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ABSTRACT 

Ideally, kernels used to generate bilinear time-frequency dis- 
tributions (TFD) should be signal-dependent, and optimised 
independently at every location in the time-frequency (TF) 
plane. This poses an extremely severe computational bur- 
den. A compromise is proposed in this paper: time-varying 
kernels are optimised for specific regions in the time-frequency 
plane. The regions, designed to isolate separate components 
comprising the signal, are determined by modelling the TFD 
using a finite mixture model of Gaussian distributions. The 
parameters of the model are estimated using a combination 
of the expectation-maximisation algorithm and functional mer- 
ging. The regional optimisation provides improved separa- 
tion and resolution of closely-spaced components when com- 
pared to methods using a solely time-varying kernel, without 
incurring an overwhelming computational expense. 

1. INTRODUCTION 

The time-frequency distributions (TFD) of Cohen’s bilinear 
class [2] are generated by smoothing the Wigner-Ville distri- 
bution using a kernel designed to reduce cross-components. 
The choice of kernel is critical to the appearance and quality 
of the TFD. A fixed kernel cannot achieve a good represent- 
ation, as defined by minimal smearing of auto-components 
and strong suppression of cross-component interference, for 
every type of signal encountered. To achieve satisfactory 
performance, the kernel must be dependent on the analysed 
signal. Recognising this, Baraniuk and Jones [4] developed 
a signal-dependent kernel optimisation method for a time- 
varying kernel, which performs well for signals comprised 
of time-separable components, but suffers when components 
with different time-frequency behaviour overlap in time. 

Jones and Parks proposed an adaptive TFD [5], which 
maximised a measure of time-frequency concentration at each 
location in the plane by adapting the parameters of the win- 
dows inherent in the spectrogram. The method produces im- 
pressive time-frequency distributions, but the computational 
cost is extremely high. The TFD developed in [6] utilises 

a separable smoothing kernel comprised of two rectangular 
functions, whose shape is adapted at each location to reduce 
interference. The resulting distributions are good, but the 
use of a separable rectangular kernel is restrictive, leading 
to smearing of for some signals. The cost of optimising the 
kernel at each individual location is again high. 

If the time-frequency components comprising the signal 
could be isolated and extracted, a time-varying kernel could 
be regionally optimised for each extracted component. This 
is the method proposed in this paper. Commencing with an 
initial approximate TFD, an iterative process is applied to 
identify and isolate the components comprising the signal. 
The number of components in the distribution and their loc- 
ations and shapes are determined by modelling the TFD us- 
ing a finite mixture model of Gaussian distributions. The 
number of Gaussians in the mixture model and the associ- 
ated parameters are determined through a combination of the 
EM algorithm and the functional merging technique [7]. The 
model is used to define the time-frequency regions occupied 
by the components using a Bayesian classification approach. 
Non-separable filters are designed using the method in [3] 
to extract the components from the signal. The optimisation 
method proposed in [4], which poses a relatively minor com- 
putational burden, is used to procure the time-varying kernel 
for each isolated component. 

The following section of the paper defines the time fre- 
quency distributions produced and reviews the kernel optim- 
isation problem formulated in [ 13. The third section contains 
an outline of the algorithm used to generate the TFD. The 
fourth section of the paper discusses the method used to gen- 
erate the finite mixture model. In the fifth section, a compar- 
ison is made between the TFDs obtained using the algorithm 
presented in this paper and those obtained using the time- 
varying kernel of [4]. Conclusions follow in the final sec- 
tion. 

2. DEFINITIONS AND PROBLEM STATEMENT 

A time-frequency distribution which belongs to Cohen’s bi- 
linear class can be expressed as the Fourier transform of the 
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product of the ambiguity function (AF) of the signal, x( t ) ,  
and a smoothing filter: 

_. * c  

where A(8, T )  is the symmetrical AF, defined as: 

The TFDs generated by the algorithm proposed in this 
paper are members of an extension of the bilinear class. Both 
the smoothing kernel and the ambiguity function are region- 
ally localized by dividing the time-frequency plane into n+ 1 
regions. The first n regions correspond to components iden- 
tified in the signal; the final region covers the remainder of 
the plane. The regionally localized ambiguity function, for 
( t ,  w )  E Rk, obtained by performing the time-frequency fil- 
tering process of [3], is given by: 

where 

NI. 

(4) 
v = l  

Here Xk(t) is the orthogonal projection of x( t )  E L2(R) 
on &, a linear signal space covering Rk energetically and 
with little energy outside the region. S k  is an orthogonal 
projection operator onto &, and {sv(t))r7.1 is an orthonor- 
mal basis of & ,  where Nk is the dimension of the space. 

The kernels developed within the algorithm have Gaus- 
sian radial cross-section: 

(5)  

where r = d m .  The spread function, U ,  controls the 
spread of the Gaussian at radial angle $ = arctan(T/8). 
Such a kernel provides more flexibility in shape than a con- 
ventional Gaussian, whilst maintaining sufficient computa- 
tional ease. The kernels are optimal in the sense that they 
are the solution to the optimisation problem of [I], which 
proposes constraints and a performance index designed to 
suppress cross-components whilst passing auto-components 
with as little distortion as possible. The problem is formu- 
lated in the ambiguity plane, exploiting its property of sep- 
aration of auto- and cross-components, and can be stated for 
the radially Gaussian kernel as [4]: 

aopt = a r g m p L 2 =  Lm IA(r, $)@(r, $ ) I 2  rdr& (6) 

subject to: 

where Q is a parameter controlling the kernel volume, The 
optimisation is performed at every time location using a re- 
gion and time dependent ambiguity function A(k, t ;  8, T ) .  

The regional optimisation algorithm decomposes the TF 
plane into a number of regions, each representing a compon- 
ent of the signal. The portion of the signal within that region 
can then be extracted, and optimisation of a local kernel per- 
formed. The algorithm commences with an initial estimate 
of the distribution, and iteratively refines the distribution via 
the regional optimisation process until the number of com- 
ponents detected in the signal stabilises. 

3. OUTLINE OF ALGORITHM 

The first task performed by the algorithm is the detection and 
isolation of the major components of the signal. An initial 
TED is required to determine a reasonably accurate estim- 
ate of the number of components and their approximate loc- 
ations and shapes. It is important that cross-components be 
suppressed as much as possible in the initial distribution to 
prevent the masking of genuine components and the false in- 
clusion of cross-components in the model generation. Auto- 
component smearing in the initial representation is not im- 
portant, because after component identificaton they will be 
re-processed, and the smearing removed. The TFD gener- 
ated using the method of [4], with a very small volume para- 
meter, is sufficiently accurate, and is quickly obtained. 

The number of distinct components in the distribution 
must be estimated, and the locations and shapes of the com- 
ponents approximated. A finite mixture model is developed 
to approximate the energy distribution. The mixture model 
is a weighted sum of Gaussian distributions, with the shape 
of each Gaussian governed by a full covariance matrix. The 
manner in which the parameters of the finite mixture model 
are estimated is discussed in the following section. At this 
stage, an over-estimation of the number of components is 
preferable to an under-estimation. An over-estimation can 
occur when cross-components are included in the model or 
when over-fitting occurs. In the first instance, the fault will 
be removed in the next iteration, because once the TF region 
corresponding to a cross-component is isolated, the apparent 
energy in the region will disappear. The clarification of the 
distribution encourages merging of over-fitted components. 

The finite mixture model is used to divide the TF plane 
into regions corresponding to the components. The division 
is accomplished according to a Bayesian classification ap- 
proach, with equal priors associated with each component. 
Each location in the TF plane is assigned to a component 
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based on the MAP probability, with a threshold on the min- 
imum inclusion probability. The choice of threshold does 
not affect the performance of the algorithm, provided it is 
small enough such that all locations significantly contribut- 
ing to a distribution’s energy are included. 

The regions generated by the classification procedure act 
as indicator functions. Based on these indicator functions, 
non-separable time-frequency filters are designed as in [3]. 
The generated filters are applied to the signal to isolate the 
components in the model. The time-dependent kernel acting 
within each component’s region is optimised, and applied 
within the indicated region to update the TFD. 

This process enhances the TFD clarity and the concen- 
tration of components. Smearing is reduced because kernel 
volume values can be determined based on component size. 
In subsequent iterations, the number of components in the 
model will reduce or stabilise, as the effects of over-fitting 
and inclusion of cross-components are removed. When the 
number of components stabilises, the algorithm terminates. 

4. THE FINITE MIXTURE MODEL AND 
FUNCTIONAL MERGING 

A key task in the regional optimisation algorithm is the iden- 
tification of the components and the time-frequency spaces 
they occupy. The task is approached by adapting a Gaussian 
mixture model to approximate the number of modes in the 
underlying multi-modal distribution. The Gaussian mixture 
is defined as a linear combination of Gaussian distributions: 

N 

FN(x) = Aifi(xlpi, +i>,  (8) 
i=l 

where N is the number of Gaussians fi (x), A i  are the mixing 
weights, pi the means, and +i the covariance matrices. 

The model is initialised by setting N to a value signific- 
antly larger than the number of components expected. The 
value of N does not affect the model produced, but provides 
an upper bound for the distribution complexity. The Gaus- 
sians are initialised with equal covariance matrices. To en- 
sure a good coverage of the initial distribution, the Gaussian 
means are assigned progressively to the next highest energy 
level in the distribution which lies at least a specified dis- 
tance from any previously assigned mean. The algorithm is 
robust to the specified separation, but the value should be 
large enough to allow the assignment of means to all com- 
ponents. This process is repeated until N means have been 
assigned, or no points exist which satisfy the minimum dis- 
tance constraint. In the latter case, N is reduced to the num- 
ber of assigned Gaussians. The expectation-maximisation 
(EM) algorithm is applied to adapt the model parameters to 
achieve a good approximation of the distribution. 

At this stage, the number of modes in the distribution is 
over-approximated, and a better approximation must be ob- 

tained. This is achieved through functional merging [7], a 
technique based on the principle that Gaussians in the mix- 
ture model which are used to model the same mode should 
be closer together than Gaussians modelling separate modes. 
The arc-cosine distance is used as the distance measure be- 
cause it has a closed form expression for Gaussian distribu- 
tions. The distance is equal to the angle between two pdfs 
f (.) and g (.) , and is defined in a Hilbert space 3c as: 

(9) 

where < -, . > is the inner product and 11 is thela-norm. 
Functional merging operates by repeatedly determining 

whether the two closest Gaussians in the current model can 
be merged into a single Gaussian. The merging decision is 
made by comparing to a specified threshold the arc-cosine 
distance between the mixture of the two Gaussians and the 
new single Gaussian. The parameters of the new Gaussian 
are chosen to minimise this distance: 

2 

Anew = Cxi 
i=l 

2 

pnew = C ~ i * p i  
i=l 

#new = ~ i ( + i  + ( C L ~  - p n e w > ( p i  - p n e w > T > .  
i=l 

The choice of threshold critically affects the number of 
Gaussians in the mixture model after merging has been per- 
formed. Bearing in mind that an over-estimation of compon- 
ents is preferable, an upper limit on the threshold can be de- 
termined by considering the maximum separation between 
components for which merging is acceptable. In the range 
of thresholds up to the upper limit, the number of Gaussians 
in the merged model should be stable for the largest range 
of thresholds when the number of modes has been correctly 
identified. This reasoning is based on the principle that the 
range begins when all the intra-mode components have been 
merged, and ends when extra-mode components begin to be 
merged. Figure 2 indicates how the choice of threshold is 
made, displaying how the number of components in the mix- 
ture model varies depending on the threshold. The threshold 
is determined as a member of the largest range of thresholds 
over which the number of Gaussians is stable (in this case 
two). The cases of no merging and a single Gaussian are not 
considered because more than one component is assumed to 
be present in the TFD, and over-estimation should have oc- 
curred initially. 

5. RESULTS 

Figure 1 compares the time-frequency distributions of a syn- 
thetic signal comprised of two components, a chirp and a 
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Figure 1 : Time-frequency distributions for signal composed of time-overlapping chirp and Gaussian. (a) Adaptive optimal 
kernel (small kernel (Y = 0.75) (b) Adaptive optimal kernel (large kernel (1: = 1.8) (c) The regionally optimised distribution 
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Figure 2: Variation of number of Gaussians in the mixture 
model generated after functional merging as the threshold is 
changed for the synthetic signal in Section 5. 

Gaussian, which overlap in time and are closely separated. 
The comparison is made between two distributions gener- 
ated using the time-adaptive kernel of [4] and that generated 
using the regional optimisation technique. The time-adaptive 
kernel does not have the flexibility to change shape for the 
two components, and the resultant kernel is a compromise 
between the optimal kernels for each component. As a res- 
ult, cross-components are observed for larger kernel volumes, 
and distortion for smaller volumes. Over the entire range of 
reasonable volumes, distortion, cross-components or a com- 
bination are observed. The regional optimisation of the ker- 
nel allows different kernels to be applied to the two compon- 
ents, providing clear separation and displaying the true time- 
frequency behaviour of the signal. 

6. CONCLUSION 

This paper has introduced a technique for the generation of 
time-frequency distributions using kernels optimised over spe- 
cific regions in the time-frequency plane. The technique in- 
cludes a method of determining the number of components 

present in the analysed signal, and the time-frequency re- 
gions the components occupy. Whenever signal compon- 
ents overlap in time and have different time-frequency be- 
haviour, the resultant distributions provide better resolution 
and separation of components than distributions generated 
using purely time-adaptive kernels. The computational ex- 
pense is less than that of techniques which adapt the kernel 
at all locations in the time-frequency plane. 
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