes more entries of the average vector with the same
number of transmitted scalars compared to the adaptive threshold version.

To investigate how well one could hope to do using top-m selective gossip, we
also implement a version of top-m selective gossip where every node clairvoyantly
knows Htop-m from the start and only updates entries j ∈ Htop-m at each iteration.
The corresponding results are shown in Figs. 10.5 and 10.6.

10.5 Distributed Tracking Using Selective Gossip

In this section we propose a distributed tracking algorithm that utilizes selective
gossip. Before explaining the details of the algorithm, we provide some background
on the problem.

Tracking is an important task in wireless sensor networks. The goal of tracking is
to estimate the state of a dynamical system sequentially in time using measurements
recorded by the sensors. For example, the state can be the position and the velocity
of a moving target or, in the case of monitoring environmental conditions, it can
represent the soil moisture and temperature. In these scenarios, we do not have direct

340 D. Üstebay et al.

0 0.5 1 1.5 2

x 10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E

number of scalars transmitted

Randomized gossip
Adaptive threshold selective gossip
Top−m selective gossip
Clairvoyant top−m selective gossip

Fig. 10.5 A comparison of performances of randomized gossip, top-m selective gossip, adaptive
threshold selective gossip for the initialization given in Fig. 10.1 and m = 5. The plot also includes
clairvoyant top-m selective gossip which updates only the entries in Htop-m at each iteration

0 0.5 1 1.5 2
x 10

4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

M
S

E

number of scalars transmitted

Randomized gossip

Adaptive threshold selective gossip

Top−m selective gossip

Clairvoyant top−m selective gossip

Fig. 10.6 A comparison of performances of randomized gossip, top-m selective gossip, adaptive
threshold selective gossip for the initialization given in Fig. 10.2 and m = 5. The plot also includes
clairvoyant top-m selective gossip which updates only the entries in Htop-m at each iteration

access to the state of the dynamical system. Instead, the state can only be observed
via the noise-corrupted measurements of the sensors.

The sequential estimation problem arises in many areas including robotics, track-
ing, financial econometrics and computer vision (see [4, 8, 28] and the references
therein). The optimal estimator for this problem when the dynamics and observation
models are linear and the noise distributions are Gaussian is the well-known Kalman
filter. However, many practical scenarios (e.g., the tracking of a maneuvering target)

10 Distributed Approximation and Tracking Using Selective Gossip 341

involve nonlinearities and/or non-Gaussian noise, in which case the Kalman filter
does not apply. Some popular approaches for more general settings are the extended
Kalman filter, the Gaussian sum filter, the unscented Kalman filter, and particle filter
methods (also known as sequential Monte Carlo methods) [28]. Due to their flexi-
bility, ease of implementation, and performance, particle filter methods are widely
accepted as the state-of-the-art approach to sequential estimation for the case of
nonlinear dynamic models and non-Gaussian noise distributions [8, 9].

10.5.1 Sequential Estimation

In this section we review the sequential estimation problem, adopting definitions and
terminology from [4, 5, 9, 28].

The state-space modeling framework describes the state of the system as an unob-
served Markov process denoted by {yt }t∈N. The state evolution is determined by the
initial distribution p(y0) and the transition distribution p(yt |yt−1). The observations
{zt }t∈N+ are assumed to be conditionally independent given the state yt , and they are
of marginal distribution p(zt |yt). Such state-space models are also known as hidden
Markov models.

The goal is to characterize the distribution of the state at the present time using
the information provided by all observations received up to the present time. Let the
sequence of states up to time t be denoted by y0:t and let the sequence of observations
up to time t be denoted by z1:t . We are interested in sequential estimation of the
posterior distribution p(y0:t |z1:t) and the filtering distribution p(yt |z1:t).

The analytical solution is available as a two-stage recursion for both the posterior
and filtering distributions. The stages of the recursion for the filtering distribution
are termed prediction and update steps, and are presented in the following format:

Prediction: p(yt |z1:t−1) =
∫

p(yt |yt−1)p(yt−1|z1:t−1)dyt−1 (10.19)

Update: p(yt |z1:t) = p(zt |yt)p(yt |z1:t−1)

p(zt |z1:t−1)
(10.20)

where, assuming p(yt−1|z1:t−1) is available, the system model is used to predict the
prior distribution at time t and the observation zt is used in the second stage to update
the prior via Bayes’ rule.

10.5.2 Particle Filtering

Particle filters approximate the distributions p(y0:t |z1:t) and p(yt |z1:t) by a set of
random samples termed particles. These particles are candidates for the state and

342 D. Üstebay et al.

their associated weights represent the accuracy of the estimate. Particle filters, also
known as sequential Monte Carlo methods, have been around since the 1960s [15],
but due to their computational complexity they were not widely used. The early
implementations also suffered from particle degeneracy which is due to the increase
in variance of weights over time. After some iterations, many particles have negligible
weights and thus do not contribute to the estimation. This problem was solved in 1993
by Gordon et al. with the introduction of resampling [11].

The sequential importance resampling (SIR) particle filter maintains a weighted
particle approximation {y(i)

1:t , w
(i)
t }M

i=1 to estimate a posterior of interest p(y1:t |z1:t).
The posterior is estimated by the distribution

p̂M (y1:t |z1:t) = 1

M

M∑

i=1

w
(i)
t δ(y1:t − y(i)

1:t), (10.21)

where δ(·) is the Dirac delta function.
Assuming it has a weighted particle approximation at time t − 1, SIR propagates

the particles to time t by sampling from an importance function q, evaluates the
likelihoods of the extended particles, and updates the weights accordingly. A common
approach is to use the prior as the importance function, i.e., q = p(xt |z(i)

t−1). Then
there is an optional resampling step to construct a set of particles with more evenly
distributed weights. Resampling replicates particles with high weights and discards
particles with low weights. In [11] the prior is used as the importance function and
resampling is done at every step. The authors call this implementation the bootstrap
particle filter. Algorithm 1 provides the pseudo-code for the bootstrap particle filter
algorithm.

10.5.3 Particle Filters in Wireless Sensor Networks

One approach to implement particle filters in networks is the leader node frame-
work [38]. One node is selected as leader and all nodes send their measurements to
this node. The leader node runs a centralized particle filter using all the information
from the network. This leader node may change over time to distribute the responsi-
bility of processing among the nodes. Being centralized, the leader node framework
allows only the leader node to be queried and introduces a single point of failure. In
addition, to be able to process the raw measurements of the sensors, the leader node
needs to know the observation models, sensor locations, and calibration parameters
of the sensors. Since only the leader node has access to the output of the particle
filter, it must also make sensor management decisions such as which nodes take
measurements next and with which modality.

Another approach is to distribute the computation. Each node calculates its local
likelihood and the information is fused to form a global posterior. Virtually all such
distributed filters rely on an assumption of conditional independence of the measure-

10 Distributed Approximation and Tracking Using Selective Gossip 343

Algorithm 1 Bootstrap particle filter

// Initialization at time t = 1
1. For each particle i = 1, . . . , M do

• Sample y(i)
1 ∼ q1(·)

• Set w
(i)
1 = p(z1|y(i)

1)p(y(i)
1)

q1(y(i)
1)

2. end

3. Normalize weights w
(i)
1 so that

M∑
i=1

w
(i)
1 = 1

4. Resample
{

y(i)
1 , w

(i)
1

}M

i=1
to obtain

{
y′(i)

1 , 1
M

}M

i=1

5. For times t > 1:
// For each particle i = 1, . . . , M do

• Set y(i)
1:t−1 = y′(i)

1:t−1

• Sample y(i)
t ∼ q(yt |y(i)

t−1)

• Set w
(i)
t = p(zt |y(i)

t)p(y(i)
t |y(i)

t−1)

q(yt |y(i)
t−1)

6. end

7. Normalize weights w
(i)
t so that

M∑
i=1

w
(i)
t = 1

8. Resample
{

y(i)
1:t , w

(i)
t

}M

i=1
to obtain

{
y′(i)

1:t , 1
M

}M

i=1

ments made at each node given the target state. Several of these distributed particle
filters require a spanning tree or Hamiltonian cycle for communication [5, 29]. Con-
struction and maintenance of such routes can be very challenging when nodes are
mobile or wireless conditions are adverse. Hence the algorithms are highly vulnerable
to link and node failures.

Alternatively, gossip algorithms can be used for distributing the computation
[10, 13, 17, 20, 21, 25]. The algorithm in [13] uses the expectation-maximization
(EM) algorithm based on gossip to estimate the parameters of a mixture approxima-
tion to the global posterior, but it imposes significant constraints on the structure of
the likelihood function. In the procedure in [25], each node forms a Gaussian approx-
imation to a local posterior and then a gossip algorithm is used to fuse the means and
covariance matrices to construct a Gaussian approximation of the global posterior.
This algorithm has a much lower communication overhead, but its accuracy dimin-
ishes when posteriors cannot be adequately approximated by a Gaussian. The method
presented in [17] constructs a polynomial approximation of the joint likelihood at
each node using distributed averaging. Hence this algorithm also involves reduced
communication overhead and is restricted to certain types of likelihood functions.

The algorithms in [10, 20] do not form parametric approximations to the poste-
rior; instead they share particles among different nodes. In [20], particles undergo a
random walk through the sensor network, and their weights are successively multi-

344 D. Üstebay et al.

plied by a function of the local likelihood. The function is carefully chosen so that the
particle weights converge to the same values that a centralized particle filter would
calculate. This algorithm has attractive properties, but it only supports importance-
sampling from the prior, which can lead to poor performance of a particle filtering
algorithm [9]. The algorithm in [20] also has no mechanism for eliminating particles
with small weights, leading to wasteful communication.

The algorithm in [10] was designed to allow sampling from a better importance
distribution (one that better matches the posterior). It estimates regions of concen-
trated mass in the global posterior by calculating the intersection of the regions
of concentration in the local posteriors. The importance sampling function is then
constructed to focus on the calculated region, and the gossip procedure is used to cal-
culate the global likelihoods and hence the particle weights. This procedure achieves
high accuracy, but the communication cost (in terms of number of values exchanged)
is high because the weights of all particles must be calculated, even if many are very
small. Also, the computation of regions of concentration requires oversampling of
particles at each node, increasing the local computation complexity.

To improve upon currently available algorithms, we propose using selective gos-
sip in a distributed implementation of the bootstrap particle filter. The next section
describes our problem statement.

10.5.4 Distributed Tracking Problem Statement

We consider a wireless sensor network consisting of n nodes and represent network
connectivity as a graph, G = (V, E). We assume that the graph is connected, and
that although nodes are unaware of the global topology, they do have the knowledge
of their neighbors. The goal is to sequentially estimate a state, denoted by yt at
time index t . The state may represent a target’s kinematics, typically position and
velocity, or a set of environmental conditions, such as temperature, wind speed, or
soil moisture. Let d be the dimension of the state, i.e., yt ∈ R

d . At time t , node v

makes a noisy measurement zv
t . The set of all measurements made by the network at

time t is then zV
t = {zv

t : v ∈ V } and the joint likelihood of these measurements is
given by the function p(zV

t |yt).
Nodes do not have access to the measurement modalities, noise models, or cal-

ibration parameters of other nodes in the network. Hence they cannot process raw
measurements from other nodes. However we assume that the noise distributions
at different nodes are conditionally independent given the state. Therefore the joint
likelihood can be factorized into

p(zV
t |yt) =

∏

v∈V

p(zv
t |yt), (10.22)

where p(zv
t |yt) is the likelihood of the observation made by node v.

10 Distributed Approximation and Tracking Using Selective Gossip 345

Since the global likelihood is factorisable, its computation can be reduced to a
set of local tasks at nodes followed by a final networked aggregation step. We are
interested in a particle filter implementation that takes advantage of this factorization
and achieves decentralized sequential estimation. Because wireless sensor networks
have battery and bandwidth constraints, the distributed implementation needs to be
efficient in terms of the number of values exchanged.

10.5.5 Distributed Particle Filter Using Selective Gossip

We now present our distributed particle filter algorithm which is based on the boot-
strap particle filter. In this algorithm, every node in the network runs a copy of the
same particle filter provided that the following two conditions hold. First, the mea-
surements at nodes are synchronized so that measurements made at the same time
index reflect the same state at all nodes. Second, the random number generators of
the nodes are synchronized (e.g., the nodes use pseudo random generators initialized
with the same seed). This ensures that nodes sample the same values when they
are given the same set of weighted particles as input. These two conditions can be
achieved via a decentralized routine that is executed before the sequential estimation.

The challenge in implementing distributed particle filters lies in the fact that the
global weights depend on the measurements zV

t , but each node v only has access to
its own measurement zv

t . We address this challenge by exploiting the factorization of
the global likelihood and the fact that the computation of global weights is reduced
to local computation tasks which need to be followed by a multiplication procedure.
The local tasks can be performed independently at each node and do not require
knowledge of the modality, noise, or calibration details of other nodes. Instead of
multiplication, we use summation in the logarithm domain, which is suitable for
distributed averaging.

We start by introducing local pre-weights {φv,(i)
t }M

i=1 where φ
v,(i)
t =

n log p(zv
t |y(i)

t). Then the weight of particle i can be expressed using local pre-
weights as

w
(i)
t = exp(1

n

∑
v∈V φ

v,(i)
t)p(y(i)

t |y(i)
t−1)

q(yt |y(i)
t−1)

. (10.23)

Hence the weights can be calculated via averaging of an M−dimensional vector
equation. Once the weights are computed, the bootstrap filter requires a normaliza-
tion and resampling step so that particles are more evenly distributed. In particular,
resampling discards particles with low weights and replicates the particles that have
high weights. Figure 10.7 illustrates the distribution of particle weights for an exam-
ple filter running with M = 2000 particles. Most of the particles have low weights
and since particles with low weights are not to be kept, computing their values via
distributed averaging wastes scarce network resources. Hence we are interested in
computing only the weights that are high instead of computing all weights {w(i)

t }M
i=1.

346 D. Üstebay et al.

0 500 1000 1500 2000
0

0.005

0.01

0.015

0.02

particle index, sorted

w

Fig. 10.7 The distribution of particle weights, sorted in descending order

Of course the challenge is that nodes do not know which weights are higher from
only the local information that they have.

We propose to use selective gossip to focus communication on only the highest
m weights. With the input of local pre-weights, {φv}n

v=1, at n nodes, and the given
integer m, selective gossip identifies the set Htop-m of the particles with the highest
m weights and provides each node with the pre-weight estimates of these particles,
{φ̃v,(Htop-m)}n

v=1.
We then run a max gossip procedure to ensure that all nodes have exactly the same

values, i.e., the same pre-weight vector φ̂(Htop-m). Similar to selective gossip, max gos-
sip is based on the asynchronous time model and the communication model given in
Sect. 10.2. When two nodes u and v perform a max gossip iteration, they identify the
entries to update in the same way as selective gossip does. However, max gossip dif-
fers from selective gossip in that, instead of averaging, the nodes take the maximum
of their previous values; i.e., nodes u and v update entries j ∈ Hu

τ (k −1)∪ Hv
τ (k −1)

by setting
xu

j (k) = xv
j (k) = max

(
xu

j (k − 1), xv
j (k − 1)

)
. (10.24)

When all nodes have the exact same pre-weight values for particles in the set
Htop-m , then they can compute the weights for these particles and proceed with the
normalization and resampling. Since they have synchronized seeds, they will sample
the same particles and reach the same set of weighted particles at the end of each
step of the algorithm. The complete algorithm is described in Algorithm 2.

10.5.6 Numerical Example: Bearings Only Distributed
Tracking of a Maneuvering Target

To evaluate the performance of our method, we study a distributed tracking scenario
where a maneuvering target is monitored by a network of bearings sensors. Such a

10 Distributed Approximation and Tracking Using Selective Gossip 347

Algorithm 2 Distributed Bootstrap Particle Filter with Selective Gossip
// Initialization at time t = 1
1. For each node v = 1, . . . , n do

• For each particle i = 1, . . . , M do
– Sample y(i)

1 ∼ q1(·)
– Set φv,(i) = n log p(zv

1|y(i)
1)

• end

2. end
3. {φ̃v,(Htop-m)}n

v=1 = SelectiveGossip({φv}n
v=1, m)

4. {φ̂(Htop-m)}n
v=1 = MaxGossip({φ̃v,(Htop-m)}n

v=1)
5. For each node v = 1, . . . , n do

• For each particle i ∈ Htop-m do

– Set w
(i)
1 = exp(φ̂(i))p(y(i)

1)

q1(y(i)
1)

• end
• Normalize weights w

(i)
1 so that

∑
i∈Htop-m

w
(i)
1 = 1

• Resample
{

y(i)
1 , w

(i)
1

}

i∈Htop-m
to obtain

{
y′(i)

1 , 1
M

}M

i=1

6. end

// For times t > 1:
7. For each node v = 1, . . . , n do

• For each particle i = 1, . . . , M do
– Set y(i)

1:t−1 = y′(i)
1:t−1

– Sample y(i)
t ∼ q(yt |y(i)

t−1)

– Set φv,(i) = n log p(zv
t |y(i)

t)

• end

8. end
9. {φ̃v,(Htop-m)}n

v=1 = SelectiveGossip({φv}n
v=1,m)

10. {φ̂v,(Htop-m)}n
v=1 = MaxGossip({φ̃v,(Htop-m)}n

v=1)
11. For each node v = 1, . . . , n do

• For each particle i ∈ Htop-m do

– Set w
(i)
t = exp(φ̂(i))p(y(i)

t |y(i)
t−1)

q(yt |y(i)
t−1)

• end
• Normalize weights w

(i)
t so that

∑M
i=1 w

(i)
t = 1

• Resample
{

y(i)
1:t , w

(i)
t

}M

i=1
to obtain

{
y′(i)

1:t , 1
M

}M

i=1

12. end

scenario of tracking based on only angle measurements is generally termed bearings-
only tracking (sometimes also appearing in the literature under the names passive
ranging and target motion analysis [27]).

348 D. Üstebay et al.

We consider a two-dimensional setup where the bearing is defined as the angle
from the vertical axis of Cartesian plane to the line of sight between the observer and
the target. The bearing angle is measured positive in the clockwise direction. The
state of the target at time t is

yt = [yt,1 yt,2 ẏt,1 ẏt,2
]T

, (10.25)

where yt,1 and yt,2 correspond to the position in the X and Y coordinates in the
Cartesian plane and ẏt,1 and ẏt,2 are the velocity values in these coordinates. The

state of the observing sensor node v ∈ V is similarly defined as yv
t = [yv

1 yv
2 0 0

]T .
Note that the velocity values are equal to zero because the sensor nodes are static.
We assume that each node is aware of its state. The measurement made by node v at
time t is denoted by zv

t .
The dynamics of the maneuvering target are modeled using three different motion

models [28]. We assume that at any time the target makes one of the following
motions: (1) constant velocity (CV), (2) clockwise coordinated turn (CT), or (3)
counter-clockwise coordinated turn (CCT). The target moves according to these
three motion models with probabilities of pCV, pCT and, pCCT, respectively. We also
assume that the probability of both coordinated turns are equal, i.e., pCT = pCCT,
and there are no other motions available, that is pCV + pCT + pCCT = 1.

The state at time t + 1 can be expressed as a function of the previous state yt and
process noise vt

yt+1 = F j
t yt + Gvt , (10.26)

where F j
t is the transition matrix corresponding to the motion model j ∈ {1, 2, 3} and

G =

⎡

⎢⎢⎣

T 2/2 0
0 T 2/2
T 0
0 T

⎤

⎥⎥⎦. (10.27)

Here T is the sampling interval and vt ∼ N (0, σa I2×2) with scalar σa . The transition
matrix corresponding to the constant velocity model is

F1
t =

⎡

⎢⎢⎣

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦, (10.28)

whereas the coordinated turn models are governed by

10 Distributed Approximation and Tracking Using Selective Gossip 349

F j
t =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 sin(Ω
(j)
t T)

Ω
(j)
t

− 1−cos(Ω(j)
t T)

Ω
(j)
t

0 1 1−cos(Ω(j)
t T)

Ω
(j)
t

sin(Ω
(j)
t T)

Ω
(j)
t

0 0 cos(Ω(j)
t T) − sin(Ω

(j)
t T)

0 0 sin(Ω
(j)
t T) cos(Ω(j)

t T)

⎤

⎥⎥⎥⎥⎥⎥⎦
, j = 2, 3. (10.29)

The turning rates for clockwise and counter clockwise coordinated turn models are

Ω2
t = a√

(ẏt,1)2 + (ẏt,2)2
, Ω3

t = − a√
(ẏt,1)2 + (ẏt,2)2

, (10.30)

where a > 0 is the maneuver acceleration parameter. Note that the turning rates
are nonlinear functions of the state.

The angle measurements are also a nonlinear function of the state. The measure-
ment taken by node v at time t is modeled as

zv
t = arctan

(yt,1 − yv
t,1

yt,2 − yv
t,2

)
+ wt , (10.31)

where wt ∼ N (0, σ 2
θ) is the measurement noise.

We consider a network of n = 49 sensor nodes, forming a grid topology. The
network spans an area of 1 km2. The initial state of the target is

y1 = [702 m 621 m 10 m/min 80 m/min
]T

. (10.32)

The target follows a trajectory for a duration of tmax = 20 min. The sensor locations
and the trajectory of the target are shown in Fig. 10.8.

The particle filter at each node is initialized with the same distribution centered
at the initial state of the target [28]. In particular, we assume prior knowledge of
the target’s initial range, speed, and course (i.e., the angle with the vertical axis of
the Cartesian plane). The position components of the state are initialized using the
bearing measurement recorded by the closest sensor at time t = 1 and the initial
range r̂1. We assume that r̂1 ∼ N (r1, σ

2
r) where r1 is the initial true target range

and σ 2
r = r1/8. Similarly, the velocity components of the state are initialized using

the initial speed, ŝ1, and initial course, ĉ1. We assume that ŝ1 ∼ N (s1, σ
2
s) where

s1 is the target’s true initial speed and σ 2
s = s1/8. Likewise, ĉ1 ∼ N (c1, σ

2
c) where

c1 is the true initial course and σ 2
c = π/

√
6. Note that this initialization is suitable

for many problems, but there may be cases where target acquisition also needs to be
performed. This is beyond the scope of the current chapter.

We model the target motion using the following parameters: the process noise is
σa = 0.1, the acceleration parameter is a = 30, the probability of constant velocity
model is pCV = 0.6 and the probabilities of turning clockwise or counter-clockwise
are pCT = pCCT = 0.2.

350 D. Üstebay et al.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

Start

End

meters

m
et

er
s

sensors
target

Fig. 10.8 Sensor network and the trajectory of the target. Dashed lines represent wireless commu-
nication links between sensors. The target makes a movement for 20 min and the markers show its
location at the beginning of each minute. The start and end points of the trajectory are also marked

The nodes take measurements corrupted with additive Gaussian noise of standard
deviation σθ = 3◦. We assume that nodes have a limited sensing range, i.e., they
can only provide bearing measurements for targets within their sensing range. The
sensing range of each node is set to 200 m which is slightly longer than the distance
between two horizontally or vertically adjacent nodes. Measurements are made only
by the nodes that have the current estimate of target location within their sensing
range. For the trajectory given in Fig. 10.8, up to 4 sensors take measurements at
each time step. The sampling interval is T = 1min.

The experiment for each algorithm is repeated for 1,000 Monte Carlo trials. Let
l denote the trial index. The position error for each trial l is calculated according to

Et (l) =
√

(ŷt,1 − yt,1)2 + (ŷt,2 − yt,2)2, (10.33)

where ŷt,1 and ŷt,2 are the estimated position of the target. Note that the error Et (l)
is same at each node as the distributed particle filters are synchronized. The trials
that exceed the error value of 250 m at any time t are considered as lost tracks. Then
for the tracks that are not lost, we calculate the root-mean-squared (RMS) position
error

RM SE(l) =
√√√√ 1

tmax

tmax∑

t=1

Et (l)2. (10.34)

10 Distributed Approximation and Tracking Using Selective Gossip 351

Table 10.1 A comparison of the performances of the centralized bootstrap particle filter and the
distributed particle filters for M = 2000 and m = 500

Algorithm Average RMSE Track loss Scalars

Centralized bootstrap 10.28 ± 6.4 0.1 –
Adaptive threshold selective gossip 11.05 ± 9.0 6.3 3.90e + 06
Clairvoyant threshold selective gossip 11.09 ± 7.9 0.5 4.41e + 06
Top-m selective gossip 11.01 ± 7.2 0.8 2.85e + 06
Clairvoyant top-m selective gossip 10.92 ± 8.2 1.0 2.40e + 06
Randomized gossip 11.17 ± 8.8 0.3 9.60e + 06

For each filter the average RMS position error ± standard deviation, percentage of track loss, and
the number of transmitted scalars are presented

Similarly, the communication overhead, which is represented with the number of
scalars transmitted, does not include the trials that resulted in lost tracks.

We compare the performance of the distributed particle filter using the two ver-
sions of selective gossip: adaptive threshold and top-m selective gossip. To illustrate
the decrease in communication cost compared to randomized gossip, we run the
same algorithm with m = N which corresponds to updating each entry at each gos-
sip iteration, that is randomized gossip run in parallel for each particle weight. We
also run a centralized bootstrap particle filter as a performance benchmark.

In addition, we simulate two clairvoyant versions of selective gossip. The first
version, clairvoyant threshold selective gossip, represents the case where all nodes
clairvoyantly know the threshold value corresponding to the largest mth entry of the
average consensus vector. This is obtained by setting τ = x̄(m) during the initializa-
tion of the algorithm. The second version, called clairvoyant top-m selective gossip,
represents the case where each node clairvoyantly knows the indices of the set Htop-m
and only updates these entries. This is obtained by setting Hv

top-m(k) = Htop-m at all
nodes v ∈ V and all iterations k. The distributed filter computations are performed
with n2 selective gossip iterations and 10n max gossip iterations.

For M = 2, 000 particles and m = 500, Table 10.1 shows the average RMS posi-
tion error, the track loss percentage and the number of scalars transmitted for each
particle filter. The top-m version of selective gossip performs very close to the clair-
voyant algorithms and better than the adaptive threshold selective gossip. Adaptive
threshold selective gossip loses a high percentage of tracks while transmitting more
scalars. Top-m selective gossip also provides performance similar to randomized
gossip in terms of both error and track loss while decreasing the communication
overhead more than three times. Figure 10.9 demonstrates sample tracks of the cen-
tralized and distributed particle filters, in particular the tracks with the median RMS
performance for each filter.

Next, we investigate the effect of m on the performance of distributed particle filter
with adaptive threshold and top-m selective gossip. Note that increasing m results
in increased communication overhead. Figure 10.10 shows the percentage of lost
tracks as a function of m. Figure 10.11 shows the RMS position error averaged over
tracks that are not loss. We see that the distributed particle filter with top-m selective

352 D. Üstebay et al.

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

1000

1200

meters

m
et

er
s

Target trajectory
Centralized bootstrap
Adaptive threshold selective gossip
Top−m selective gossip

Fig. 10.9 Target trajectory and sample tracks corresponding to the median RMS position error for
each filter. The unit of distance values on the axes is meter

200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

m

Lo
st

 tr
ac

ks
 (

%
)

Adaptive threshold selective gossip
Top−m selective gossip

Fig. 10.10 Percentage of track loss as a function of m

gossip achieves good performance for m values 500 and more. Taken together, these
results illustrate that the distributed particle filter with top-m selective gossip provides
significantly better performance in terms of track loss and RMS error performance
for non-divergent tracks compared to the adaptive threshold selective gossip.

10 Distributed Approximation and Tracking Using Selective Gossip 353

200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

m

A
ve

ra
ge

 R
M

S
E

 (
m

et
er

s)

Adaptive threshold selective gossip
Top−m selective gossip

Fig. 10.11 Average RMS position error as a function of m. 95 % confidence bars are also depicted
(the end points of these bars correspond to the 5 and 95 % percentiles)

10.6 Conclusions

Many complex signal processing tasks of wireless sensor networks can be formulated
using distributed averaging of vector-valued network data where the vectors are pos-
sibly high-dimensional. Standard gossip algorithms, which are typically described
for averaging scalar quantities, can easily be extended to the vector case by commu-
nicating all entries of the vectors. However, this is inefficient in applications where
only a small percentage of the entries of the average vector is significant. This chapter
presented selective gossip, an algorithm that reduces the dimension of the exchanged
data by adaptively focusing communication resources on the entries which are sig-
nificant for the nodes that are performing the exchange. We proved that focusing on
locally significant data, nodes can asymptotically identify the locations of the signif-
icant entries of the average vector and also reach a consensus on the values of these
entries. To investigate the communication overhead compared to randomized gossip,
we presented a simulation study. The results demonstrate that selective gossip pro-
vides significant communication savings in terms of number of scalars transmitted. In
the second part of the chapter, we proposed a distributed particle filter using selective
gossip. In a target tracking scenario with bearings sensors, we showed that distributed
particle filters implemented using our algorithm provide comparable results to the
centralized bootstrap particle filter while decreasing the communication overhead
compared to using randomized gossip to distribute the filter computations.

Our results demonstrate that selective gossip provides a decentralized and effi-
cient building block for wireless sensor network applications. In particular, the top-m

354 D. Üstebay et al.

version of selective gossip is potentially more interesting as it has convergence guar-
antees. This version also provides better tracking performance in the simulation setup
we considered. Note that we presented selective gossip based on randomized gossip
but it can be implemented with other gossip algorithms such as the synchronous
gossip algorithm and faster pairwise gossip algorithms available in the literature.

The future work involves the investigation of the rates of convergence for selective
gossip. Since the entries updated at each iteration depends on the vectors in the
network at that iteration, the standard methods used for quantifying the convergence
rate of randomized gossip do not apply.

References

1. Bénézit F, Dimakis A, Thiran P, Vetterli M (2007) Gossip along the way: Order-optimal con-
sensus through randomized path averaging. In: Proceedings of the Allerton Conference on
Communication, Control, and Computing, Monticello

2. Bertsekas DP, Tsitsiklis JN (1997) Parallel and distributed computation: Numerical methods.
Athena Scientific, Belmont

3. Boyd S, Ghosh A, Prabhakar B, Shah D (2006) Randomized gossip algorithms. IEEE Trans
Info Theory 52(6):2508–2530

4. Cappé O, Moulines E, Ryden T (2005) Inference in hidden Markov models. Springer-Verlag,
New York

5. Coates M (2004) Distributed particle filters for sensor networks. In: Proceedings of the Inter-
national Symposium on Information Processing in Sensor Networks (IPSN), Berkeley

6. Dimakis A, Sarwate A, Wainwright M (2006) Geographic gossip: Efficient aggregation for
sensor networks. In: Proceedings of the International Conference on Information Processing
in Sensor Networks (IPSN), Nashville

7. Dimakis AG, Kar S, Moura JMF, Rabbat MG, Scaglione A (2010) Gossip algorithms for
distributed signal processing. Proc IEEE 98(11):1847–1864

8. Doucet A, de Freitas N, Gordon N (eds) (2001) Sequential Monte Carlo methods in practice.
Springer-Verlag, New York

9. Doucet A, Johansen M (2010) Oxford handbook of nonlinear filtering, chapter A tutorial on
particle filtering and smoothing: fifteen years later. Oxford University Press, to appear

10. Farahmand S, Roumeliotis SI, Giannakis GB (2011) Set-membership constrained particle filter:
Distributed adaptation for sensor networks. IEEE Trans Signal Process 59(9):4122–4138

11. Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proc-F 140(2):107–113

12. Grimmett GR, Stirzaker DR (2001) Probability and random processes. Oxford University Press,
New York

13. Gu D (2007) Distributed particle filter for target tracking. In: Proceedings IEEE International
Conference on Robotics and Automation, Rome

14. Gupta P, Kumar PR (2000) The capacity of wireless networks. IEEE Trans Info Theory
46(2):388–404

15. Handschin JE, Mayne DQ (1969) Monte Carlo techniques to estimate the conditional expec-
tation in multi-stage non-linear filtering. Int J Control 9(5):547–559

16. Hendrickx JM, Tsitsiklis JN (2011) Convergence of type-symmetric and cut-balanced consen-
sus seeking systems. Submitted; available at http://arxiv.org/abs/1102.2361

17. Hlinka O, Sluciak O, Hlawatsch F, Djurić PM, Rupp M (2010) Likelihood consensus: Principles
and application to distributed particle filtering. In: The forty fourth Asilomar Conference on
Signals, Systems and Computers (ASILOMAR)

http://arxiv.org/abs/1102.2361

10 Distributed Approximation and Tracking Using Selective Gossip 355

18. Jadbabaie A, Lin J, Morse AS (2003) Coordination of groups of mobile autonomous agents
using nearest neighbor rules. IEEE Trans Autom Control 48(6):988–1001

19. Kokiopoulou E, Frossard P (2009) Polynomial filtering for fast convergence in distributed
consensus. IEEE Trans Signal Process 57(1):342–354

20. Lee SH, West M (2009) Markov chain distributed particle filters (MCDPF). In: Proceedings of
the IEEE Conference on Decision and Control, Shanghai

21. Mohammadi A, Asif A (2011) Consensus-based distributed unscented particle filter.In: Pro-
ceedings of the IEEE Statistical Signal Processing Workshop (SSP), 237–240

22. Nedić A, Ozdaglar A (2009) Distributed subgradient methods for multi-agent optimization.
IEEE Trans Autom Control 54(1):48–61

23. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-
agent systems. Proc IEEE 95(1):215–233

24. Oreshkin BN, Coates MJ, Rabbat MG (2010) Optimization and analysis of distributed averaging
with short node memory. IEEE Trans Signal Process 58(5):2850–2865

25. Oreshkin BN, Coates MJ (2010) Asynchronous distributed particle filter via decentralized
evaluation of Gaussian products. In: Proceedings of the ISIF International Conference on
Information Fusion, Edinburgh

26. Rabbat M, Nowak R, Bucklew J (2005) Robust decentralized source localization via averag-
ing In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP). Philadelphia

27. Ristic B, Arulampalam MS (2003) Tracking a manoeuvring target using angle-only measure-
ments: algorithms and performance. Signal Process 83(6):1223–1238

28. Ristic B, Arulampalam S, Gordon N (2004) Beyond the Kalman filter: particle filters for
tracking applications. Artech House, Norwood, MA, USA

29. Sheng X, Hu Y-H, Ramanathan P (2005) Distributed particle filter with GMM approximation
for multiple targets localization and tracking in wireless sensor network. In: Proceedings of the
International Symposium on Information Processing in Sensor Networks (IPSN), Los Angeles

30. Sundhar Ram S, Veeravalli VV, Nedić A (2010) Distributed and recursive parameter estimation
in parametrized linear state-space models. IEEE Trans Autom Control 55(2):488–492

31. Touri B (2011) Product of random stochastic matrices and distributed averaging. PhD thesis,
Univeristy of Illinois at Urbana-Champaign

32. Tsitsiklis JN (1984) Problems in decentralized decision making and computation. PhD Thesis,
MIT

33. Tsitsiklis JN, Bertsekas DP, Athans M (1986) Distributed asynchronous deterministic and
stochastic gradient optimization algorithms. IEEE Trans Autom Control 31(9):803–812

34. Üstebay D, Castro R, Rabbat M (2011) Efficient decentralized approximation via selective
gossip. IEEE J Sel Top Sign Proc 5(4):805–816

35. Üstebay D, Oreshkin B, Coates M, Rabbat M (2008) Rates of convergence for greedy gossip
with eavesdropping. In: Proceedings of the Allerton Conference on Communication, Control,
and Computing. Monticello, pp 367–374

36. Üstebay D, Rabbat M Efficiently reaching consensus on the largest entries of a vector. In: IEEE
Conference on Decision and Control (CDC) ’12, Maui, HI, USA

37. Xiao L, Boyd S (2004) Fast linear iterations for distributed averaging. Syst Control Lett
53(1):65–78

38. Zhao F, Shin J, Reich J (2002) Information-driven dynamic sensor collaboration. IEEE Signal
Process Mag 19(2):61–72

	10 Distributed Approximation and Tracking Using Selective Gossip
	10.1 Introduction
	10.2 Gossip Algorithms
	10.3 Gossiping on Vectors
	10.4 Selective Gossip
	10.4.1 Threshold Selective Gossip
	10.4.2 Adaptive Threshold Selective Gossip
	10.4.3 Top-m Selective Gossip
	10.4.4 Simulation Results

	10.5 Distributed Tracking Using Selective Gossip
	10.5.1 Sequential Estimation
	10.5.2 Particle Filtering
	10.5.3 Particle Filters in Wireless Sensor Networks
	10.5.4 Distributed Tracking Problem Statement
	10.5.5 Distributed Particle Filter Using Selective Gossip
	10.5.6 Numerical Example: Bearings Only Distributed Tracking of a Maneuvering Target

	10.6 Conclusions
	References

