Time-frequency based detection in alpha-stable distributed noise environments
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Abstract In this paper, we develop test statistics for the detection
of arbitrary nonstationary second-order signals, using a bi-
The Gaussian distribution is an inadequate descrip- variate, isotropi@-stable model for the noise. We consider
tion of certain types of real-life noise that display impul- the problem of detecting such signals in the presence of un-
sive characteristics. The-stable distribution has been known time-frequency and time-scale offsets, and demon-
suggested as a more appropriate model. Bilinear time- strate that approximations to locally-optimal test statistics
frequency representations (TFRs) and time-scale represen<an be expressed in a manner conducive to efficient im-
tations (TSRs) have been used to efficiently implement deplementation using TFRs or TSRs. The paper is organ-
tectors of non-stationary signals in Gaussian noise. In this ised in the following manner. Section 2 reviews a method
paper, we extend their application to the case of impulsive for approximatinga-stable noise models. Section 3 de-
noise, modelled as an isotropicstable distribution. scribes the LO detector and near optimal approximation for
the case when the signal is subject to no time-frequency
or time-scale offset. Section 4 develops test statistics for
the case when an unknown offset is applied, and describes
TFR/TSR implementations. Section 5 discusses the exten-

sion to array-based receivers, and Section 6 examines the
There is a particular class of detection problems for performance of the developed receivers.

which bilinear time-frequency or time-scale implementa-

tion of receivers is advantageous. Two properties charac—2 Approximating a-stable Distributions
terise these problems. Firstly, we must be able to express
a test statistic in a quadratic form. Secondly, there must be A bivariate isotropia-stable distribution can be a good

an opportunity to exploit the nature of the TFR/TSR, which model for narrawband impulsive noise [5]. Thestable

arises when the signal to be detected is subjectedtoanun-.~ "~ =~ " . . ; -
known time-frequency or time-scale offset. distribution is most readily described by its characteristic

Methods for the TFR/TSR based realisation of detection funption, which, for the SpeCial -case of the isotropic distri-
L : bution f(u,v), centred at0,0), is:

statistics for such problems have been outlined for the case
where the noise is modelled as Gaussian [6, 7]. In many de- b (21,22) = exp(—y|z|*), 1)
tection scenarios, however, particularly those involving at-

mospheric or underwater acoustic noise, the noise displaysvherez = (z1,2)". The distributionf (u,v) is circularly
impulsive characteristics. There has been widespread insymmetric:f (u,v) = h(vu2+v2) = h(r).

terest in the use ofi-stable distributions to model noise Kuruoglu et al. [4] have described how sub-Gaussian
displaying impulsive characteristics, but the developmentstable distributions can be analytically represented using a
of receivers using such noise models has been hamperedixture of Gaussians. Any isotropic bivariég®aS random

by the lack of a compact analytical form. Near-optimal re- variableZ = (u,v) centred at zero can be represented as a
ceivers for the detection of known, deterministic signals us- scale mixture of normal distributions:

ing a-stable distributed models have recently been proposed

1. Introduction
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whereh(v) is the mixing function the form of which was  the LO detection statistic as [2]:
givenin [4].

By discretising (2) and normalising, we obtain a finite A A Rk)h/(Rm) m.k
mixture approximation to the pdf: Lo(x k;rrgl h(R«)h(Rm)R«Rm rs(m k)
n h//(Rk) ( W (Rk) ) T| .
z'z + 3 rs(k k - X
=) peo(-33). @ & [hmkm% TROR) |

. . . . wherers(m, k) denote elements of the correlation matfix
whereP(i) are mixture weights, ang variance parameters. Using the notationix,y) — Sy
For this to be a good approximation, the continuous distri- ’ kAT
bution must be sampled at a large number of points, result- ALo(x) = (Rv(X), V(X)) + <qu(x),y>, (5)
ing in an unwieldy, high-order mixture model. It is prefer-

able to sample at fewer locations, but then train the model T

wherey = [&,.... %] v(x) = [g(X,),...,9( and
parameters using the expectation-maximisation (EM) algo- y=Ix R”]T _( ) = [00), - g0x)]
rithm [4]; in practice, it is observed that good approxima- 2(X) = [(x),...,&(xn)]" for:
tions can be achieved with as few as five to ten Gaussians in “H(Re) X
the mixture. As thex parameter diminishes, and the extent ax) = WR)Yk= h X
of the tails increases, the required number of Gaussians for (R R
an accurate approximation grows. e) = W(Ryk (6)
) Rq is the correlation matrix determined by isolating the
3. The Loca"y Opt'mum Detector main diagona| oR..
When we use a finite mixture of Gaussians to approx-
3.1. The Discrete-time Problem imate the functionh(r) describing the noise, the non-
linearityw(r) which determines bothandyv is:
We consider the detection problem involving the choice Mo 2
between the hypotheses: ") —H(r) 2i=1 P(')g eXp(T‘z) @)
w(r) = =
Ho @ x=w h() — sMpGi)2 eXP(ZGz)
Hi : x=¢e%s+w. (4)

whereP(i) ando; are the parameters of the mixture.

X = (X1,X2,...,%n) iS @ vector oh observationssis the sig- ) )
nal andw = (Wi, W, ..., wy) the noise;d is a positive pa-  3-2. The Continuous-time Problem
rameter affecting the amplitude of the received signal, and
@a parameter determining a random phase shift. We now consider the continuous-time equivalent of (4):
We assume the following signal and noise properties:
Ho @ x(t) =w(t)
e The noise componentsy are i.i.d. complex random Hi @ xt)= eJCPes(t)+W(t), (8)
variables with a known common pdfg (W k, Wok),
wherew; x andwg are the in-phase and quadrature wheret € [0,T], the observation periodgy(t) is the noise,
components. The functiofig is circularly symmetric ~ andx(t) is the observed signal. The sigrs) is a zero-
so thatfig(u,v) = h(vu2+v2) = h(r). mean complex signal with (known) correlation function
rs(t1,t2). The continuous time LO detection statistic is:
e The signal samples are complex with a joint pdf

fs(s1,Sq), wheres andsg are the in-phase and quadra- ALo(X) = (Rqz(x),y) + (RsV(X), V(X)) , (9)
ture components; the signal is zero-mean with a known )
correlation matrixRs. whereRq andRs are now correlation operator$f,g) =

J; T(t)g*(t)dt, and the functiony, zandv are the continu-
The amplitude of the received signal is frequently small ous forms of the vectors in (5). The second-order approxi-
in comparison to the noisé (s small); we are then inter- mation of the likelihood ratio for the problem (8) is related
ested in developing lcally optimum(LO) detector, which  to the LO test statistic [2]:
is most powerful for thed range of interest. Assuming a )
uniformly-distributedp(¢), and denoting the amplitude of L(X) = fx(x(6) ~1+ e—/\Lo(X) ) (10)
the k-th sample of the received vecRy, we can express fx(X/0) 2




4. Composite Hypotheses

We now extend the continuous-time detection problem

to the case where the signal has been subjected to an un-

known time-frequency or time-scale shift. The problem can
be stated as a choice between the hypotheses:

Ho
Hi

X(t) = w(t)
X(t) = el98s@P) (t) +-w(t),

where(a, b) denotes a time-shift @and either a frequency-
shift b = v or a scale offseb = c. The time-frequency or
time-scale shift affects only the correlation operaig¢and
Rq. For a time-frequency shift,

REY) = Ry(ty — a,t — a)el2ZVli-t2) | (11)
and for a time-scale offset,
R — 1Ry((t1—a) /c, (t2—a) /c). (12)

For the fixed shifi(a, b):

A0 = (RE23,y) + (REVO0),v(x) )

If the shift parameters are assumed to be deterministic
but unknown, we use the generalised likelihood ratio test
approach as in [7] to derive the test statistic:

AsLo(¥) = max\E” ().

d

(13)

If the parameters are assumed to be random with joint pdf
p(a,b), an appropriate test statistic is given by

T(x) = /a /b T(2b)(x) p(a, b) dadb, (14)

whereT (@P)(x) is the likelihood ratio test statistic for fixed
aandb. Using (5) and (10), we have the test statistic:

(15)

whereW(t, ) =Wi(t, f) is the Wigner distribution:
Wy (t, ) = /x(t+r/2)w(t e Mg (17)
T

The Weyl symbol displays a time-frequency shift covari-
ance, Lav) (t,f) = Lps(t—a,f —v), and a time-scale
S

We have

C

<R§a’v>x,x> = P,(a,Vv;Rs), a Cohen’s class TFR [1],

shift covariance L o (t, f) = Lro (=2 cf).

Py(@viRs) = [ /E Wy (U,€) L, (U— &, & —v) duck
u
and<R§a’°)x,x> = Dy(a,c;Rs), an affine class TSR,

u—a
Diy(a.Rs) = [ [ Why(uE)Lr,(* ") duc
We implement the statistidSgLo(X) andAmLo (X) using:

A(L%)b) (X) = Vz(x),y(aa b; Rq) +Vv(x) (a7 b; RS)

whereV is the TFRP or the TSRD depending on the nature
of the shift parameters.

A TFR/TSR-based implementation offers a computa-
tional saving because of the fast algorithms for evaluating
TFRs and TSRs. We consider the TFR case fadaample
observation, with a possible time-shift éfN/4 samples
and a possible frequency shift 8f0.25. If we construct
anN/2 x N/2 sample time-frequency lattice covering this

range, we must considé\?/4 possibleRéa’b). The direct
implementation i€D (N3), as it involvesO (N) multiplica-
tions for eackRéa’b). The TFR-based implementation in-
volves the evaluation of a number of spectrograms to cal-
culateA@P) over all relevanta, b); the computational ex-

pense i€ (N?logN).

5. Array detection

Mo = [ [ A p(a.b)dadb

which is of similar form to the locally optimum statistics

derived for the Gaussian noise case in [7].

TFR/TSR implementation

The TFR/TSR implementation of the test statistics is
based on the covariance properties of the Weyl syrhhol
of a positive definite linear operatét, and the Weyl corre-

spondence [1], which states that:

() = [ [ Ll WK, Dat,

(16)

Rao and Jones investigate the use of TFRs and TSRs
for implementing array-based receivers under the assump-
tion of Gaussian noise in [6]; they propose structures for
the non-coherent, partially-coherent, and coherent detection
scenarios. The near-optimal receivers discussed in this pa-
per are readily extended to generate receivers which operate
on an array of sensors. In particular, we can derive the near
optimal test statistic for the case of coherent receivers [6]:

ax VVM (av b: RS)

AN X) =
GLo(X) =MaX| M V(@ biRg)

(18)

wherevy = z{\"zlv(x;), a sum over th/ available sensors;
we assume a known angle of arrival and aligred



6. Performance

In this section, we illustrate the performance of the pro-
posed detection statistics. We concentrate on the TFR re-
ceiver, and use the coherent array formulation of (18) for
an array of 4 sensors. We contrast the mixture model time-
frequency detector with the time-frequency LO (Gaussian)
detector proposedin [6, 7], and a time-frequency implemen-
tation of the Cauchy receiver. The LO Gaussian test statistic
(for white noise) has the form [6]:

Ne = max|Vy, (a,b; Rs)]. (19)

(a,b)
wherexy = M, x. The Cauchy test statistic has the same
form as the detector presented above, but the non-linearity
w(r) of (7) becomes:

—h'(r) 3r
w(r) =
which arises from a bivariate Cauchy noise model.

We suppose that the signal of interest is characterised by
the random process:

(20)

s(t) = % Xee P, (21)

K=1
where theXy are i.i.d. &« ~ N (0,1)) andp is a fixed
complex number. The signal is thus a weighted sum of
three chirps, with the weights determined by the random
processes{x. In our test, we introduce a random time-
frequency shift and examine the two noise cases 1.5
anda = 1.9 with the dispersiory set to 1. Figure 1 dis-
plays the detection probability relative to signal strength for
a constant false alarm rate of0Q, and Figure 2 displays
the ROC curves for a constant signal strength ef 3. The
performance of the Gaussian LO detector is poor for the 1
o = 1.5 case, and it deteriorates as the noise becomes in-
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Figure 1. Detection probabilities for constant
false-alarm rate = 0.01. The noise is isotropic
o-stable with y=1.0; left a = 1.5, right o =1.9.
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Figure 2. ROC curves for 0 = 3. The noise
is isotropic a-stable with y= 1.0; left a = 1.5,
right a=1.9.
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