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Abstract

A method is presented for the improvement of the resolution and clarity of bilinear time
frequency distributions generated from signals consisting of a number of approximately
time-frequency disjoint components. The method involves the determination of the pa-
rameters of a finite mixture of Gaussians, which is used to model an initial time-frequency
distribution. The expectation-maximisation algorithm and the functional merging tech-
nique are used to derive the parameter set, including the number of Gaussians in the
mixture. The mixture model indicates the number of (linear) components in the sig-
nal, and the regions they occupy in the time-frequency plane. This information is used
to isolate the components, and smoothing kernels are designed using the properties of
each isolated component. During the generation of the smoothing kernels, a set of basis
functions is derived for each component, which describes the time-frequency region it oc-
cupies. This basis can be used for time-frequency filtering, enabling operations such as
signal decomposition and noise reduction to be performed.
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1 Introduction

Time-frequency distributions (TFDs) are important in the analysis of signals generated in
a wide variety of environments. This paper describes a method to improve the resolution
of time-frequency distributions for signals consisting of a number of approximately time-
frequency disjoint components. The method involves the construction of a finite mixture
model to represent the time-frequency energetic structure of a signal; this model indicates the
number of time-frequency components in the signal and their locations in the time-frequency
plane. Such information is useful both for generating an enhanced TFD, and also for appli-
cations such as signal decomposition, noise suppression and coherence measurements.

The TFDs discussed in this paper are those generated by applying smoothing filters to
the Wigner distribution (WD). These distributions are defined as:

Px(t, f) =
∫

t′

∫
f ′

ΦP,t,f(t′, f ′)Wx(t− t′, f − f ′) dt′ df ′ (1)

where Wx is the Wigner distribution,

Wx(t, f) =
∫ ∞

−∞
x(t+

τ

2
)x∗(t− τ

2
)e−j2πfτ dτ . (2)

ΦP,t,f is a two-dimensional low-pass smoothing filter (kernel), which specifies the shape and
nature of the local region used to determine the energy at each location in the time-frequency
(TF) plane. The subscript indicates the possible time and frequency dependence of the
filter; if there is no dependence, the TFD is a member of Cohen’s bilinear class [6]. These
distributions can be expressed as the two-dimensional Fourier transform of the symmetric
ambiguity function, weighted by the smoothing kernel:

Px(t, f) =
1
2π

∫ ∫
Ax(τ , ν)φP,t,f (τ , ν)ej2π(νt−τf) dτ dv. (3)

Here, φP,t,f (τ , ν) is the two-dimensional Fourier transform of Φ. The symmetric ambiguity
function is defined as:

Ax(τ , ν) def=
∫

t
x

(
t+

τ

2

)
x∗

(
t− τ

2

)
e−j2πνt dt. (4)

The choice of the kernel φP,t,f (τ , ν) is critical to the appearance and quality of a TFD.
Numerous kernels have been developed, each displaying advantageous properties for particular
classes of signals. A fixed kernel cannot achieve a good representation, as defined by minimal
smearing of auto-components and strong suppression of cross-component interference, for
every type of signal encountered. To achieve satisfactory performance for a wide variety of
signals, the kernel must be dependent on the analysed signal.
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There has been much work on the design of algorithms to develop signal-adaptive kernels.
The kernels fall into three main groups. The first group consists of kernels which are adapted
using the entire signal, and remain of constant shape over the entire time-frequency plane;
examples can be found in [4, 3, 5, 24]. Such kernels are unsatisfactory when the time-frequency
behaviour of the signal changes with time. The second group consists of kernels which vary
with time, and are designed using time-localised properties; prominent examples are those
described in [10, 11]. TFDs generated using kernels in this group degrade when the time-
supports of signal components overlap or are closely spaced. The third group of kernels vary
over both time and frequency, and are devised using time-frequency localised properties of
the signal [1, 12, 13].

There are a number of other techniques aimed at improving the appearance of TFDs, no-
tably hybrid linear/bilinear schemes [18], the reassignment methods [2], and image-processing
based algorithms [20, 15]. Although all methods aim to reduce the interference between sepa-
rate components during the generation of time-frequency distributions, none of the techniques
directly address the issue of identifying and isolating the components prior to kernel design.
Such an isolation allows the kernels which are applied within a TF region occuped by a
particular component to be designed according to the properties of that component alone.

The kernel design method proposed in this paper involves a complete isolation and ex-
traction of separate time-frequency components. Distinct kernels are then designed for each
extracted component. The method revolves around the construction of a model of the time-
frequency energy distribution; the model indicates the number of components, and the regions
they occupy in the time-frequency plane. The structure of the model is a finite mixture of
Gaussian densities, or equivalently a normalised sum of weighted radial basis functions. Each
Gaussian density represents a single (linear) time-frequency component.

The following section of the paper provides an overview of the method for generating a
time-frequency distribution. The third section discusses the techniques for determining the
parameters of the model: the number of components, and the time-frequency regions they
occupy. The fourth section details how kernels are designed for the separate components once
they have been isolated, and discusses the computational cost involved in the algorithm. The
fifth section illustrates the application of the kernel design process using a synthetic and an
experimentally-obtained signal. Conclusions follow in the final section.

2 Overview of the TFD generation process

The generation of the regionally optimised TFD consists of the following seven stages:

1. An initial TFD is generated. A TFD which suppresses the majority of interference
terms, even at the cost of substantial smearing, is preferable. The component con-
centration is recovered in the final distribution when regionally optimised kernels are
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applied. The spectrogram, smoothed pseudo-Wigner distribution, or adaptive optimal
kernel (AOK) TFD [11] are all satisfactory.

2. The TFD is modelled using a finite mixture model (see Section 3) of N Gaussians,
where N is a substantial over-estimate of the number of signal components. The model
is initialised to provide good coverage of the initial TFD.

3. The parameters of the N -Gaussian finite mixture model are determined. The parameter
determination is an optimisation problem, the aim being to obtain the best representa-
tion of the energy distribution of the signal. This is similar to the problem of probability
density estimation, and methods used to perform that task can be applied. In particu-
lar, a variant of the expectation-maximisation (EM) algorithm [7] (see Appendix A) is
used to optimise the model parameters.

4. At this stage, the model provides a reasonable approximation to the energy distribution,
but the number of time-frequency components is substantially over-estimated. The
functional merging technique [21] (see Section 3.2) is applied to estimate the true number
of components in the distribution.

5. Using the developed time-frequency energy model, a Bayesian classification approach [8,
22] is used to define the time-frequency region occupied by each component, effectively
segmenting the time-frequency plane.

6. Based on the defined regions, time-varying filters [14, 9] are used to extract the identified
components, and determine regional ambiguity functions (see Section 4.1).

7. The regional ambiguity functions are used in conjunction with the time-varying kernel
optimisation methodology of Baraniuk and Jones [11] to develop distinct regionally
localised kernels (see Section 4.2). These smoothing kernels are applied solely within
their corresponding time-frequency regions.

3 The Time-Frequency Energy Model

3.1 The Model Structure and Parameter Estimation

A key constituent of the regional optimisation procedure is the modelling of the energy dis-
tribution. The aim is to determine the number of modes in the distribution and their shape,
under the assumption that each mode approximately corresponds to a component. The en-
ergy distribution is normalised over the time-frequency plane, allowing the application of
techniques for modelling probability distributions. The modelling is performed by adapting a
Gaussian mixture model to approximate the number of modes in the underlying multi-modal
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distribution. The two-dimensional Gaussian mixture model is defined as a linear combination
of Gaussian densities:

FN (x) =
N∑

i=1

λifi(x|θi), (5)

where x are time-frequency location vectors of the form x = [t, f ], N is the number of normal
distributions fi(x|θi), and λi are the mixing weights, constrained to be positive and of unity
sum. The parameter vector of each normal distribution in the mixture θi is comprised of
the mean μi and the full covariance matrix Σi. Each normal distribution within the mixture
model can thus be expressed as:

fi(x|θi) =
1

2π|Σi|1/2
exp

(
−1

2
(x− μi)

T Σ−1
i (x − μi)

)
(6)

The adaptation of the parameters is based on maximising the likelihood of the parameters
of the model for the given initial distribution. When the task is viewed in this manner, the
initial distribution takes the guise of sampled “data” in a probability density estimation
problem. The aim of the adaptation is to maximise the likelihood that, by taking sufficient
samples from the model distribution, the initial distribution is realised. Denoting the initial
distribution as Pinit(t, f) = Pinit(x), the negative log-likelihood of the initial distribution is:

E = − lnL = −
∑
x

Pinit(x) lnFN (x) (7)

= −
∑
x

Pinit(x) ln

{
N∑

i=1

λifi(x|θi)

}
.

In this expression, FN (x) is the probability of the model generating energy at x = [t, f ].
The quantity E in (7) can be regarded as the error function; mimimising E is equivalent to
maximising the likelihood of the initial distribution.

A variant of the expectation-maximisation (EM) algorithm [7] can be applied to estimate
the parameters which minimise the error function E in (7). The variant of the EM algorithm
is reviewed in Appendix A. After its application, the TFD is well represented by the finite
mixture model, but the number of modes in the distribution is over-approximated. As the
primary aim is to identify the number of modes (assuming each mode corresponds to a
component), and only approximate the time-frequency regions they occupy, it is important
to improve the approximation of the number of the modes. Many of the techniques designed
to adapt the number of Gaussians comprising a mixture model are based on pruning [19]
or growing [17, 16] the model, but both approaches generate models wherein the number of
Gaussians does not truly reflect the complexity of the underlying distribution.
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3.2 Determining the model order: Functional merging

An alternative technique for adapting the number of Gaussians is functional merging [21].
This procedure provides a much better indication of the true complexity, or number of modes,
within a distribution. Functional merging is based on the principle that Gaussians modelling
the same mode should be closer together than those modelling separate modes. Critical to
the operation of functional merging is the choice of a distance measure to gauge the distance
between two distributions, in this case Gaussians. The Kullback-Leibler, Bhattacharyya [23,
22] and arc-cosine distances [16] are all related to maximum likelihood, and reduce to the
Mahalanobis distance when used to measure the distance between two Gaussian distributions
with equal covariance matrices. The advantage of the arc-cosine distance is that it has a
closed-form expression when used to measure the distance between mixtures of Gaussians,
rendering its numerical evaluation straightforward.

The arc-cosine distance, Ω, is defined in a Hilbert space, H, as the angle between two
distributions, f(·) and g(·):

Ω = arccos
( 〈f, g〉
‖f‖2 · ‖g‖2

)
, (8)

where 〈·, ·〉 is the inner product, 〈f, g〉 =
∫
H f(x)g(x)dx. When used to measure the distance

between a mixture of Gaussians, FN (x), and a single Gaussian distribution, fj(x|θj), the
inner product becomes a weighted sum of inner products between Gaussians:

〈FN , fj〉 =
N∑

i=1

λi〈fi(x|θi), fj(x|θj)〉 (9)

where

〈fi(x|θi), fj(x|θj)〉 =
|Σ|1/2

2π|Σi|1/2|Σj|1/2
exp

(
−1

2
(μT

i Σ−1
i μi + μT

j Σ−1
j μj − μT Σ−1μ)

)

for

Σ = (Σ−1
i + Σ−1

j )−1

μ = Σ(Σ−1
i μi + Σ−1

j μj).

The functional merging technique starts by determining the arc-cosine distances between
every pair of Gaussians in the mixture model. The two closest Gaussians in the mixture
model, fi(x|θi) and fj(x|θj), are selected for examination. The arc-cosine distance between
the mixture of these two Gaussians

Fn(x) = λifi(x|θi) + λjfj(x|θj),
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and a single proposed replacement Gaussian fnew(x|θnew) is determined. The parameters
of the new Gaussian, λnew and θnew = {μnew,Σnew}, are chosen to minimise this distance.
The minimisation is equivalent to the maximisation of the likelihood of Fn(x) given the new
Gaussian, which involves matching the zeroth, first and second order moments of the new
Gaussian to those of the mixture of two Gaussians it is replacing. Thus:

λnew =
∫
H
Fn(x) dx = λi + λj

μnew =
1

λnew

∫
H
Fn(x)x dx =

λi

λnew
μi +

λj

λnew
μj

and from:

λnew

∫
H
fnew(x|θnew)xxT dx =

∫
H
Fn(x)xxT dx

it follows that:

Σnew =
λi

λnew
(Σi + (μi − μnew)(μi − μnew)T )

+
λj

λnew

(
Σj +

(
μj − μnew

) (
μj − μnew

)T
)
.

The value of the arc-cosine distance is stored, and a new mixture model constructed,
replacing the two Gaussians with the single new Gaussian. The arc-cosine distances between
the new Gaussian and all other Gaussians in the model are determined. The process of
selecting the two closest Gaussians in the mixture and merging them is repeated until the
arc-cosine distance between the mixture of the closest two Gaussians and the single proposed
replacement exceeds a maximum distance τmax. The maximum distance is set to a value
beyond which merging should not occur; a substantial range of τmax values generate the same
model. If a threshold distance τ is chosen, and the closest Gaussians successively merged
until the distance between the new single Gaussian and the former mixture of two Gaussians
exceeds τ , a mixture model consisting of M Gaussians results. The value of M is plotted
against the threshold distance τ for the range of thresholds from zero to the maximum distance
τmax. This results in the construction of a graph similar to that of Figure 1(a), which was
produced for the noise-free synthetic signal examined in Section 5.1.

[Figure 1 here]
The value ofM should be consistent over the largest range of thresholds when the majority

of Gaussians representing the same mode have been merged, and no Gaussians representing
separate modes have been merged. Let Υi denote the continuous range of thresholds for which
the mixture model consists of Mi Gaussians. A model probability function P (Mi|Υi), which
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is based on the principle just stated, can be defined as:

P (Mi|Υi) =
length(Υi)
τmax

(10)

The model generated by the functional merging process which contains Mj components, where
Mj maximises P (Mi|Υi), is selected to approximate the underlying distribution. This model
indicates the number of time-frequency components detected in the distribution, and the
regions they occupy. An example of the model probability function is shown in Figure 1(b);
this demonstrates that the most probable model is the mixture consisting of two Gaussians.

4 Regional kernel optimisation

4.1 Regional ambiguity function

The kernels designed in this paper vary according to the time-frequency region over which
they are defined. This regional localisation is accomplished by defining a regional ambiguity
function (RAF). Each RAF is localised to a time-frequency region Rk, and can be expressed
as:

A(Rk; τ , v) ≡
∫

t∈Rk

xk

(
t+

τ

2

)
x∗k

(
t− τ

2

)
e−j2πvt dt (11)

where

xk(t) = (Skx)(t) =
∫

t′
Sk(t, t′)x(t′) dt′ =

Nk∑
v=1

〈x, sv〉sv(t). (12)

Here xk(t) is the orthogonal projection of x(t) ∈ L2(R) on Sk, a linear signal space covering
the region Rk energetically and with little energy outside the region. Sk(t, t′) is the kernel of
the orthogonal projection operator Sk, and {sv(t)}Nk

v=1 is an orthonormal basis of Sk, where
Nk is the dimension of the space. This projection onto a linear signal space is the linear
time-frequency filtering procedure proposed by Hlawatsch [9]. The design of the signal space
is described in [9]; the advantages of such linear time-frequency filters are discussed in [14].
The time-frequency filtered signal, xk(t), is the portion of x(t) whose time-frequency energy
resides approximately exclusively within the region Rk.

Time-dependence of the kernel within each region requires the definition of a regional
short-time ambiguity function (RSTAF):

A(t, Rk; τ , v)

=
∫

u∈Rk

x∗k
(
u− τ

2

)
w∗

(
u− t− τ

2

)
xk

(
u+

τ

2

)
w

(
u− t+

τ

2

)
e−j2πvu du (13)
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with w(u) a symmetrical windowing function. This is similar in nature to the short-time
ambiguity function (STAF) defined in [11]. The introduction of the RSTAF enables time-
varying optimised kernels to be designed for specific regions in the time-frequency plane,
corresponding to the areas occupied by separable components. Through the use of the window,
only the portion of the signal in the interval [t − T, t + T ] is incorporated in the calculation
of the STAF at any particular time-instant t.

4.2 Kernel design

The kernels designed in this paper have Gaussian radial cross-section as in [3], chosen because
of the combination of flexibility and computational ease. The radially-Gaussian kernels can
be expressed in the ambiguity plane (using polar coordinates) as:

Φ(r, ψ) = exp
(
− r2

2σ2(ψ)

)

where r =
√

(2πv)2 + τ2. The spread function, σ, controls the spread of the Gaussian at
radial angle ψ = arctan(τ/2πv).

The kernels are designed by solving an optimisation problem similar to that formulated
in [3]. The optimisation problem has constraints and a performance index designed to suppress
cross-components whilst passing auto-components with as little distortion as possible. The
problem is formulated in the ambiguity plane, exploiting its property of separation of auto-
and cross-components. For the kernel corresponding to region Rk (component k) at time
t ∈ Rk, the optimisation problem can be stated as:

Φopt(t, Rk) = arg max
Φ

∫ 2π

0

∫ ∞

0
|A(t, Rk; r, ψ)Φ(r, ψ)|2 r dr dψ (14)

subject to:

Φ(r, ψ) = exp
(
− r2

2σ2(ψ)

)
(15)

and

1
4π2

∫ 2π

0

∫ ∞

0
|Φ(r, ψ)|2 r dr dψ =

1
4π2

∫ 2π

0
σ2(ψ) dψ ≤ α (16)

where A(t, Rk; r, ψ) is the RSTAF in polar coordinate form and α is a parameter controlling
the volume under the kernel. Baraniuk and Jones [11] have described a method for the solution
of an analogous optimisation problem, with the STAF, A(t; r, ψ), replacing A(t, Rk; r, ψ); this
method can be applied directly to the problem presented here.
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4.3 Computational Complexity

The computational cost of generating the regionally optimised is difficult to quantitatively
assess, because of the high dependence on the nature of the signal. The complexities of the
stages of the algorithm are now approximated. A block of length K samples is considered,
with M frequency points being generated. N is used to denote the number of components in
the initial model, and N ′ the number of components after functional merging.

1. Stage 1 (Generation of the initial distribution): O(KM logM) for a fixed-kernel decom-
position and O(KM2) for an adaptive optimal kernel distribution.

2. Stages 2-4 (Construction of mixture model): The complexity of the modified EM al-
gorithm is approximately O(INR), where I is the number of iterations, and R is the
number of time-frequency locations used to update the model. For the majority of sig-
nals, R is in the range

[
KM

4 . . . 3KM
4

]
, i.e., between 1/4 and 3/4 of the time-frequency

locations have sufficient energy to affect the development of the model.

3. Stages 5-6 (Classification and filter development): If the projection filter is used, the
complexity is approximately O(N ′M3). The Weyl filter [14] yields similar performance,
and can reduce the complexity to approximately O(N ′M logM).

4. Stage 7 (Regional kernel development): If the length of each component is denoted Ki,
the complexity of this stage is approximately O(

∑N ′
i=1KiM

2).

In general, the adapted EM algorithm is the most computationally demanding section
of the procedure. A significant saving can be obtained by constructing the finite mixture
model at a lower resolution (either in time, frequency, or both) than is desired for the final
distribution. The complexity of the EM algorithm revolves around the number of components
in the initial model, and the number of TF locations which contain sufficient energy in the
initial distribution to demand inclusion in the model adaptation. The use of a lower resolu-
tion enables a reduction in both of these factors. The regional classification and subsequent
localised kernel design and application can be performed at the higher resolution.

Despite these savings, the regional optimisation technique is computationally expensive
in comparison to time-varying adaptive kernel approaches such as the adaptive optimal ker-
nel (AOK) [11]. The signals analysed in the following section provide an indication of the
increased computational cost. For the 128 sample signal in Section 5.1, in which 2 compo-
nents are identified, the regional approach requires approximately 2.5 times the computation
required by the AOK approach. For the 440 sample signal in Section 5.2, in which 11 linear
components are identified, the regional approach requires approximately 8 times the compu-
tation of the AOK approach.
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5 Results of regional optimisation

This section demonstrates the application of the regionally optimised kernels to synthetic and
natural signals. This provides an opportunity to illustrate the operation of key parts of the
design algorithm, in particular component detection and region assignment.

5.1 Synthetic data - example 1

The set of data used in this section was constructed to demonstrate the necessity of utilising a
well-chosen smoothing kernel in the generation of an interpretable time-frequency distribution.
The signal was designed so that the two components comprising the signal, a chirp (modulated
Gaussian) and a Gaussian, were separable in the time-frequency plane, but overlapped in time,
and also in frequency. Such an arrangement highlights the advantages of optimising kernels
for specific time-frequency regions.

The signal can be expressed as:

x(t) = rect(10, 40) × e−j0.03(t−16)2ej
π

3.8
(t−16) + 2e−0.025(t−34)2ej

π
4.2

(t−34) (17)

for rect(t1, t2) = u(t − t1) − u(t − t2), where u(t) is the Heaviside step function. The real
part of the noiseless signal is displayed in Figure 2(a), the Wigner distribution of the signal
in Figure 2(e), and the spectrogram in Figure 2(f). The cross-components of the Wigner dis-
tribution make identification of the time-frequency nature of the signal difficult; the smearing
of the spectrogram has the same effect.

[Figure 2 here]
The algorithm for generating the regionally optimised distribution was applied to the

synthetic signal, using the AOK technique of [11] to generate the initial TFD. The initial
distribution is displayed in Figure 3(a), together with the component region allocation, which
was determined from the mixture model. The functionally merged model is shown in Fig-
ure 3(b). The enhanced resolution of the regionally optimised distribution for the noiseless
signal is apparent in Figure 3(c).

[Figure 3 here]
A noisy version of the signal ( see Figure 2(a)) was generated by adding white complex

Gaussian noise, such that the SNR (ratio of total signal power to total noise power) was 4 dB.
An initial AOK distribution was generated, and used to determine the component regions and
the regionally optimised distributions (Figures 3(d) and 3(e)). The isolated components were
reconstructed based on the time-varying filters, and are compared to the original components
in Figures 2(b) and 2(d). The signal was de-noised by summing the recovered components.
Figure 2(c) displays the real part of the de-noised signal, and compares the absolute noise
before and after the de-noising. For the noisy signal in Figure 2(a), the procedure improves
the SNR from 4 dB to 8.5 dB.
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[Figure 4 here]

5.2 Vibration signal

The application of the algorithm to an experimentally-obtained set of data is examined in
this section. The data-set illustrates the limitations of the Gaussian mixture model when the
major components in the signal have non-linear time-frequency behaviour. The signal is a
measurement of the impulse response of a beam. A 7.2 m long mild-steel beam of rectangular
cross-section 32.1 × 6.3 mm was suspended horizontally on light cords. One end of the
beam was lightly tapped with a soft-tipped hammer designed to generate only low-frequency
vibrations (below 1kHz). The impact response was measured using an accelerometer attached
to the beam close to the point of impact, and the data was captured using a data logger at a
sampling frequency of 4096 Hz.

For analysis purposes, the data was down-sampled to 2048 Hz, and the analytic signal
generated by applying the Hilbert transform. TFDs were generated for a section of the signal
consisting of 440 sample points, as displayed in Figure 5(a). The signal represents the passage
of bending waves of different frequencies as they travel along the beam, and are reflected at
each end. Since the group velocity of the bending waves is dependent on frequency, the
high-frequency groups travel faster than the low-frequency groups, as can be observed in
Figure 5(b), which is the initial TFD of the signal, generated using the AOK method.

[Figure 5 here]
The region allocation during the generation of a regionally optimised distribution is dis-

played in Figure 5(c). The functional merging determined that the most probable model
contained eleven Gaussians. The first three components in the distribution display marked
non-linear time-frequency behaviour, and the limitations of the Gaussian mixture model re-
sulted in the first two components being represented by three Gaussians, and the third by two.
Despite the significant overestimate of components, the mixture model is still useful for the re-
design of kernels, as each region contains sufficient local information about the time-frequency
nature of the signal. The noise and interference terms visible in the initial distribution have
been reduced in the regionally optimised distribution, displayed in Figure 5(d). Some small
artefacts are introduced where the division of the components occurs.

6 Conclusion

Bilinear time-frequency distributions provide useful information about the nature of non-
stationary signals. Whenever signals consist of more than a solitary time-frequency compo-
nent, the application of smoothing kernels in the generation of such distributions is necessary
to allow interpretation of the distributions. Furthermore, satisfactory distributions can only
be constructed for a wide range of signals if the kernels are signal-dependent.
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It has been proposed in this paper that for signals consisting of multiple time-frequency
components, in addition to being dependent on the signal, the smoothing kernel should vary
for each time-frequency component. A technique for the adaptation of finite mixtures to
model time-frequency distributions has been presented. The technique indicates the number
of (linear) components in a distribution, and their locations in the TF plane. The use of
the model to improve time-frequency distributions through the construction of regionally
optimised kernels has been discussed. The importance of such a procedure has been indicated
by applying the technique to a signal consisting of components which are closely spaced in the
time-frequency plane, and overlap in both time and frequency. In addition to improving the
clarity and resolution of the time-frequency distribution, the regional optimisation procedure
produces sets of basis functions describing the approximate time-frequency region occupied
by each component. These sets can be utilised in a variety of procedures including signal
decomposition and noise reduction.

One limitation of the finite mixture model is that it is comprised of Gaussians, resulting
in every TF distribution being modelled as a set of components restricted to approximately
linear time-frequency behaviour. A possible solution to this problem is to associate a Gaussian
mixture model (a subset of the global model) with each component.
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A The EM algorithm

The expectation-maximisation (EM) algorithm was introduced by Dempster et al. [7] as a
means of solving non-linear optimisation problems with missing data. The algorithm can also
be applied to the problem of estimating a probability density, when a data-set of samples
from the probability distribution is available, by using it to adjust the parameters of a finite
mixture model used to approximate the underlying distribution. The optimisation of the
parameters of the model would be straightforward if it were known which component of the
model was responsible for generating each data point. A hypothetical complete data set is
considered, in which a labelling of each data point is provided, and this is the context in
which the EM algorithm is applied; the “missing” data is the labelling.

The task is to adapt the parameters of a normal mixture model, FN (x), to best approx-
imate an underlying distribution F̃ (x). The EM algorithm is iterative in nature, updating
parameter estimates during each iteration. Initial parameter estimates must be provided, and
the algorithm halts once convergence has been achieved to within acceptable limits.

Firstly, the unsupervised EM algorithm is reviewed. This is utilised in the situation where
the dataset consists solely of locations xi, i = 1, . . . ,m, and no knowledge is available about
the underlying probabilities of the samples, yi = p(xi|F̃ (xi)). For this case, the EM equations
to update the parameters of a Gaussian mixture with full covariance matrices are:

μj =
∑m

i=1Bxi∑m
i=1B

Σj =
∑m

i=1B(xi − μj)(xi − μj)T∑m
i=1B

λj =
1
m

m∑
i=1

B

where B is the posterior probability of mixture component j being responsible for data point
xi. This is obtained from Bayes’ theorem as:

B = P (j|xi) =
λjf(xi|θj)
FN (xi)

.

The supervised EM algorithm arises when the dataset consists of a uniformally distributed
set of samples xi, i = 1, . . . ,m, with known associated probabilities, yi = p(xi|F̃ (xi)). For
this case, the B term in the update equations becomes:

B = yiP (j|xi).

The value yi represents an explicit target value for the mixture model.
In this paper, the modelling of the initial time-frequency distribution is addressed by
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casting the problem as one of probability density estimation, with the xi vectors taking the
form of time-frequency locations, [t, f ]. The initial distribution acts as a target distribution,
and the supervised version of the EM algorithm is applied to determine the parameters of
the mixture model. A good initialisation of the parameters is important to aid convergence
and avoid sub-optimal solutions. The covariance matrices are set to the identity matrix
(for suitably scaled time and frequency vectors), and the weights are initially the same for all
components. The means are assigned to the most energetic locations in the initial distribution,
subject to the constraint that all means must be separated by a suitable distance.

In experiments conducted, it was observed that satisfactory convergence of the EM algo-
rithm generally occurred within 10-15 iterations. The initial number of components required
depends on the complexity of the signal; experiments have shown that for the majority of
signals the inclusion of 20-40 Gaussians in the initial model provides sufficient coverage, and
results in a good approximation to the initial distribution.
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Figure 1: Functional merging algorithm for synthetic signal - example 2. (a) Number of
components in the model as the merging threshold is varied. (b) Model probability.
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Figure 2: Synthetic signal analysis. (a) Real parts of original signal and noisy version (SNR
= 4 dB). (b) The chirp component and the component recovered from the noisy signal. (c)
The recovered signal and a comparison of absolute errors (solid - before de-noising; dashed -
after). (d) The Gaussian component and the recovered component. (e) Wigner distribution
of original signal. (f) Spectrogram of original signal.
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Figure 3: Synthetic signal analysis. (a) Initial TFD (AOK method) of original signal and the
developed regions. (b) TFD approximation after functional merging. (c) Regionally optimised
TFD of original signal. (d) Initial TFD (AOK method) of noisy signal and developed regions.
(e) Regionally optimised TFD of noisy signal.
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Figure 4: Kernel shapes for the synthetic signal. (a) Regionally optimised kernel for chirp
component. (b) Regionally optimised kernel for Gaussian component. (c) Adaptive optimal
kernel shape at time t=32.
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Figure 5: Vibration signal analysis. (a) Vibration signal. (b) The initial distribution. (c) Re-
gion allocation. (d) The regionally optimised distribution.
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