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Abstract

The Gaussian distribution is an inadequate descrip-
tion of certain types of real-life noise that display impul-
sive characteristics. Theα-stable distribution has been
suggested as a more appropriate model. Bilinear time-
frequency representations (TFRs) and time-scale represen-
tations (TSRs) have been used to efficiently implement de-
tectors of non-stationary signals in Gaussian noise. In this
paper, we extend their application to the case of impulsive
noise, modelled as an isotropicα-stable distribution.

1. Introduction

There is a particular class of detection problems for
which bilinear time-frequency or time-scale implementa-
tion of receivers is advantageous. Two properties charac-
terise these problems. Firstly, we must be able to express
a test statistic in a quadratic form. Secondly, there must be
an opportunity to exploit the nature of the TFR/TSR, which
arises when the signal to be detected is subjected to an un-
known time-frequency or time-scale offset.

Methods for the TFR/TSR based realisation of detection
statistics for such problems have been outlined for the case
where the noise is modelled as Gaussian [6, 7]. In many de-
tection scenarios, however, particularly those involving at-
mospheric or underwater acoustic noise, the noise displays
impulsive characteristics. There has been widespread in-
terest in the use ofα-stable distributions to model noise
displaying impulsive characteristics, but the development
of receivers using such noise models has been hampered
by the lack of a compact analytical form. Near-optimal re-
ceivers for the detection of known, deterministic signals us-
ingα-stable distributed models have recently been proposed
in [3].
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In this paper, we develop test statistics for the detection
of arbitrary nonstationary second-order signals, using a bi-
variate, isotropicα-stable model for the noise. We consider
the problem of detecting such signals in the presence of un-
known time-frequency and time-scale offsets, and demon-
strate that approximations to locally-optimal test statistics
can be expressed in a manner conducive to efficient im-
plementation using TFRs or TSRs. The paper is organ-
ised in the following manner. Section 2 reviews a method
for approximatingα-stable noise models. Section 3 de-
scribes the LO detector and near optimal approximation for
the case when the signal is subject to no time-frequency
or time-scale offset. Section 4 develops test statistics for
the case when an unknown offset is applied, and describes
TFR/TSR implementations. Section 5 discusses the exten-
sion to array-based receivers, and Section 6 examines the
performance of the developed receivers.

2. Approximating α-stable Distributions

A bivariate isotropicα-stable distribution can be a good
model for narrowband impulsive noise [5]. Theα-stable
distribution is most readily described by its characteristic
function, which, for the special case of the isotropic distri-
bution f (u,v), centred at(0,0), is:

ϕ(z1,z2) = exp(−γ |z|α) , (1)

wherez = (z1,z2)T . The distributionf (u,v) is circularly
symmetric: f (u,v) = h(

√
u2 +v2) = h(r).

Kuruoglu et al. [4] have described how sub-Gaussian
stable distributions can be analytically represented using a
mixture of Gaussians. Any isotropic bivariateSαS random
variableZ = (u,v) centred at zero can be represented as a
scale mixture of normal distributions:

fz(z;α,γ) = 1
(2π)3/2(2γ)4/α ×Z ∞

−∞
exp

(
− (2γ)2/αzTz

2v2

)
h(v)v−1dv, (2)



whereh(v) is themixing function, the form of which was
given in [4].

By discretising (2) and normalising, we obtain a finite
mixture approximation to the pdf:

fz(z;α,γ) =
M

∑
i=1

P(i)√
2πσi

exp

(
− zTz

2σ2
i

)
. (3)

whereP(i) are mixture weights, andσi variance parameters.
For this to be a good approximation, the continuous distri-
bution must be sampled at a large number of points, result-
ing in an unwieldy, high-order mixture model. It is prefer-
able to sample at fewer locations, but then train the model
parameters using the expectation-maximisation (EM) algo-
rithm [4]; in practice, it is observed that good approxima-
tions can be achieved with as few as five to ten Gaussians in
the mixture. As theα parameter diminishes, and the extent
of the tails increases, the required number of Gaussians for
an accurate approximation grows.

3. The Locally Optimum Detector

3.1. The Discrete-time Problem

We consider the detection problem involving the choice
between the hypotheses:

H0 : x = w

H1 : x = ejφθs+w . (4)

x = (x1,x2, . . . ,xn) is a vector ofn observations,s is the sig-
nal andw = (w1,w2, . . . ,wn) the noise;θ is a positive pa-
rameter affecting the amplitude of the received signal, and
φ a parameter determining a random phase shift.

We assume the following signal and noise properties:

• The noise componentswk are i.i.d. complex random
variables with a known common pdffIQ(wI ,k,wQ,k),
wherewI ,k andwQ,k are the in-phase and quadrature
components. The functionfIQ is circularly symmetric
so thatfIQ(u,v) = h(

√
u2 +v2) = h(r).

• The signal samples are complex with a joint pdf
fs(sI ,sQ), wheresI andsQ are the in-phase and quadra-
ture components; the signal is zero-mean with a known
correlation matrixRs.

The amplitude of the received signal is frequently small
in comparison to the noise (θ is small); we are then inter-
ested in developing alocally optimum(LO) detector, which
is most powerful for theθ range of interest. Assuming a
uniformly-distributedp(φ), and denoting the amplitude of
the k-th sample of the received vectorRk, we can express

the LO detection statistic as [2]:

ΛLO(x) =
n

∑
k=1

n

∑
m=1

h′(Rk)h′(Rm)
h(Rk)h(Rm)RkRm

rs(m,k)xkx
∗
m

+
n

∑
k=1

rs(k,k)

[
h′′(Rk)

h(Rk)R2
k

−
(

h′ (Rk)
h(Rk)Rk

)2
]

xkx
∗
k

wherers(m,k) denote elements of the correlation matrixRs.
Using the notation〈x,y〉= ∑k xky∗k:

ΛLO(x) = 〈Rsv(x),v(x)〉+ 〈
Rqz(x),y

〉
, (5)

where y = [ x1
R1

, . . . , xn
Rn

]
T
, v(x) = [g(x), . . . ,g(xn)]

T
and

z(x) = [ε(x), . . . ,ε(xn)]
T

for:

g(xk) = w(Rk)yk =
−h′(Rk)
h(Rk)

xk

Rk

ε(xk) = w′(Rk)yk (6)

Rq is the correlation matrix determined by isolating the
main diagonal ofRs.

When we use a finite mixture of Gaussians to approx-
imate the functionh(r) describing the noise, the non-
linearityw(r) which determines bothz andv is:

w(r) =
−h′(r)
h(r)

=
∑M

i=1P(i) r
σ3

i
exp

(
−r2

2σ2
i

)
∑M

i=1P(i) 1
σi

exp
(
−r2

2σ2
i

) (7)

whereP(i) andσi are the parameters of the mixture.

3.2. The Continuous-time Problem

We now consider the continuous-time equivalent of (4):

H0 : x(t) = w(t)
H1 : x(t) = ejφθs(t)+w(t) , (8)

wheret ∈ [0,T], the observation period,w(t) is the noise,
andx(t) is the observed signal. The signals(t) is a zero-
mean complex signal with (known) correlation function
rs(t1, t2). The continuous time LO detection statistic is:

ΛLO(x) =
〈
Rqz(x),y

〉
+ 〈Rsv(x),v(x)〉 , (9)

whereRq and Rs are now correlation operators,〈 f ,g〉 =R
t f (t)g∗(t)dt, and the functionsy, z andv are the continu-

ous forms of the vectors in (5). The second-order approxi-
mation of the likelihood ratio for the problem (8) is related
to the LO test statistic [2]:

L(x) =
fx(x|θ)
fx(x|0)

≈ 1+
θ2

2
ΛLO(x) . (10)



4. Composite Hypotheses

We now extend the continuous-time detection problem
to the case where the signal has been subjected to an un-
known time-frequency or time-scale shift. The problem can
be stated as a choice between the hypotheses:

H0 : x(t) = w(t)

H1 : x(t) = ejφθs(a,b)(t)+w(t) ,

where(a,b) denotes a time-shift ofa and either a frequency-
shift b = ν or a scale offsetb = c. The time-frequency or
time-scale shift affects only the correlation operatorsRs and
Rq. For a time-frequency shift,

R(a,ν)
s = Rs(t1−a, t2−a)ej2πν(t1−t2) , (11)

and for a time-scale offset,

R(a,c)
s = 1

cRs((t1−a)/c,(t2−a)/c) . (12)

For the fixed shift(a,b):

Λ(a,b)
LO (x) =

〈
R(a,b)

q z(x),y
〉

+
〈

R(a,b)
s v(x),v(x)

〉
.

If the shift parameters are assumed to be deterministic
but unknown, we use the generalised likelihood ratio test
approach as in [7] to derive the test statistic:

ΛGLO(x) = max
(a,b)

Λ(a,b)
LO (x) . (13)

If the parameters are assumed to be random with joint pdf
p(a,b), an appropriate test statistic is given by

T(x) =
Z

a

Z
b
T(a,b)(x)p(a,b)dadb, (14)

whereT(a,b)(x) is the likelihood ratio test statistic for fixed
a andb. Using (5) and (10), we have the test statistic:

ΛMLO(x) =
Z

a

Z
b

Λ(a,b)
LO (x)p(a,b)dadb, (15)

which is of similar form to the locally optimum statistics
derived for the Gaussian noise case in [7].

TFR/TSR implementation

The TFR/TSR implementation of the test statistics is
based on the covariance properties of the Weyl symbolLH
of a positive definite linear operatorH, and the Weyl corre-
spondence [1], which states that:

〈Hx,x〉=
Z

t

Z
f
LH(t, f )Wx(t, f )dt d f , (16)

whereWx(t, f ) = Wxx(t, f ) is the Wigner distribution:

Wxy(t, f ) =
Z

τ
x(t + τ/2)y∗(t− τ/2)e− j2π f τ dτ. (17)

The Weyl symbol displays a time-frequency shift covari-
ance, L

R(a,ν)
s

(t, f ) = LRs(t − a, f − ν), and a time-scale

shift covariance,L
R(a,c)

s
(t, f ) = LRs(

(t−a)
c ,c f). We have〈

R(a,ν)
s x,x

〉
= Px(a,ν;Rs), a Cohen’s class TFR [1],

Pxy(a,ν;Rs) =
Z

u

Z
ξ
Wxy(u,ξ)LRs(u−a,ξ−ν)dudξ

and
〈

R(a,c)
s x,x

〉
= Dx(a,c;Rs), an affine class TSR,

Dxy(a,c;Rs) =
Z

u

Z
ξ
Wxy(u,ξ)LRs(

u−a
c

,cξ)dudξ

We implement the statisticsΛGLO(x) andΛMLO(x) using:

Λ(a,b)
LO (x) = Vz(x),y(a,b;Rq)+Vv(x)(a,b;Rs)

whereV is the TFRP or the TSRD depending on the nature
of the shift parameters.

A TFR/TSR-based implementation offers a computa-
tional saving because of the fast algorithms for evaluating
TFRs and TSRs. We consider the TFR case for anN-sample
observation, with a possible time-shift of±N/4 samples
and a possible frequency shift of±0.25. If we construct
an N/2×N/2 sample time-frequency lattice covering this

range, we must considerN2/4 possibleR(a,b)
s . The direct

implementation isO(N3), as it involvesO(N) multiplica-

tions for eachR(a,b)
s . The TFR-based implementation in-

volves the evaluation of a number of spectrograms to cal-
culateΛ(a,b) over all relevant(a,b); the computational ex-
pense isO(N2 logN).

5. Array detection

Rao and Jones investigate the use of TFRs and TSRs
for implementing array-based receivers under the assump-
tion of Gaussian noise in [6]; they propose structures for
the non-coherent, partially-coherent, and coherent detection
scenarios. The near-optimal receivers discussed in this pa-
per are readily extended to generate receivers which operate
on an array of sensors. In particular, we can derive the near
optimal test statistic for the case of coherent receivers [6]:

ΛGLO(x) = max
(a,b)

[
VvM (a,b;Rs)
+∑M

i=1Vz(xi),yi
(a,b;Rq)

]
(18)

wherevM = ∑M
i=1v(xi), a sum over theM available sensors;

we assume a known angle of arrival and alignedxi .



6. Performance

In this section, we illustrate the performance of the pro-
posed detection statistics. We concentrate on the TFR re-
ceiver, and use the coherent array formulation of (18) for
an array of 4 sensors. We contrast the mixture model time-
frequency detector with the time-frequency LO (Gaussian)
detector proposed in [6, 7], and a time-frequency implemen-
tation of the Cauchy receiver. The LO Gaussian test statistic
(for white noise) has the form [6]:

ΛG = max
(a,b)

[VxM(a,b;Rs)] . (19)

wherexM = ∑M
i=1xi . The Cauchy test statistic has the same

form as the detector presented above, but the non-linearity
w(r) of (7) becomes:

w(r) =
−h′(r)
h(r)

=
3r

(γ2 + r2)3/2
(20)

which arises from a bivariate Cauchy noise model.
We suppose that the signal of interest is characterised by

the random process:

s(t) =
3

∑
k=1

Xke
−βkt2, (21)

where theXk are i.i.d. (Xk ∼ N (0,1)) and βk is a fixed
complex number. The signal is thus a weighted sum of
three chirps, with the weights determined by the random
processesXk. In our test, we introduce a random time-
frequency shift and examine the two noise casesα = 1.5
andα = 1.9 with the dispersionγ set to 1. Figure 1 dis-
plays the detection probability relative to signal strength for
a constant false alarm rate of 0.01, and Figure 2 displays
the ROC curves for a constant signal strength ofθ = 3. The
performance of the Gaussian LO detector is poor for the
α = 1.5 case, and it deteriorates as the noise becomes in-
creasingly impulsive. The mixture model detector performs
better than the Cauchy detector for the depicted noise cases;
the performance discrepancy diminishes asα approaches 1.

7. Summary

In this paper, we developed near-optimal test statis-
tics for the detection of arbitrary nonstationary second-
order signals in impulsive noise, modelled using a bivariate,
isotropicα-stable distribution. We considered the extension
to the case when the signal to be detected is subjected to
an unknown time-frequency or time-scale shift, and showed
that approximations to locally-optimal test-statistics can be
implemented using TFRs/TSRs. We demonstrated that the
performance of the LO linear receiver is poor in even mildly
impulsive noise; the alternative detection statistics proposed
in this paper offer considerably enhanced performance.
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Figure 1. Detection probabilities for constant
false-alarm rate = 0.01. The noise is isotropic
α-stable with γ = 1.0; left α = 1.5, right α = 1.9.
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Figure 2. ROC curves for θ = 3. The noise
is isotropic α-stable with γ = 1.0; left α = 1.5,
right α = 1.9.
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