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Abstract – We present a distributed particle filtering
algorithm for target tracking in sensor networks. Sev-
eral existing algorithms rely on the establishment and
maintenance of a spanning path or tree. This is chal-
lenging in networks with dynamic topologies induced by
mobile nodes and changing wireless conditions; the al-
gorithms are vulnerable to link or node failure. More
recent algorithms employ consensus algorithms to im-
prove robustness but they adopt suboptimal fusion rules
leading to a significant deterioration in performance. In
our algorithm, nodes run local particle filters and then
approximate their local posteriors using Gaussian ap-
proximations. A global posterior approximation is then
computed using a novel gossiping approach that imple-
ments the optimal fusion rule. The resultant protocol is
simple, robust and efficient. We present simulation re-
sults demonstrating a significant performance improve-
ment over the best-performing existing algorithm.

Keywords: Particle filter, Gaussian product, decen-
tralized tracking.

1 Introduction
Sensor network deployment is becoming increasingly
common and target tracking is an important applica-
tion. When the target dynamics or observations cannot
be adequately captured by a linear model, particle fil-
tering becomes attractive. One option for implementing
a particle filter in a sensor network is to perform com-
putation at a single leader node (which may change
over time) [1–3]. This approach has several drawbacks:
there is a single point of failure; only one node can be
queried; the leader node must have knowledge of all ob-
servation models and associated parameters (including
calibration settings and possibly node locations).

An alternative approach is to implement distributed
particle filters where likelihoods are calculated locally
and the local information is then fused to form a global
posterior. Several distributed particle filters require the
establishment and maintenance of a spanning path or

tree [4–8]. This can be very difficult when the mobility
of nodes and changes in environmental conditions lead
to frequent changes in the underlying network topol-
ogy. The algorithms lack robustness, being vulnerable
to node and link failures. More recently, several algo-
rithms have been proposed that significantly improve
the robustness, at the cost of an increased communi-
cation overhead, by using consensus algorithms to dis-
tribute the information [9–12]. The majority form local
parametric approximations to posteriors generated by
local particle filters [9, 10, 12] and then form a global
parametric approximation by averaging the parame-
ters. Unfortunately, this is a suboptimal fusion rule
and leads to a significant deterioration in performance.
The distributed particle filter in [11] is an exception;
it exchanges particles rather than parameters, but this
leads to a much higher communication overhead if the
target state has relatively low dimension.

In this paper, we present a distributed particle filter-
ing algorithm. Nodes run local particle filters and then
form Gaussian approximations to their local posteriors.
A global posterior approximation is then computed us-
ing a gossiping protocol. The local approximation pro-
cedure and the information exchange protocol are very
simple, robust and efficient. Our algorithm is similar
to that presented in [10], but we make the following
important contributions: (i) we derive the optimal de-
centralized information fusion protocol (ii) we develop
a novel robust gossiping approach to approximate the
optimal fusion rule based on Gaussian product approx-
imation. We present simulation results demonstrating
a significant tracking performance improvement over
the existing algorithm with similar communication and
computation requirements.

1.1 Paper Organization

The paper is organized as follows. Section 2 presents a
formal problem definition. In Sections 3 and 4 we derive
the fusion protocol and describe its distributed imple-
mentation. Section 5 presents the results of numerical



experiments. Section 6 concludes the paper.

1.2 Related Work

There are several branches of the literature address-
ing the task of distributed particle filtering. The work
that is most closely related to our proposed algorithm
addresses the scenario when the measurements are dis-
tributed among a set of sensor nodes and multiple par-
ticipating nodes perform the filtering task.

Rosencrantz et al. were among the first to address
this problem in [13]. They described a query-based
framework for localized information sharing. The ap-
proach can provide significant communication savings,
but it is suboptimal, and there is no framework for the
network-wide information fusion.

Coates proposed two algorithms for distributed par-
ticle filtering in [4]. In one algorithm, nodes maintain
a common particle filter and use it to perform highly
compressive quantization of their measurements. The
quantized measurements are then distributed through-
out the network. Ruan and WIllett proposed a similar
algorithm for fusion of quantized measurements in [14],
but focused on a centralized fusion architecture. Ing
et al. extended the ideas in [6], improving the quanti-
zation and encoding procedure and added transmission
vectorization to reduce the header transmission over-
head. The requirement for synchronized particle filters
introduces fragility and each node must be aware of all
measurement modalities and models in the network.

The other algorithm presented in [4] assumes that
the likelihoods at each node are conditionally indepen-
dent given the state, so that the global likelihood can be
expressed as a product of the local likelihoods. Nodes
form a parametric model of the likelihood in the region
of the state-space occupied by the particle set. They
share these parameters along a spanning path or tree,
which enables distributed computation of a paramet-
ric approximation of the global likelihood, permitting a
consistent updating of particle weights.

Sheng et al. build upon this latter approach in [5].
Nodes run local particle filters and form Gaussian mix-
ture model approximations of their local particle sets.
These are shared via a fusion spanning path, allowing
nodes to calculate an approximation to the global likeli-
hood. The methods in [5] introduce resampling at each
node to avoid the need for synchronized particle filters
at each node. Gao et al. [7] and Song et al. [8] propose
similar algorithms, but use Principal Component Anal-
ysis to update the mixture parameters more efficiently.

The algorithms in [4, 5, 7, 8] all require the establish-
ment and maintenance of a stable spanning path (or
spanning tree) over the topology of participating nodes.
This can be very difficult in a challenging wireless en-
vironment with mobile nodes. The algorithms are not
robust to failures of links or nodes.

There are a few distributed particle filtering algo-
rithms that are more robust to adverse network con-

ditions and failures [9–11]. In [9], Gu presents a dis-
tributed particle filter in which participating nodes run
local particle filters and then apply the distributed
expectation-maximization (EM) algorithm to calculate
the parameters of a Gaussian mixture model (GMM)
approximation to the global posterior. Particles and
weights are then propagated locally by sampling from
this global approximation.

In [10], Gu et al. use a different method to combine
the local filter information. Each node forms a Gaus-
sian approximation of its local particle set. A consensus
algorithm is then applied to fuse these local approxi-
mations, constructing a Gaussian approximation to the
global posterior. The fusion rule is suboptimal, with
the global parameters being set to the averages of the
local parameters. Liu et al. adopt a similar approach
in [12] but use support vector machines to form the
local approximations.

Lee and West propose an alternative robust particle
filter that is based on the exchange of particles rather
than Gaussian parameters [11]. The approach requires
significantly more communication if the state has small
dimension, but scales better as the state dimension in-
creases.

Also related to our work, but less closely, are other
distributed filtering schemes based on consensus algo-
rithms. Rahman et al. and Olfati-Saber et al. have
described distributed extended Kalman filters that em-
ploy consensus to share information [15, 16]. Although
the EKF can be employed to approximate linearalizable
filtering recursions, there is no guarantee of convergence
or (asymptotic) consistency for such approximations.

Finally, we should note that the phrase “distributed
particle filter” has also been used to describe the leader-
node particle filters that appear in [1–3], where the par-
ticle filter calculations are performed at a single sensor
node, but the node changes over time, often with the
goal of following the target through the network. The
phrase is also used to describe algorithms where the
particle filtering computations are distributed among
multiple nodes to improve execution speed [17–19]; the
primary difference is that in such systems all nodes have
access to all of the observations and there is no need to
share or fuse likelihood information.

2 Problem Formulation
We assume that a collection of geographically dis-

tributed sensor nodes forms a set of vertices Vt =
{1, . . . , nt} and the time-varying wireless links among
these sensor nodes form a set of edges Et of a sequence
of graphs Gt(Vt, Et), t = 0, 1, 2, . . . The set of edges Et
is a set of unordered pairs u, v ∈ V such that at time
t (u, v) ∈ Et if and only if a bidirectional wireless link
between u and v can be established with high probabil-
ity. We assume that the global connectivity structure
Et and the complete vertex set Vt is unknown to nodes



in the network, but nodes have the knowledge of their
local neighbours, with whom they can establish a direct
wireless link.

Every sensor node ut measures certain physical phe-
nomenon using its measurement modality and obtains
a noisy measurement yut

t at time step t. The informa-
tion acquired by this sensor is described by its likeli-
hood function p(yut

t |xt). We assume that sensor nodes
are unaware of the possibly heterogeneous measurement
modalities and measurement noise models employed by
other nodes in the network. The sensor noises are as-
sumed conditionally independent given the state, im-
plying that the joint likelihood can thus be factorized
as follows:

p(yVt
t |xt) =

∏
ut∈Vt

p(yut
t |xt). (1)

Here yVt
t = {yut

t : ut ∈ Vt} is the complete measure-
ment snapshot (measurement set) acquired by the net-
work at time t. We define the time history of such
measurements as yV1:t

1:t = {yVj

j : 1 ≤ j ≤ t}.
We also assume that although there may be a lack

of communication synchronization, measurement tim-
ing synchronism is established (via a decentralized pro-
tocol), so that local clock drift is compensated for and
the expression xt has the same meaning for each sensor
node. Our last assumption is that there is no central-
ized entity responsible for sensor coordination and that
any sensor can be queried by a sink and should be able
to report global tracking information at any point in
time.

Our goal is to design a distributed tracking protocol
that exploits the global measurement snapshot at every
time step under the assumptions outlined above. It fol-
lows under these assumptions that this protocol should
be decentralized, with an asynchronous communication
model. The protocol can rely on the global likelihood
being factorizable, but it cannot rely on transmitting
raw or aggregated measurements, since measurement
modalities and noise models are not known elsewhere
in the sensor network.

3 Distributed Fusion Protocol
Under the assumptions outlined in the previous section
the optimal (centralized) Bayes fusion protocol can be
outlined, at every iteration, as follows:

p(xt|yV1:t−1
1:t−1 ) =

∫
p(xt|xt−1)p(xt−1|yV1:t−1

1:t−1 )dxt−1 (2)

p(xt|yV1:t
1:t ) =

p(yVt
t |xt)p(xt|y

V1:t−1
1:t−1 )∫

p(yVt
t |xt)p(xt|y

V1:t−1
1:t−1 )dxt

. (3)

This recursion is optimal in terms of the mean squared
error performance. In a distributed setting, however,
nodes do not have access to the global likelihood, so
they cannot locally compute (or estimate) the recursive
update (3).

3.1 Optimal Distributed Protocol

If the numerator of (3) is calculated using a distributed
algorithm, then each node can perform the integration
to evaluate the denominator (at least approximately).

We are thus interested in the distributed calculation
of the joint distribution

p(xt, yVt
t |y

V1:t−1
1:t−1 ) = p(xt|yV1:t−1

1:t−1 )
∏
ut∈Vt

p(yut
t |xt). (4)

If node ut runs a local Bayes recursion at time t, then
the information available at this node is

p(xt, yut
t |y

V1:t−1
1:t−1 ) = p(xt|yV1:t−1

1:t−1 )p(yut
t |xt). (5)

Let us explore distributed protocols already available
for scalar distributed computations. Bauso et al. de-
scribed a number of such protocols [20] that permit dis-
tributed computation of various functions of the local
scalar values. One such function is the geometric mean,

z = n

√∏
u∈V

zu, (6)

where zu is the local piece of data and V is a set of
cardinality n. In our case p(xt, yut

t |y
V1:t−1
1:t−1 ) is such

a local piece of data. However, we cannot represent
p(xt, yVt

t |y
V1:t−1
1:t−1 ) directly via p(xt, yut

t |y
V1:t−1
1:t−1 ) using (6).

On the other hand, if we compute an alternative local
value:

p̃(xt, yut
t |y

V1:t−1
1:t−1 ) = p(xt|yV1:t−1

1:t−1 )pnt(yut
t |xt), (7)

we can construct the following expression for (4):

p(xt, yVt
t |y

V1:t−1
1:t−1 ) =

( ∏
ut∈Vt

p̃(xt, yut
t |y

V1:t−1
1:t−1 )

)1/nt

.

(8)

This representation suggests a procedure for calculat-
ing the required joint distribution: compute locally at
each node the quantities p̃(xt, yut

t |y
V1:t−1
1:t−1 ) and then use

a distributed protocol from [20] to compute the geomet-
ric mean.

3.2 Approximate Distributed Protocol

The exact optimal Bayes computations are only viable
for a limited class of dynamic and measurement models.
In a general situation, (7) will be approximated in one
form or another, and this approximation may require a
large number of terms (e.g. in the case of particle fil-
ter hundreds and thousands of particles). Distributed
evaluation of the geometric mean of such approxima-
tions will probably involve the exchange of many values,
which is undesirable in a sensor network where commu-
nication energy should be preserved.

We propose to use particle approximation to per-
form the local predict-update recursion calculations,



but then form a local Gaussian approximation of
p̃(xt, yut

t |y
V1:t−1
1:t−1 ). This greatly reduces the required

data exchange during information fusion. The local
value at node ut is approximated by N (xt,µut

t ,R
ut
t ),

where µut
t is the mean and Rut

t is the covariance ma-
trix calculated to optimize a certain cost function (e.g.
log-likelihood) given the particle approximation of (7).

We can thus rewrite the global Gaussian approxima-
tion, p̂(xt, yVt

t |y
V1:t−1
1:t−1 ), of the joint distribution as:

p̂(xt, yVt
t |y

V1:t−1
1:t−1 ) =

( ∏
ut∈Vt

N (xt,µut
t ,R

ut
t )

)1/nt

. (9)

Since the product of Gaussians is itself a Gaussian, it
can be shown [21] that

p̂(xt, yVt
t |y

V1:t−1
1:t−1 ) ∝ N (xt,µΣ

t ,R
Σ
t )1/nt

∝ N (xt,µΣ
t , ntR

Σ
t ), (10)

where the summary statistics µΣ
t and RΣ

t are given by:

µΣ
t = RΣ

t

∑
ut∈Vt

(Rut
t )−1µut

t , (11)

RΣ
t =

( ∑
ut∈Vt

(Rut
t )−1

)−1

. (12)

The information fusion step performed at every itera-
tion of the proposed tracking algorithm thus involves
calculating a Gaussian product.

Based on the above expressions and on the ideas
underlying randomized gossip (RG) [22], the asyn-
chronous version of the distributed average consensus
algorithm, we propose a distributed asynchronous it-
eration for the asymptotic computation of the sum-
mary statistics (11) and (12). In particular, by defining
Qut
t = (Rut

t )−1 and νut
t = (Rut

t )−1µut
t (quantities that

can be calculated locally) we can see the following:

ntRΣ
t =

(
1
nt

∑
ut∈Vt

Qut
t

)−1

, (13)

µΣ
t = (ntRΣ

t )

(
1
nt

∑
ut∈Vt

νut
t

)
. (14)

Thus the computation of quantities defining the Gaus-
sian product in (10) can be accomplished in a dis-
tributed fashion using two vectorized randomized gos-
sip iterations. The first iteration is over local inverse
covariance matrices, Qut

t ; the second iteration is over
the local transformed mean vectors νut

t .
At every step of randomized gossip, one node wakes

up (using, for example, a Poisson clock [23]) and se-
lects a neighbour from its neigbourhood at random
using a probabilistic law; these nodes exchange in-
formation and update their values. The gossip up-
date at iteration k for nodes ut(k), vt(k) selected with

the above specified rule consists of exchanging matri-
ces Qut(k)

t (k),Qvt(k)
t (k) (in the inverse covariance itera-

tion) or vectors ν
ut(k)
t (k),νvt(k)

t (k) (in the transformed
mean iteration) and updating their respective values to
the corresponding means:

Qut(k)
t (k + 1) = Qvt(k)

t (k + 1)

= (Qut(k)
t (k) + Qvt(k)

t (k))/2, (15)

ν
ut(k)
t (k + 1) = ν

vt(k)
t (k + 1)

= (νut(k)
t (k) + ν

vt(k)
t (k))/2. (16)

3.3 Network Size Estimation

Note that calculating (7) requires the knowledge of
the network size, nt. In this section we describe the
distributed algorithm for the network size estimation
based on the gossiping idea [24] (see [25] for a review
of alternative techniques). We use the following algo-
rithm based on the fact that the gossip average is equal
to 1/nt if only one of the nodes in the network has value
one and all others are initially set to 0 [24].

Initially, every node flips a coin and assumes value 1
with probability ρ. Nodes initialized with value 1 create
unique tokens, the rest of the nodes are initialized with
zeros. Each node that assumed value 1 starts a random
walk marked by a unique token. The next node in the
random walk is selected uniformly at random from the
neighbourhood of the current node. If i and j are the
current and the next nodes in the random walk, and
xi(k) and xj(k) are their respective values before the
update, then the new values become:

xi(k + 1) = xj(k + 1) =
xi(k) + xj(k)

2

Node i also transmits an exponential moving average
of the squared difference between the exchanged values,
defined by the following recursion wih e(0) = 1:

e(k + 1) = (1− α)e(k) + α(xi(k)− xj(k))2. (17)

Each random walk terminates when e(k+1) ≤ γ, where
the threshold γ is chosen according to the required ac-
curacy of the network size estimate.

Each node formulates a final estimate of the network
size by calculating the reciprocal of the average of the
current values associated with all random walks that
have traversed it.

4 Proposed Distributed Particle
Filter

In this section we discuss a concrete particle filter im-
plementation using the fusion framework discussed in
Section 3. The high level algorithm describing one iter-
ation of the proposed distributed particle filter is shown
below in Algorithm 1.



Algorithm 1: Distributed particle filter

At time t make measurements, yVt
t ;1

n̂t = EstimateSize(α, γ,Gt(Vt, Et)) ;2

for ut ∈ Vt and i = 1 . . . N do3

ξ̃
ut,(i)
t ∼ qt(xt|xt−1, y

ut
t , y

V1:t−1
1:t−1 ) ;4

ω̃
ut,(i)
t =

p
n̂t
Yt|Xt

(y
ut
t |ξ̃

ut,(i)
t )pXt|Xt−1 (ξ̃

ut,(i)
t |ξut,(i)

t−1 )

qt(ξ̃
ut,(i)
t |ξut,(i)

t−1 ,y
ut
t ,y

V1:t−1
1:t−1 )

;
5

µut
t ,R

ut
t = SaveGaussian({ξ̃ut,(i)

t , ω̃
ut,(i)
t }Ni=1) ;6

endfor7

µΣ
t ,R

Σ
t = DoFusion({µut

t ,R
ut
t }ut∈Vt

) ;8

for ut ∈ Vt do9

{ξut
t }Ni=1 = Resample(N (xt,µΣ

t , n̂tR
Σ
t )) ;10

endfor11

We now provide a detailed description of the pro-
posed algorithm. When a new set of measurements
becomes available, the algorithm estimates the size of
the network that acquired the measurements using the
procedure described in Section 3.3. The local particle
filter is then invoked to calculate the local Gaussian
approximation N (xt,µut

t ,R
ut
t ). The filter samples the

new set of particles, ξ̃ut
t , from the proposal distribution

qt(xt|xt−1, y
ut
t , y

V1:t−1
1:t−1 ). The likelihood pn̂t

Yt|Xt
(yut
t |xt)

can be peaked and it is important to concentrate par-
ticles in the regions of high likelihood. There are ap-
proaches for doing this, e.g. the auxiliary particle fil-
ter by Pitt and Shepard [26]; we employ an auxil-
iary particle filter in our simulations. The last local
step is the construction of the Gaussian approximation
N (xt,µut

t ,R
ut
t ) based on the sample ξ̃ut

t , which we ac-
complish using standard maximum likelihood formulae
and normalized weights ωut,(i)

t = ω̃
ut,(i)
t /

∑N
j=1 ω̃

ut,(j)
t :

µut
t =

N∑
i=1

ω
ut,(i)
t ξ̃

ut,(i)
t (18)

Rut
t =

N∑
i=1

ω
ut,(i)
t (ξ̃ut,(i)

t − µut
t )(ξ̃ut,(i)

t − µut
t )T . (19)

The estimated Gaussian approximations at every node
are used in the global information fusion step described
in detail in Section 3.2. When the global measurement
snapshot is diffused over the network via the gossip pro-
tocol, we finally obtain the globally updated particle set
ξut
t at every node ut by sampling N particles from the

global Gaussian approximation N (xt,µΣ
t , n̂tR

Σ
t )).

It is interesting to note how the structure of the
proposed algorithm differs from the fusion model pro-
posed by Gu et al. [10]. Gu et al. [10] estimate the
global summary statistics as µΣ

t = 1/|Vt|
∑
ut∈Vt

µut
t

and RΣ
t = 1/|Vt|

∑
ut∈Vt

Rut
t . Instead of using an ex-

ponentiated likelihood pnt(yut
t |xt) they use the original

likelihood p(yut
t |xt). It is difficult to justify this subop-

timal fusion method, although it can perform reason-
ably if the local distributions are all very similar. Our
algorithm approximates the optimal fusion procedure
and can address the more general case when the likeli-
hood functions p(yut

t |xt) differ from sensor to sensor in
a heterogeneous network.

5 Numerical Experiments
In our simulations we consider the two-dimensional sce-
nario where K sensors are distributed uniformly in a
unitary square region. Only sensors within connectiv-
ity radius

√
2 logK/K of each other can communicate

directly (random geometric graph model). A single tar-
get that makes a clockwise coordinated turn of radius
0.2 with a constant turn rate ωt = 0.139. It starts in y-
direction with initial position [0.25, 0.25] and is tracked
for 50 seconds.

In our filters, the target motion is modeled by
the nearly coordinated turn model [27] with known
constant turn rate and unknown cartesian velocity.
Therefore, the state of the target is given as xt =
[pxt , p

y
t , v

x
t , v

y
t , ωt]T , where p, v and ω denote the posi-

tion, velocity and turn rate respectively. The dynamic
model for the coordinated turn model ft(.) is

xt+1 =


1 0 sin(ωt)

ωt

cos(ωt)−1
ωt

0
0 1 1−cos(ωt)

ωt

sin(ωt)
ωt

0
0 0 cos(ωt) − sin(ωt) 0
0 0 sin(ωt) cos(ωt) 0
0 0 0 0 1

xt + ςt+1

where ςt+1 is Gaussian process noise, ςt+1 ∼ N (0, Pς),
Pς = diag([0.05, 0.05, 0.04, 0.04, 0]), sampling period is
1 second. We assume that initially, the benchmarked
filters obtain an initialization x0 with mean correspond-
ing to the true position of the target and a covariance
P0 = diag([0.01, 0.01, 0.0001, 0.0001, 0]).

The K sensors uniformly distributed in the unit
square use 4 different measurement modalities: bear-
ing, received signal strength, range and radial velocity
measurements (that can be obtained e.g. from Doppler
velocity measurements). The results of our simulations
are averaged over 1000 Monte-Carlo trials. For every
trial we randomly generated a fixed senor network con-
figuration. In this configuration every sensor i was as-
signed coordinates si = [sxi , s

y
i ] and one of the measure-

ment modalities with equal probability for the duration
of one trial. The bearing-only modality is described as

ht(xt) = arctan[(pyt − s
y
i )/(pxt − sxi )]. (20)

The received signal strength measurement is

ht(xt) = 1/[(pyt − s
y
i )2 + (pxt − sxi )2 + a], (21)

where a is set to 0.0001. The range measurement is

ht(xt) = ‖pt − si‖, (22)



where pt−si is the target displacement vector, vt is the
cartesian velocity vector, ‖ ·‖ is the Euclidean distance.
Finally, the radial velocity measurement equation is

ht(xt) = (pt − si) · vt/‖pt − si‖, (23)

where · is the dot product of two vectors.
The measurements from the sensors are corrupted

by Gaussian noise with standard deviations respectively
for bearing-only, RSS, range, and radial velocity modal-
ities 0.175, 2, 0.14, 0.004 in the simulation scenario.

The network size estimation routine was used with
the settings γ = 10−6 and α = 0.95. The probabil-
ity ρt of a node setting its value to 1 initially at time
t was set to ρt = 1/n̂t and we assumed that initially,
at time t = 0, n̂0 = 5 (assumed lower bound for the
network size). The additional communication overhead
that arised from the network size estimation routine is
relatively small (10-20 percent of the total communica-
tion required for the fusion operation).

For example, in our experiment we have the dimen-
sionality of exchanged data D = (d− 1) + d(d− 1)/2 =
4 + 5 × 4/2 = 10 (mean plus covariance), and we set
the number of consensus iterations during the Gaussian
product calculation to be equal to 5n̂2

t . For the network
sizes K = 10 and K = 50 we thus have the total num-
ber of values exchanged 5Dn̂2

t ≈ 5× 10× 102 = 5× 103

(with our settings n̂t ≈ nt) and 5Dn̂2
t ≈ 5× 10× 502 ≈

1.3 × 105. The average number of values exchanged
during network size estimation for K = 10 and K = 50
was ≈ 103 and ≈ 1.3× 104.

The network size estimation protocol can be embed-
ded into the Gaussian product calculation protocol. If
the number of participating sensor nodes changes rel-
atively slowly over time, there the size estimation pro-
tocol does not have to be run every time step, further
reducing the communication overhead.

5.1 Benchmarked Filters

In the simulations, three different particle filters have
been implemented:

PFprop: proposed particle filter discussed in Sec-
tions 3 and 4.

PFcent: a centralized particle filter which collects all
the measurements from all the sensors and uses the pos-
terior distribution of the PFprop filter as a proposal
distribution.

PFGu: a distributed particle filter proposed by Gu
et al. in [10].

The second filter provides us with the practical per-
formance limit achievable by a particle filter and the
third filter is our proposed filter.

The centralized filter PFcent is executed with a fixed
number of particles equal to 10000 throughout our
simulations. The two other filters are tested with
N = 500 and N = 1000 particles for network sizes
K = 10, 20, 30, 40, 50. We use the RMS position er-
ror to compare the performances of particle filters. Let

(pxt , p
y
t ) and (p̂xk,i, p̂

y
k,i) denote the true and estimated

target positions at time step t at the ith Monte-Carlo
trial. Suppose M is the number of such Monte-Carlo
trials. The RMS position error at t is calculated as

RMSt =

√√√√ 1
M

M∑
i=1

(p̂xt,i − pxt )2 + (p̂yt,i − p
y
t )2 (24)

5.2 Results and Discussion

In our first experiment we fix the network size at
K = 50 and measure the RMS tracking performance
of the algorithms described in the previous section for
two particle cloud sizes, N = 500 and N = 1000. The
performance of the investigated algorithms is shown in
Fig. 1. It is clear that the proposed algorithm, PFprop,
has significantly better performance compared to the
algorithm with the suboptimal fusion rule, PFGu, after
the first few steps of the transient behaviour.

In our second experiment we vary the network size
and measure the RMS performance at time t = 25 for
the three filters discussed in Section 5.1. We report the
results of this experiments in Fig. 2. We can see that
the proposed filter that was derived from the optimal
distributed tracking protocol outperforms the filter pro-
posed by Gu et al. [10]. We can see that the proposed
filter is around 2 times more accurate than the latter
filter in terms of measured RMS performance. We can
see that there is still space for improvement, since our
algorithm is still 1.5–2 times worse than the centralized
filter.

6 Concluding Remarks
We have proposed a distributed asynchronous particle
filter based on local Gaussian approximation of the pos-
teriors generated by local particle filters and fusion via
distributed calculation of a Gaussian product. We first
derived an optimal distributed tracking and fusion pro-
tocol, and then developed a practical algorithm by ap-
proximating this protocol. The communication over-
head of the proposed algorithm is significantly greater
than some previously proposed particle filters, but there
is no need for establishment and maintenance of a span-
ning tree or path for fusion. This makes the algorithm
much more robust and more applicable for networks
with dynamic topologes deployed in regions with ad-
verse wireless conditions. In contrast to other robust
distributed particle filters that are based on fusing para-
metric approximations, our algorithm approximates an
optimal fusion rule, and our simulations demonstrate
that this can lead to a significant performance improve-
ment. The RMS tracking error achieved by our algo-
rithm is approximately half that of the algorithm with
similar communication and computation requirements.

Our simulations also indicate that there is room for
improvement, since our algorithm does not achieve the
optimal performance. In future we are planning to work
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Figure 1: RMS tracking performance for the centralized filter, proposed filter and the filter due to Gu et al. [10].
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Figure 2: RMS tracking performance at time t = 25 for varying network sizes and for the centralized filter,
proposed filter and the filter due to Gu et al. [10].

on improving the performance of the proposed algo-
rithm by using a more sophisticated local approxima-
tion scheme and developing the appropriate associated
distributed fusion protocol. We will also explore the
use of more advanced gossiping protocols that can re-
duce the communication overhead but achieve similar
accuracy.
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