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ABSTRACT 
We address the problem of signal decomposition. We spec- 
ify signal components by the property that their energies are 
localised and disjoint in the time-frequency plane. Rather 
than modelling the signal directly, we represent the time- 
frequency energy of the signal using a finite mixture model. 
This model is used to develop a partitioning of the time- 
frequency plane, allowing the application of time-frequency 
filtering to isolate components. Modelling energy rather 
than specifying a dictionary of allowable waveforms im- 
poses fewer constraints on what a component may be. We 
demonstrate how the approach can be applied in the context 
of vibration analysis, where we wish to isolate the structure 
of individual bending waves travelling through a beam. 

1. INTRODUCTION 

Signal decomposition aims to separate individual compo- 
nents comprising an observed signal. There is an underly- 
ing assumption that the components can be distinguished 
in some manner. l n  performing time-frequency decomposi- 
tion, we target signals comprised of components whose en- 
ergy is in some sense localised in the time-frequency (TF) 
plane. Even with the assumption of clustered energy, we are 
still not in a position to readily perform decomposition. We 
need to make the definition of a component more concrete, 
whilst avoiding imposing unnecessary constraints. 

In this paper, we consider the situation of components 
occupying distinct TF regions. For noiseless signals, sig- 
nal decomposition is then an exercise in developing a par- 
titioning of the TF plane such that each segment contains a 
single component. This paper argues that in this scenario 
modelling the TF energy of a component provides greater 
flexibility than component modelling in the time-domain. 

The majority of methods for performing linear signal 
decomposition involve over-complete waveform dictionar- 
ies. By selecting the (in some sense) optimum set of avail- 
able waveforms from the dictionary, we can obtain a sparse 
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model of the signal. Such decomposition schemes include 
matching pursuit [8] and basis pursuit [3], and the chirplet 
decomposition in [2]. A problem with these decomposi- 
tion methods is the restricted number of waveforms in the 
dictionary. While dictionaries containing a wide variety of 
elements can be employed (at the expense of high compu- 
tational cost), the representations are not satisfactory unless 
all signal components are at least reasonably well approxi- 
mated by dictionary elements. The introduction of param- 
eters in the dictionaries provides greater flexibility, and has 
been explored in [9] and [5]. 

The limitations of sparse linear time-frequency mod- 
els motivate the development of a semi-parametric model 
of signal time-frequency energy density. We propose a 
model taking the form of a set of radial basis functions in 
the time-frequency plane. Although the use of basis func- 
tions imposes some limitations on the nature of a compo- 
nent, there is more flexibility than in a linear decomposi- 
tion approach (unless a vast dictionary is used), because 
the basis functions are parameterised and the modelling is 
performed in the time-frequency plane. The purpose of a 
model of energy density is different from that of a model 
of a signal. The energy-based time-frequency model identi- 
fies how many components there are, describes the nature of 
their energy structure, and probabilistically associates time- 
frequency locations with the components. The construction 
of an energy density model does not, of itself, provide a de- 
composition of the signal. We develop a partitioning of the 
TF plane based on the energy model and utilise it  to design 
time-varying filters [7] to decompose the signal. 

Section 2 of the paper clarifies the structure of the time- 
frequency mixture model and discusses two critical issues 
in its construction: determining the number of components 
to include and optimising the model parameters. Section 3 
details the decomposition approach, and Section 4 discusses 
an extension to warped time-frequency mixture models. We 
apply the algorithm to decompose a beam vibration signal in  
Section 5, and make some concluding remarks in Section 6. 

http://rice.edu
mailto:wjf@eng.cam.ac.uk


2. THE TIME-FREQUENCY MIXTURE MODEL 

The time-frequency mixture model consists of a set of ba- 
sis functions taking the form of two-dimensional Gaussian 
functions in the TF plane, with full covariance matrices to 
allow arbitrary orientation and aspect ratio. The model com- 
prised of hf-components is 

M 

FM ( X I @ ,  A) = C hifi(xIei) (1) 

where x are time-frequency vectors [ t , f ]  ‘, h = {hl , .  . . ,I,+,} 
are mixing weights, constrained to be positive, and 8 = 
{el,. . . ,OM} is the set of parameter vectors. The param- 
eter vector 8; of each basis function includes the mean 
P;  = [$ f ]’ and the covariance matrix Z; of the nor- 
malised Gaussian. Each basis function is considered to cor- 
respond to a single signal component, so components are 
constrained to occupy a Gaussian-shaped region in the TF- 
plane. 

Training this model requires information about the dis- 
tribution of signal energy i n  the time-frequency plane and is 
based on an energetic time-frequency representation (TFR) 
P,(t,f) of a signal s ( t ) .  The resulting mixture model is de- 
pendent on the choice of the TFR; as soon as f,(t,f) fails 
to represent some portion of the energetic nature of the sig- 
nal, i t  is impossible for it to be recovered. Adaptive TFDs, 
particularly AOK distributions [6], provide satisfactory dis- 
tributions for the majority of signals. Since the energetic 
time-frequency model is only capable of generating a pos- 
itive value at any time-frequency location, we use only the 
positive and real part of a time-frequency representation, 
and denote it C s ( t , f ) .  

i= I 

,’ P,  

2.1. Fixed-order model parameter estimation 

Since an energetic TFR is an imperfect and non-pointwise 
portrayal of signal energy density, we don’t view the TFR as 
a definitive density description. It is useful to consider it as a 
sample from a true underlying density, a ‘data set’ based on 
which density estimation can be performed. The parameter 
estimation exercise is then equivalent to probability density 
estimation using a finite mixture model. Maximising the 
likelihood of the calculated TFR given the parameters of 
the model is a sensible optimisation technique. 

The likelihood of the TFR C, given the M-component 
model with parameter set 8 and weight set h i s  

The optimisation problem for fixed model size is then 

[%,.opt 3 k .opt] = arg :y k,. (3) 

The optimisation problem (3) has been investigated at 
length in the context of probability density estimation. A 
variant of the expectation-maximisation (EM) algorithm is 
a practical and powerful method of determining model pa- 
rameters that correspond to a local maximum of the like- 
lihood Lc,. If this algorithm is initialised carefully using 
the information provided by the initial TFR, then the local 
maximum is often a global maximum or a close approxi- 
mation. The form of this variant and its application to the 
optimisation problem (3) are discussed in [4]. 

2.2. Training the model 

Training the model involves determining the most suitable 
number of components. Functional merging [4] is a useful 
technique for adapting the number of Gaussians in a finite 
mixture model. It is based on the principle that Gaussians 
modelling the same mode should be closer together than 
those modelling separate modes. Critical to its operation 
is the choice of a distance measure to gauge the distance be- 
tween two densities. We use the arc-cosine [4] distance be- 
cause it is related to maximum likelihood and has a closed- 
form expression when used to measure the distance between 
mixtures of Gaussians. 

The functional merging operation consists of the follow- 
ing steps: replace the closest two Gaussians in the model 
with a single Gaussian; store the distance ‘t between the 
original mixture of two Gaussians and the replacement; 
train the new fixed-order model; and return the distance z 
and the new model order M .  

Combining functional merging and the fixed-order opti- 
misation strategy leads to the following training algorithm: 

I .  Propose an over-represented model of N components 
and optimise the model parameters 8 and A. Choose 
a maximum distance threshold Zmax beyond which 
merging should not occur. Set 7 0  = 0, and i = 1 .  

2. Repeat until ~i > z~~~ or M ;  = I : Perform the merging 
operation on the current model to determine ~ i ,  M ; .  If 
~j < ~ ; - l ,  then set Mi-1 = M ; ,  otherwise increment i. 

3. Choose the final model Fop[ as that which maximises 
the model probability function: 

f(F,) %+I -7; 
I -- , i =  1 ,  . . . ,  imax- 1 

%ax 

The probability function is based on the principle that 
the model order should be consistent over the largest thresh- 
old range when Gaussians representing the same mode 
have been merged, and no Gaussians representing separate 
modes have been merged. After training, it  is possible that 
some basis functions in the selected model do not cover a 
sufficient TF area to represent true signal components; ei- 
ther there has been insufficient merging (so that a genuine 
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component’s energy is described by a number of Gaussians) 
or noise terms or cross-components present in the initial 
TFR are being modelled individually. We test this by check- 
ing that all of the basis functions satisfy a bound imposed 
by the uncertainty principle. If some do not, we replace Fopt 
with the most probable model comprised of fewer compo- 
nents, all of which satisfy the uncertainty constraint. 

3. TIME-FREQUENCY DECOMPOSITION 

We desire a segmentation based on the energetic model: 
a strict classification of each time-frequency location as a 
member of the region Rk corresponding to component ck 
is appropriate. Based on the mixture model, a probability 
function for the membership of time-frequency location to 
a particular component can be constructed 

(4) 

The classification is then performed using the Bayesian 
multi-class decision procedure. The decision rule is simply 

x = [ t , f ] *  E Rk whereP(Ck1x) = maxP(Cj1x). (5) 

The classification results in a partitioning of the TF plane. 
We use the partitioning to develop perfect-reconstruction 
filter banks according to the method in [7]. 

I 

4. WARPED MIXTURE MODELS 

The mixture model is restricted to representing a signal’s 
energy structure using Gaussian basis functions, so is suit- 
able for signals displaying approximately linear instanta- 
neous frequency (IF) behaviour. The Wigner distribution 
and many related TFRs are also poorly suited to non-linear 
components; time-frequency analysis of such signals is best 
performed using alternative “warped” representations. In 
this section, we outline how warped mixture models can be 
generated using such warped TFRs. 

The U- and VU-Cohen’s classes of distributions [ I ]  are 
suitable for signals whose components all have the same 
non-linear time-frequency behaviour. The class is con- 
structed by applying a unitary transform U to a signal prior 
to generating a Cohen’s class TFR. The resulting represen- 
tation portrays the disFib_ution of energy in a warped time- 
frequency plane (the T - F  plane). By constructing a mix- 
ture model using this warped energy representation, we can 
model components that have decidedly non-Gaussian en- 
ergy shape in the TF plane, but approximately Gaussian 
shape in the warped plane. The choice of a distribution (or 

U operator) that matches the signal components depends on 
knowledge of the specific signal structure, but in many cases 
even a rough approximation can result in a much improved 
modelling (as evident in Section 5) .  In order for the method 
to succeed, all components must display approximately lin- 
ear behaviour in the warped plane. 

One can determine a post-processing operator V that 
performs an inverse warp, mapping the T - F  energy repre- 
sentation, back to the TF plane. This same operator can 
be applied to the Gaussian mixture model generated in the 
warped plane, leading to a warped mixture model: 

In this model, the basis functions occupy non-Gaussian 
shapes in the TF plane, but the same approach as before 
can be used to generate a segmentation and perform decom- 
position. 

5. VIBRATION ANALYSIS 

This section applies the mixture model decomposition al- 
gorithm to an experimentally-obtained set of data. We anal- 
yse the impact response of a beam. A 7.2 m long mild- 
steel beam was suspended horizontally on light cords, and 
one end was lightly tapped with a soft-tipped hammer. The 
impact response was measured using an accelerometer at- 
tached to the beam close to the point of impact. Since 
the group velocity of the bending waves is dependent on 
frequency, the high-frequency groups travel faster than the 
low-frequency groups. 

Figure ](e) shows the measured response, and Fig- 
ure I(d) shows an adaptive TFR of it. We generate a VU- 
Cohen’s class TFR using the transformation: 

and the post-processing transformation V to warp back to 
ordinary time t .  The resultant representation, displayed in 
Figure ](a), clearly indicates that the first three compo- 
nents have been substantially ‘linearised’. The warping is 
matched to some of the components better than others, both 
because the warping is probably being applied to the wrong 
variable (time instead of frequency), and the power law is 
not correct. The second and third components in particular 
retain a non-linear nature. However, the linearisation is suf- 
ficient to make the Gaussian mixture model (Figure I(b)) an 
appropriate representation. 

The strict classification procedure using the warped 
mixture model (Figure I(c)) generates a complete parti- 
tioning of the positive half of the time-frequency plane, as 
shown in Figure I(d). We use this partitioning to extract 
the different waves constituting the impact response; Fig- 
ure 1 (f) sketches two of these waveforms. 
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Figure 1 : Time-frequency decomposition of the beam impulse response. (a) The VCU-smoothed pseudo-Wigner distribution 
(TE-plane). (b) The mixture model (TE  -plane). (c) The unwarped mixture model (TFplane). (d) The segmentation of the 
plane (regions labelled 1 to 6). The regionally optimised AOK based distribution [4] is superimposed. (e) The beam impulse 
response. (f) The extracted components corresponding to regions 1 and 2. 

6. CONCLUSIONS 

We have presented a method for performing signal decom- 
position of signals consisting of time-frequency disjoint 
components. The method involves the development of a 
mixture model to represent a signal’s time-frequency ener- 
getic structure. The mixture model identifies the number 
of components in the signal, and specifies the probability 
that energy observed at a particular time-frequency location 
arises from a particular component. This approach allows us 
to develop a decomposition without requiring that a compo- 
nent belong to a particular dictionary of waveforms. When 
applied to the analysis of the impact response of a beam, 
the technique provided insight into the characteristics of the 
individual bending waves travelling through the beam. 
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