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Hybrid Linear/Quadratic Time—Frequency Attributes

Richard G. BaraniukSenior Member, IEEBEMark CoatesMember, IEEEand Philippe Steeghs

Abstract—We present an efficient method for robustly There are instances, however, when peak-based estimates
calculating time—frequency attributes of a signal, including are unsatisfactory. When multiple components are present in
instantaneous mean frequency, bandwidth, kurtosis, and other a signal, it is more desirable to calculate the moment-based

moments. Most current attribute estimation techniques involve IF estimate. Such is th in th o vsi ted
a costly intermediate step of computing a (highly oversampled) . estimate. such is the case in the seismic analysis presente

two-dimensonal (2-D) quadratic time—frequency representa- N Fig. 1 and Section V. We then need a high-resolution,
tion (TFR), which is then collapsed to the one-dimensonal (1-D) signal-adaptive TFR to make the IF estimate useful. Unfor-
attribute. Using the principles of hybrid linear/quadratic time—fre-  tunately, generating such a TFR is computationally wasteful,
quency analysis (time—frequency distribution series), we propose gjnce we merely collapse the 2-D TFR to a 1-D attribute.
computing attributes as nonlinear combinations of the (slightly In thi t tati llv efficient method
oversampled) linear Gabor coefficients of the signal. The method n ',S paper, we present a compu atonaily e |C|e_n metno
is both computationally efficient and accurate; it performs as well for estimating moment-based time—frequency attributes that

as the best techniques based on adaptive TFRs. To illustrate, weavoids the calculation of a quadratic TFR altogether. Our

calculate an attribute of a seismic cross section. approach exploits théme—frequency distribution serigon-
Index Terms—Gabor transform, instantaneous frequency, Cept developed by Qiaet al. [8]-[10] and requires only a
seismic signal analysis, time—frequency analysis. sparse linear signal decomposition. We will present a general

procedure for calculating a range of attributes but focus on IF
and instantaneous bandwidth estimation for concreteness.
Section |l reviews time—frequency distribution series, and
IME-FREQUENCY signal attributes have provided inSection Il examines IF and its estimation. Section IV presents
sights in a number of fields, from seismic analysis to nethe new estimation technique for IF and instantaneous band-
rophysiology [1]-[3]. Attributes applied to date include instanwidth, and Section V discusses its application to seismic data
taneous frequency, bandwidth, and kurtosis (normalized fourtinalysis. We make some concluding remarks in Section VI.
order instantaneous frequency moment) [4]. The instantaneous
frequency (IF) of a real monocomponent signal is defined asthe || HveriD TIME—FREQUENCY REPRESENTATIONS
rate of change of the phase of the corresponding analytic signal _
at a given time. This is equivalent to the first moment in fre- Qian et al. [8], [9] proposed a method for time—frequency

quency of the Wigner distribution (WD) of the signal normal@nalysis that u.tiIizes both a linear TFR (the Gabpr transform)
ized by its instantaneous energy. Unfortunately, when we eld @ quadratic TFR (the WD) to generate a signal adaptive
mate the IF either directly from the phase of the analytic sign@Pnlinear TFR. The Gabor transform decomposes a sig(ial

or from the WD, we generate estimates with high variance, pa-terms of logons [11] or time—frequency atoms

ticularly in noisy environments [5]. Estimates based on the first

I. INTRODUCTION

moment in frequency of other time—frequency representations x(t) = Z Cm,nBm,n(t), (m,n) € ? 1)
(TFRs)—the spectrogram, for instance—reduce the variance at (m,n)
the expense of some bias. . oo .

The peak of the WD or another suitable TFR offers another at- Cm,n = (T, P n) = / o(t) iy, (2) dt. 2
tractive alternative for IF estimation. The variance of an estimate -

based on TFR peaks is reduced compared with moment-basgd synthesis atoms are generated by time—frequency shifting a
methods, especially in low SNR environments. In particular, iBrototype atony(t) by discrete step sizék and F
erative methods involving repeated calculation of TFRs have

proven extremely effective [5]-[7]. b n(t) 1= pi2mmEt g(t — nT). 3)
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Fig. 1. Instantaneous frequency (IF) estimation of a seismic recording. (a) Seismic data. (b) Adaptive time-frequency representation (THR) §&Rjnic
trace. (c) Normalized instantaneous frequency estimates. Thick line is the hybrid IF estimate (Manhattan distance dhreshottiin line the adaptive TFR
estimate, and dashed line the spectogram estimate. The hybrid IF estimate generated using no cross-terms (not shown) is very similar todimeestiecttegr

The cross-WD between two signal&) andy(¢) is defined as  time—frequency behavior without capturing many details. The
- second summation involves all of the cross-WDs between
Way(t, f) = / w(t+7/2)y (t — 7/2)e ¥/ gr. (5) differentatoms in the Gabor decomposition. The cross-WDs in
—oco this summation may be positive or negative.
Inserting (1) in (4) and using (5), the auto-WD can be decom_The key observation is this [8;, [9/]. The cross-WDs bet_vveen
posed as closely spacedh, n) closeto(m’, n')] atoms generally refln_e
the TFR of the signal, whereas the cross-WDs between distant
W, f) = Z lem | W (£, f) [(m, n) far from (m_’, n')] atoms generate global interference
’ terms that hamper interpretation.
Qian et al. generate a time—frequency distribution se-
+ Z Cmy ot W s 6,0 0 (E f). ries—which we term ahybrid TFR [10]—by retaining all
(m, n)#(m, n') of the auto-WD terms in the first summation of (6) but
(6) only those cross-WDs arising from closely spaced atoms.
Due to the elliptical or circular symmetry of the Gaussian
This expression identifies two distinct contributions to thatom, the Euclidean distance metric is the most natural mea-
WD. The first summation in (6) corresponds to a linear susure of atom separation; tHe metric (Manhattan distance)
of the (strictly positive) auto-WDs of the time—frequencyl[(m, n), (m/, »')] := |m — m/| + |n — n/| is a good ap-
atoms; it provides an approximate description of the signafsoximation with a lower computational complexity. Given a

(m,n)
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threshold distancé, second summation terms are included in The bandwidth of a signal at a particular moment in time
the final representation only if the distance between the intémstantaneous bandwidth [14]) is closely related to the second-
acting atoms is less than The hybrid method thus produces arder frequency moment of a THR of the signal
6-parameterized class of TFRs

/_ PPt ) df

WO, )= Y lemnl W, (¢ ) Bh(t) = =% —o(®)?  (10)
(m,n) / P, (t, f) df
+ Z C"l:"c:n’,n’W¢m,n,¢m/1n/ (t, f) (7) ) e ) -
0<d](m, n), (m’,n")]<s As the resolution of the TFR improves, its second-order moment

provides a better indication of instantaneous bandwidth. How-
The parameter controls the tradeoff between compoever, interference terms and noise make bandwidth estimates
nent resolution and interference. By a suitable selectiG@ased on the high-resolution WD unstable.
of 6, high-resolution TFRs are generated; moreover, they
can be determined at a much lower computational expeng¥. HyYBRID INSTANTANEOUS FREQUENCY AND BANDWIDTH
than signal-adaptive quadratic TFRs [13] offering similar CALCULATION

performance. The auto- and cross-WDs in (7) are signakin- . section, we detail how the hybrid TFR approach of

dependent and, hence, can be analytically computed and . . )
stored in memory. The computational demands of the GaE&?Ctlon Il can be adopted to robustly estimate the IF and in-

transform are also much less than those of quadratic TFRs. antaneous bandwidth. Our approach requires the much smaller

replacing the Gabor decomposition with a wavelet transforn(%c}/mpm"’ltlon"’lI expense_ofdetermmmg alinear, mildly oversam-
fed Gabor representation of the signal.

we can generate high-resolution, low-interference t'me_scgeSubstituting the Gabor expansion of the signal (1), we can
representations [10].

rewrite the numerator of (9) as

I1l. | NTANTANEOUS FREQUENCY AND INSTANTANEOUS Z et /OO W, (¢, f)df (12)
m, n / / m, N
BANDWIDTH e ’

(m,n,m’,n’)
The instantaneous amplitudé&) and IFu(¢) of a real-valued
signalz(t) are defined in terms of the analytic sigral¢) [12],
[14], [15] as

When we use a Gaussian of varianéefor the Gabor synthesis
atom, closed-form expressions can be developed for the inte-
grals in the summatioh.Applying the same expansion to the
denominator, we can express (9) as

aft) = |z(t)]
1 d *
U(t) . — arg Zx(t) . (8) Z Cm, ncn,/7 n’ Vrn, n,m’,n’ (t)

= 2_ dt m,n,m’ ., n’
i ot) = T (12)
For signals observed in noise, one means of estimating the IF of Z Cm, nCrs A, n,mr, e (1)
a discrete signal is immediately clear. We can apply (8) directly m, n,m/,n!
to the observed signal; we call this themplex-trace IF esti- \yhere
mate Unfortunately, such an estimate is extremely susceptible 1
to noise. A, n e (8) 1= == exp [—j2n(n — n')Ft]
More robust estimates can be formed by considering the re- 2m ) P
lationship between the WD and the IF [12], [15]: X exp [_ (t = mT) +2(t - m'T) }
20
> 13)
| twae nar
ot) = 272 : (9 and
/ Wa(t, f)df —jlm —m"YT (n+n")F
—0oo Vrn n,m’ n’(t) = -
T dro? 2
Direct utilization of this formula again leads to high-vari- X A, n, ms, n (). (14)

ance estimates in noisy environments. However, bias can be o ) )

traded against variance by replacing the WD with a smooth_er'f all (m, n, ?”" n') comblnatl_ons are mcIude(_j n th? es-
TFR—the spectrogram, for instance. To obtain a good trade8ffate, then this formula is equivalent to the (high-variance)
and robustly track the IFs of signals whose time—frequen¥yD-based estimate. By adopting the hybrid TFR approach [re-
behavior is unknown and variable, we generally have to caldi@ining only a subset of the terms whn, n) # (m', n')], we

late a computationally intensive adaptive TFR [13]. Whichev&aD reduce the variance with the introduction of some bias. The
TFR is chosen, considerable computational effort is wast@grformance is of a level similar to that obtained with adaptive
since we generate a highly redundant description of the 2-gyadratic TFRs; however, the computational expense is much

time—frequenqy nature of the signal merely to collapse back tag;jy;jar analytic expressions are possible for other windows, including, for
the 1-D quant|tyu(t). example, square, triangle, and raised cosine windows.
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reduced since thd,,, ., ../ » (t) @ndV,, ., .., are signal-in- 0.4
dependent and can be precomputed and stored in memory. 1
primary cost of the algorithm is then that of computing thego-3
(barely oversampled) Gabor transform. Loo

The second-order moment of the hybrid TFR provides a sin
ilarly computationally efficient estimate of the instantaneou
bandwidth

0.1

> ConCh Do, (2) 04
m,n, m’,n’
BQ(t) — . — UQ(t) (15) | < 7 N , NP X\
Do G A (1) 03 -
m,n,m’ ,n’ 302
with '
1 t—mI)? + (t—m'T)? : - -
Do, (1) 1= 5 exp ! i ) o1 256 512 768 1024
T (4m)? 202 Sample no.
X €xp [—‘7'27r(n - ”/)Ft] Fig. 2. Comparison between instantaneous bandwidth measures computed
(T(m _ m’))2 using the hybrid TFR approach and the spectrogram. White Gaussian noise
[— e E— was passed through a time-varying filter with (ideally) the frequency response
g in the top panel to generate 100 random realizations. The passband is indicated
2+ 475 TF(m —m)(n+n') by the dark region. The lines in the bottom panel correspond to the averaged
3 estimated IFt the averaged estimated bandwidti(t) + B(t)) calculated
g using the hybrid approach with Manhattan distance threshotd 2 (solid)

and the spectrogram moments (dashed).

+ 4% (F(n + n/))Q} . (16)

.F'g' 2 shows a comparison between the instantaneous b resents a recording of the pressure as a function of time at
W'_dth measures computed using the spectrogram a_nd the corresponding surface location. The line plot to the left of
brid TFR approach. Qne hl_Jndred ra.”dOT“ bandpa_ss S'gnals_\'\fﬁreeintensity image is the amplitude of the first column [like
generated by applying a time-varying filter to white Gaussw'gi _1(a)]. When seismic waves propagate through the subsur-
noise rgalizatipns. Fig. 2(a) depic.ts the ideal frequengy respops e, a part of their energy is reflected back to the surface at
qf the filter. Fig. 2(b) plots two fines for each technlqut_a; th%COUStiC impedance contrasts. The strength of this impedance
I|_nes show the averages oft) £ B(1) over th‘? 100 realiza- contrast is called theeflectivity. The seismic cross section rep-
tions. Clea_rly, the hyb ”d. T.FR bandvy|dth estimate tracks tl}%sents this (bandlimited) reflectivity of the subsurface.
true bandwidth characteristics of the signal far more closelythanA change in acoustic impedance indicates a change in rock
the spectrogram-pased.measure. . properties. As a result, it is possible to make an educated guess

If the hybnd. esUmatg |f.formed without cross-terms, then thgf the geological structure of the subsurface on the basis of the
p_erforman(?e IS very similar to t_he spectrogram. Wwe can pr eflectivity image. If the seismic wave velocity is known, then
vide no strict guidelines regarding the choice of the distan e vertical time axis can be converted to depth. In the cross
threshold. In our experiments, we have observed thatManhatg%r&tion of Fig. 3(a), a 1-s two-way travel time of the seismic
d_istance thresholcfsbetween 1 and_3 provide good results. Se\tﬁ/aves corresponds’ to a depth of approximately 1 km. The re-
tlng b = 1.results In more ;moothlng and, hence, more rObL\%ctivity image is obtained from the raw data through a great
estlm_ates Invery noisy en_vwonment_s. The chéice3 r_ed_uces number of data processing steps. The most important of these
the b|as_ of est|ma_tes anq is appropriate when there s little NOL3% source deconvolution, noise suppression, velocity correc-
and f”‘s'”g'e_ dominant S|gnal_component. . . tion, and a final imaging step (migration) [16].

.It IS pos§|ble 0 extgnd this method to estimate _S|gnal at'ln seismic exploration, seismic cross sections are scrutinized
tnbutes.denvgd from higher order mo'f”e”ts- In particular, . DYy _jnterpreters who search for features that indicate hydro-
can est'mate ms_tantaneous skew and instantaneous kurt05|% ‘} on reservoirs. While previously intepreters dealt with large
in a similar fashion, but the third- and fourth-order terms ge Jots of 2-D cross sections, they now work on computers with
erate more complicated expressions that we do not provide h ® volumes comprising n,1any gigabytes of data. Currently,

there is a great need for methods that can aid in rapidly
V. APPLICATION TO SEISMIC DATA ANALYSIS sifting out those features that are relevant for the geological

As an example of the hybrid IF estimation procedure, wiaterpretation of the data.
now consider an application in seismic data analysis. SeismicSeismic attributesiid the interpretation of seismic data by
imagery of the earth’s subsurface is critical to all aspects efucidating its salient signal characteristics. Traditionally, com-
the oil and gas exploration process—from the location of relex-trace analysis via Hilbert transform [using (8)] has been
serves to their appraisal and subsequent monitoring. A seismged for attribute extraction [17]. The standard seismic attributes
image of the earth is obtained by probing the subsurface wihe instantaneous amplitude, phase, and frequency. The goal of
acoustic waves. An example of a seismic cross section is shosgismo-stratigraphic interpretatiois to infer the sequence of

in Fig. 3(a). The horizontal axis gives the spatial location at thgeological events that resulted in the reflection pattern observed

surface, and the vertical axis is time. Each column of the image
Yﬁe’
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Fig. 3. Example of 2-D seismic analysis. (a) The 2-D seismic cross section. Trace to the left shows the amplitude of the first column of the crfidesection
Fig. 1(a)]. (b) Complex-trace IF estimates (8) of each column of the cross section displayed as an intensity map (black corresponds to high &medjudritge

to low frequencies). Trace to the left shows the complex-trace IF estimate of first column. (c) Intensity map of hybrid TFR IF estimates (12) ofrth@ttiia

cross section (Manhattan distance threshiotd 2). Trace to the left shows the hybrid TFR IF estimate of first column.

in a seismic image [18]. In the ideal case, the seismic expressawglineating seismic facies units and in quantifying seismic facies
of a rock formation can be directly related to the circumstancdsscriptions. For instance, reaction continuity can be quantified
under which the rock was formed. A seismic reflection pattetyy measuring the degree of lateral change in reflectivity and
with a distinct set of image characteristics is callesegsmic IF.
facies unit For instance, rapid sedimentation in a high-energy Another application of seismic attribute analysis is the predic-
environment (rivers or channels, for example) often producten of physical rock properties such as porosity or permeability
strong lateral changes in reflection characteristics, whereas skoam seismic data. Ground truth is provided by measurement in
deep sea sedimentation usually results in seismic facies that catborehole. Lateral prediction away from the well is then ob-
sist of a laterally continuous reaction pattern. tained by correlating the physical parameter with the seismic
The first step in a seismic interpretation is the delineaticattributes. In this application, the seismic attributes provide the
and description of the different seismic facies units preseimput for a multivariate statistical analysis (using a neural net-
The role of seismic attributes in seismic stratigraphy is to aid imork, for example).
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In both the visual interpretation and the statistical pattefor seismic data analysis, where vast volumes of data require
analysis applications, robust attribute extraction methods argmbcessing, anditis critical that efficient algorithms be used.

crucial importance. IF brings forward those characteristics from
the image that in the standard image can be obscured by the large
dynamic range in amplitude. Subtle changes in the spacing ofy
reflectors are not neccesarily visible in the standard amplitude
cross section [see Fig. 3(a), for example] but will be brought
forward in an IF display. [2]
IF estimatesbased on TFR peaks do notexhibit sufficientconti-
nuity in space to aid interpretation of the data. IF estimates base%}
on the moments of the TFR provide a much more informative
portrayal of the data [3], [19]. Fig. 1 compares the IF estimates
from three different TFRs on a seismic time signal. The fast hy-[4]
brid IF estimate is very close to that obtained using the much morg,
computationally expensive AOK TFR [3], [19]. The time resolu-
tion of the spectrogram IF estimate is significantly poorer than
the other two methods. Moreover, a substantial smoothing is nol®
ticeable where rapid changes occurt(at 0.4 s, for example).
Accurate localization in time of these rapid changes is important[7]
in seismic interpretation, as they may indicate important seismic
facies sequence boundaries, which in turn may represent an im-
portant change in geological environment. [8]
Fig. 3(b) and (c) show complex-trace IF (8) and hybrid IF es-
timates (12) of the columns of the seismic section of Fig. 3(a). g]
To the left of the images, we plot the amplitude of the left-most
column. The wild fluctuations indicate that the complex-trace
IF estimate is very noise sensitive. The sharp peaks in the con[11-0]
plex-trace IF estimate obscure the frequency trends of interest
for a seismic facies analysis. Closely spaced seismic reflectofs!]
manifest themselves as bands of relatively high IF. The ban 2]
of high-frequency reflections at = 0.4 s clearly stands out
in the hybrid IF section, whereas it is difficult to localize in [13]
the amplitude display of Fig. 3(a). Indeed, the abrupt change
att = 0.4 s coincides with an important geological boundary.[14]
Lateral changes in reflector spacing and frequency are also more
easily detected in the IF cross section than in the amplitude datﬁ's]
For example, the reaction pattern below 0.4 s exhibits less
lateral continuity than the upper part of the section, indicating &16]
different depositional environment. 17
Hybrid IF estimation is a computationally very efficient
method for seismic attribute extraction. For visual inter-[18]
pretation, the hybrid IF provides a greatly enhanced image
as compared with the complex-trace IF or the spectrograrp )
average. The estimation algorithm potentiates the TFR-based
interpretation of large seismic data volumes, which up to now
has been severely inhibited by the large computational effort
involved in calculating TFRs.

VI. CONCLUSIONS

We have presented a robust and efficient method for es
mating time—frequency attributes of a signal. Using hybri
linear/quadratic time—frequency concepts avoids the expen
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