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Hybrid Linear/Quadratic Time–Frequency Attributes
Richard G. Baraniuk, Senior Member, IEEE, Mark Coates, Member, IEEE, and Philippe Steeghs

Abstract—We present an efficient method for robustly
calculating time–frequency attributes of a signal, including
instantaneous mean frequency, bandwidth, kurtosis, and other
moments. Most current attribute estimation techniques involve
a costly intermediate step of computing a (highly oversampled)
two-dimensonal (2-D) quadratic time–frequency representa-
tion (TFR), which is then collapsed to the one-dimensonal (1-D)
attribute. Using the principles of hybrid linear/quadratic time–fre-
quency analysis (time–frequency distribution series), we propose
computing attributes as nonlinear combinations of the (slightly
oversampled) linear Gabor coefficients of the signal. The method
is both computationally efficient and accurate; it performs as well
as the best techniques based on adaptive TFRs. To illustrate, we
calculate an attribute of a seismic cross section.

Index Terms—Gabor transform, instantaneous frequency,
seismic signal analysis, time–frequency analysis.

I. INTRODUCTION

T IME–FREQUENCY signal attributes have provided in-
sights in a number of fields, from seismic analysis to neu-

rophysiology [1]–[3]. Attributes applied to date include instan-
taneous frequency, bandwidth, and kurtosis (normalized fourth-
order instantaneous frequency moment) [4]. The instantaneous
frequency (IF) of a real monocomponent signal is defined as the
rate of change of the phase of the corresponding analytic signal
at a given time. This is equivalent to the first moment in fre-
quency of the Wigner distribution (WD) of the signal normal-
ized by its instantaneous energy. Unfortunately, when we esti-
mate the IF either directly from the phase of the analytic signal
or from the WD, we generate estimates with high variance, par-
ticularly in noisy environments [5]. Estimates based on the first
moment in frequency of other time–frequency representations
(TFRs)—the spectrogram, for instance—reduce the variance at
the expense of some bias.

The peak of the WD or another suitable TFR offers another at-
tractive alternative for IF estimation. The variance of an estimate
based on TFR peaks is reduced compared with moment-based
methods, especially in low SNR environments. In particular, it-
erative methods involving repeated calculation of TFRs have
proven extremely effective [5]–[7].
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There are instances, however, when peak-based estimates
are unsatisfactory. When multiple components are present in
a signal, it is more desirable to calculate the moment-based
IF estimate. Such is the case in the seismic analysis presented
in Fig. 1 and Section V. We then need a high-resolution,
signal-adaptive TFR to make the IF estimate useful. Unfor-
tunately, generating such a TFR is computationally wasteful,
since we merely collapse the 2-D TFR to a 1-D attribute.

In this paper, we present a computationally efficient method
for estimating moment-based time–frequency attributes that
avoids the calculation of a quadratic TFR altogether. Our
approach exploits thetime–frequency distribution seriescon-
cept developed by Qianet al. [8]–[10] and requires only a
sparse linear signal decomposition. We will present a general
procedure for calculating a range of attributes but focus on IF
and instantaneous bandwidth estimation for concreteness.

Section II reviews time–frequency distribution series, and
Section III examines IF and its estimation. Section IV presents
the new estimation technique for IF and instantaneous band-
width, and Section V discusses its application to seismic data
analysis. We make some concluding remarks in Section VI.

II. HYBRID TIME–FREQUENCYREPRESENTATIONS

Qian et al. [8], [9] proposed a method for time–frequency
analysis that utilizes both a linear TFR (the Gabor transform)
and a quadratic TFR (the WD) to generate a signal adaptive
nonlinear TFR. The Gabor transform decomposes a signal
in terms of logons [11] or time–frequency atoms

(1)

(2)

The synthesis atoms are generated by time–frequency shifting a
prototype atom by discrete step sizes and

(3)

The are dual atoms derived from[8], [11]. A natural choice
for the prototype atom is the Gaussian, since it has optimal
concentration and localization in time–frequency and a strictly
positive WD [12]. In order for (1) to be a stable representa-
tion with Gaussian atoms requires a mild oversampling in the
time–frequency plane.

The auto-WD of a signal is defined as

(4)
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Fig. 1. Instantaneous frequency (IF) estimation of a seismic recording. (a) Seismic data. (b) Adaptive time-frequency representation (TFR) [12] ofthe seismic
trace. (c) Normalized instantaneous frequency estimates. Thick line is the hybrid IF estimate (Manhattan distance threshold� = 2), thin line the adaptive TFR
estimate, and dashed line the spectogram estimate. The hybrid IF estimate generated using no cross-terms (not shown) is very similar to the spectrogram estimate.

The cross-WD between two signals and is defined as

(5)

Inserting (1) in (4) and using (5), the auto-WD can be decom-
posed as

(6)

This expression identifies two distinct contributions to the
WD. The first summation in (6) corresponds to a linear sum
of the (strictly positive) auto-WDs of the time–frequency
atoms; it provides an approximate description of the signal’s

time–frequency behavior without capturing many details. The
second summation involves all of the cross-WDs between
different atoms in the Gabor decomposition. The cross-WDs in
this summation may be positive or negative.

The key observation is this [8], [9]: The cross-WDs between
closely spaced [ close to ] atoms generally refine
the TFR of the signal, whereas the cross-WDs between distant
[ far from ] atoms generate global interference
terms that hamper interpretation.

Qian et al. generate a time–frequency distribution se-
ries—which we term ahybrid TFR [10]—by retaining all
of the auto-WD terms in the first summation of (6) but
only those cross-WDs arising from closely spaced atoms.
Due to the elliptical or circular symmetry of the Gaussian
atom, the Euclidean distance metric is the most natural mea-
sure of atom separation; the metric (Manhattan distance)

is a good ap-
proximation with a lower computational complexity. Given a
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threshold distance, second summation terms are included in
the final representation only if the distance between the inter-
acting atoms is less than. The hybrid method thus produces a
-parameterized class of TFRs

(7)

The parameter controls the tradeoff between compo-
nent resolution and interference. By a suitable selection
of , high-resolution TFRs are generated; moreover, they
can be determined at a much lower computational expense
than signal-adaptive quadratic TFRs [13] offering similar
performance. The auto- and cross-WDs in (7) are signal-in-
dependent and, hence, can be analytically computed and
stored in memory. The computational demands of the Gabor
transform are also much less than those of quadratic TFRs. By
replacing the Gabor decomposition with a wavelet transform,
we can generate high-resolution, low-interference time-scale
representations [10].

III. I NTANTANEOUS FREQUENCY AND INSTANTANEOUS

BANDWIDTH

The instantaneous amplitude and IF of a real-valued
signal are defined in terms of the analytic signal [12],
[14], [15] as

(8)

For signals observed in noise, one means of estimating the IF of
a discrete signal is immediately clear. We can apply (8) directly
to the observed signal; we call this thecomplex-trace IF esti-
mate. Unfortunately, such an estimate is extremely susceptible
to noise.

More robust estimates can be formed by considering the re-
lationship between the WD and the IF [12], [15]:

(9)

Direct utilization of this formula again leads to high-vari-
ance estimates in noisy environments. However, bias can be
traded against variance by replacing the WD with a smoother
TFR—the spectrogram, for instance. To obtain a good tradeoff
and robustly track the IFs of signals whose time–frequency
behavior is unknown and variable, we generally have to calcu-
late a computationally intensive adaptive TFR [13]. Whichever
TFR is chosen, considerable computational effort is wasted
since we generate a highly redundant description of the 2-D,
time–frequency nature of the signal merely to collapse back to
the 1-D quantity .

The bandwidth of a signal at a particular moment in time
(instantaneous bandwidth [14]) is closely related to the second-
order frequency moment of a TFR of the signal

(10)

As the resolution of the TFR improves, its second-order moment
provides a better indication of instantaneous bandwidth. How-
ever, interference terms and noise make bandwidth estimates
based on the high-resolution WD unstable.

IV. HYBRID INSTANTANEOUSFREQUENCY AND BANDWIDTH

CALCULATION

In this section, we detail how the hybrid TFR approach of
Section II can be adopted to robustly estimate the IF and in-
stantaneous bandwidth. Our approach requires the much smaller
computational expense of determining a linear, mildly oversam-
pled Gabor representation of the signal.

Substituting the Gabor expansion of the signal (1), we can
rewrite the numerator of (9) as

(11)

When we use a Gaussian of variancefor the Gabor synthesis
atom, closed-form expressions can be developed for the inte-
grals in the summation.1 Applying the same expansion to the
denominator, we can express (9) as

(12)

where

(13)

and

(14)

If all combinations are included in the es-
timate, then this formula is equivalent to the (high-variance)
WD-based estimate. By adopting the hybrid TFR approach [re-
taining only a subset of the terms when ], we
can reduce the variance with the introduction of some bias. The
performance is of a level similar to that obtained with adaptive
quadratic TFRs; however, the computational expense is much

1Similar analytic expressions are possible for other windows, including, for
example, square, triangle, and raised cosine windows.
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reduced since the and are signal-in-
dependent and can be precomputed and stored in memory. The
primary cost of the algorithm is then that of computing the
(barely oversampled) Gabor transform.

The second-order moment of the hybrid TFR provides a sim-
ilarly computationally efficient estimate of the instantaneous
bandwidth

(15)

with

(16)

Fig. 2 shows a comparison between the instantaneous band-
width measures computed using the spectrogram and the hy-
brid TFR approach. One hundred random bandpass signals were
generated by applying a time-varying filter to white Gaussian
noise realizations. Fig. 2(a) depicts the ideal frequency response
of the filter. Fig. 2(b) plots two lines for each technique; the
lines show the averages of over the 100 realiza-
tions. Clearly, the hybrid TFR bandwidth estimate tracks the
true bandwidth characteristics of the signal far more closely than
the spectrogram-based measure.

If the hybrid estimate if formed without cross-terms, then the
performance is very similar to the spectrogram. We can pro-
vide no strict guidelines regarding the choice of the distance
threshold. In our experiments, we have observed that Manhattan
distance thresholdsbetween 1 and 3 provide good results. Set-
ting results in more smoothing and, hence, more robust
estimates in very noisy environments. The choice reduces
the bias of estimates and is appropriate when there is little noise
and a single dominant signal component.

It is possible to extend this method to estimate signal at-
tributes derived from higher order moments. In particular, we
can estimate instantaneous skew and instantaneous kurtosis [4]
in a similar fashion, but the third- and fourth-order terms gen-
erate more complicated expressions that we do not provide here.

V. APPLICATION TO SEISMIC DATA ANALYSIS

As an example of the hybrid IF estimation procedure, we
now consider an application in seismic data analysis. Seismic
imagery of the earth’s subsurface is critical to all aspects of
the oil and gas exploration process—from the location of re-
serves to their appraisal and subsequent monitoring. A seismic
image of the earth is obtained by probing the subsurface with
acoustic waves. An example of a seismic cross section is shown
in Fig. 3(a). The horizontal axis gives the spatial location at the

Fig. 2. Comparison between instantaneous bandwidth measures computed
using the hybrid TFR approach and the spectrogram. White Gaussian noise
was passed through a time-varying filter with (ideally) the frequency response
in the top panel to generate 100 random realizations. The passband is indicated
by the dark region. The lines in the bottom panel correspond to the averaged
estimated IF� the averaged estimated bandwidth(v(t) � B(t)) calculated
using the hybrid approach with Manhattan distance threshold� = 2 (solid)
and the spectrogram moments (dashed).

surface, and the vertical axis is time. Each column of the image
represents a recording of the pressure as a function of time at
the corresponding surface location. The line plot to the left of
the intensity image is the amplitude of the first column [like
Fig. 1(a)]. When seismic waves propagate through the subsur-
face, a part of their energy is reflected back to the surface at
acoustic impedance contrasts. The strength of this impedance
contrast is called thereflectivity. The seismic cross section rep-
resents this (bandlimited) reflectivity of the subsurface.

A change in acoustic impedance indicates a change in rock
properties. As a result, it is possible to make an educated guess
of the geological structure of the subsurface on the basis of the
reflectivity image. If the seismic wave velocity is known, then
the vertical time axis can be converted to depth. In the cross
section of Fig. 3(a), a 1-s two-way travel time of the seismic
waves corresponds to a depth of approximately 1 km. The re-
flectivity image is obtained from the raw data through a great
number of data processing steps. The most important of these
are source deconvolution, noise suppression, velocity correc-
tion, and a final imaging step (migration) [16].

In seismic exploration, seismic cross sections are scrutinized
by interpreters who search for features that indicate hydro-
carbon reservoirs. While previously intepreters dealt with large
plots of 2-D cross sections, they now work on computers with
3-D volumes comprising many gigabytes of data. Currently,
there is a great need for methods that can aid in rapidly
sifting out those features that are relevant for the geological
interpretation of the data.

Seismic attributesaid the interpretation of seismic data by
elucidating its salient signal characteristics. Traditionally, com-
plex-trace analysis via Hilbert transform [using (8)] has been
used for attribute extraction [17]. The standard seismic attributes
are instantaneous amplitude, phase, and frequency. The goal of
seismo-stratigraphic interpretationis to infer the sequence of
geological events that resulted in the reflection pattern observed
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Fig. 3. Example of 2-D seismic analysis. (a) The 2-D seismic cross section. Trace to the left shows the amplitude of the first column of the cross section[like
Fig. 1(a)]. (b) Complex-trace IF estimates (8) of each column of the cross section displayed as an intensity map (black corresponds to high frequencies and white
to low frequencies). Trace to the left shows the complex-trace IF estimate of first column. (c) Intensity map of hybrid TFR IF estimates (12) of the columns of the
cross section (Manhattan distance threshold� = 2). Trace to the left shows the hybrid TFR IF estimate of first column.

in a seismic image [18]. In the ideal case, the seismic expression
of a rock formation can be directly related to the circumstances
under which the rock was formed. A seismic reflection pattern
with a distinct set of image characteristics is called aseismic
facies unit. For instance, rapid sedimentation in a high-energy
environment (rivers or channels, for example) often produces
strong lateral changes in reflection characteristics, whereas slow
deep sea sedimentation usually results in seismic facies that con-
sist of a laterally continuous reaction pattern.

The first step in a seismic interpretation is the delineation
and description of the different seismic facies units present.
The role of seismic attributes in seismic stratigraphy is to aid in

delineating seismic facies units and in quantifying seismic facies
descriptions. For instance, reaction continuity can be quantified
by measuring the degree of lateral change in reflectivity and
IF.

Another application of seismic attribute analysis is the predic-
tion of physical rock properties such as porosity or permeability
from seismic data. Ground truth is provided by measurement in
a borehole. Lateral prediction away from the well is then ob-
tained by correlating the physical parameter with the seismic
attributes. In this application, the seismic attributes provide the
input for a multivariate statistical analysis (using a neural net-
work, for example).
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In both the visual interpretation and the statistical pattern
analysis applications, robust attribute extraction methods are of
crucial importance. IF brings forward those characteristics from
the image that in the standard image can be obscured by the large
dynamic range in amplitude. Subtle changes in the spacing of
reflectors are not neccesarily visible in the standard amplitude
cross section [see Fig. 3(a), for example] but will be brought
forward in an IF display.

IFestimatesbasedonTFRpeaksdonotexhibitsufficientconti-
nuity in space to aid interpretation of the data. IF estimates based
on the moments of the TFR provide a much more informative
portrayal of the data [3], [19]. Fig. 1 compares the IF estimates
from three different TFRs on a seismic time signal. The fast hy-
brid IFestimate isveryclose to thatobtainedusing themuchmore
computationally expensive AOK TFR [3], [19]. The time resolu-
tion of the spectrogram IF estimate is significantly poorer than
the other two methods. Moreover, a substantial smoothing is no-
ticeable where rapid changes occur (at s, for example).
Accurate localization in time of these rapid changes is important
in seismic interpretation, as they may indicate important seismic
facies sequence boundaries, which in turn may represent an im-
portant change in geological environment.

Fig. 3(b) and (c) show complex-trace IF (8) and hybrid IF es-
timates (12) of the columns of the seismic section of Fig. 3(a).
To the left of the images, we plot the amplitude of the left-most
column. The wild fluctuations indicate that the complex-trace
IF estimate is very noise sensitive. The sharp peaks in the com-
plex-trace IF estimate obscure the frequency trends of interest
for a seismic facies analysis. Closely spaced seismic reflectors
manifest themselves as bands of relatively high IF. The band
of high-frequency reflections at s clearly stands out
in the hybrid IF section, whereas it is difficult to localize in
the amplitude display of Fig. 3(a). Indeed, the abrupt change
at s coincides with an important geological boundary.
Lateral changes in reflector spacing and frequency are also more
easily detected in the IF cross section than in the amplitude data.
For example, the reaction pattern below s exhibits less
lateral continuity than the upper part of the section, indicating a
different depositional environment.

Hybrid IF estimation is a computationally very efficient
method for seismic attribute extraction. For visual inter-
pretation, the hybrid IF provides a greatly enhanced image
as compared with the complex-trace IF or the spectrogram
average. The estimation algorithm potentiates the TFR-based
interpretation of large seismic data volumes, which up to now
has been severely inhibited by the large computational effort
involved in calculating TFRs.

VI. CONCLUSIONS

We have presented a robust and efficient method for esti-
mating time–frequency attributes of a signal. Using hybrid
linear/quadratic time–frequency concepts avoids the expensive
calculationofaquadraticoradaptiveTFR.Whilewehavefocused
on estimating the IF and instantaneous bandwidth, closed-form
expressions analogous to (9) can be developed for many other
attributes, including higher order time–frequency moments,
kurtosis [4], and so on. Our results have particular relevance

for seismic data analysis, where vast volumes of data require
processing, and it is critical that efficient algorithms be used.
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