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ABSTRACT

Poor directional selectivity, a major disadvantage of the separable 2D discrete wavelet transform (DWT), has previ-
ously been circumvented either by using highly redundant, nonseparable wavelet transforms or by using restrictive
designs to obtain a pair of wavelet trees. In this paper, we demonstrate that superior directional selectivity may
be obtained with no redundancy in any separable wavelet transform. We achieve this by projecting the wavelet
coeÆcients to separate approximately the positive and negative frequencies. Subsequent decimation maintains non-
redundancy. A novel reconstruction step guarantees perfect reconstruction within this critically-sampled framework.
Although our transform generates complex-valued coeÆcients, it may be implemented with a fast algorithm that uses
only real arithmetic. We also explain how redundancy may be judiciously introduced into our transform to bene�t
certain applications. To demonstrate the eÆcacy of our projection technique, we show that it achieves state-of-the-art
performance in a seismic image-processing application.

Keywords: directional, non-redundant, complex, wavelet, projection, separable, redundant, orientation, direction-
ality

1. INTRODUCTION

The separable 2D discrete wavelet transform (DWT) is a powerful image-processing tool, but in some applications
its poor directional selectivity is a serious disadvantage. The transform can only distinguish between three di�erent
orientations of spatial features. Nonseparable 2D DWTs can provide directional selectivity,1,2 but these involve
complicated design problems and are more computationally expensive. Kingsbury's dual-tree complex wavelet trans-
form3 is separable and has impressive directional selectivity due to an approximate quadrature relationship between
its trees. However, Kingsbury's transform involves a redundancy of 2N in N dimensions, and neither tree in the
dual-tree structure genuinely corresponds to a wavelet transform. Enforcing the quadrature relationship between the
two trees is complicated, impeding the incorporation of other wavelet criteria in the design.

This paper extends our earlier work on critically sampled, directional, complex wavelet transforms.4 In Section
3, we propose the non-redundant post-projection transform, a separable wavelet transform that provides comparable
directional selectivity to Kingsbury's transform, but introduces no redundancy. The method involves the application
of projection �lters to discriminate between positive and negative frequency components of 2D separable DWT
wavelet coeÆcients. This results in complex-valued coeÆcients. Decimation of these coeÆcients preserves directional
selectivity but makes the transform non-redundant. In Section 5 we show that we can achieve perfect reconstruction
using a novel synthesis �lter bank structure, if the projection �lters satisfy certain criteria. The ability to obtain a
directional, non-redundant, complex-valued decomposition of images allows for interesting variations on traditional
processing applications such as compression and denoising. Since some applications bene�t from a small amount
of transform redundancy, in Section 4 we introduce the redundant pre-projection transform, which has the same
redundancy as the dual-tree wavelet transform.

2. POOR DIRECTIONAL SELECTIVITY IN THE DWT

In this section, we explain the poor directional selectivity of the 2D separable DWT based on the Fourier-plane
partitioning associated with it. We then show how non-redundant post-projection uses separable complex-coeÆcient
�lters to provide a di�erent Fourier-plane partitioning with improved directional selectivity.

This work was supported by DARPA, Texas Instruments, the Dutch Science Foundation's NEESDI program and the
Consortium for Computational Seismic Interpretation, Rice University.
Email: felixf@rice.edu, csb@rice.edu
Web: http://www.dsp.rice.edu
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Figure 1. Frequency-domain energy localization of tensor wavelets in a two-level 2D DWT.

Figure 1 shows the Fourier-plane partitioning obtained using a separable, real-valued, 2-level 2D DWT. The tensor
wavelet  3j�1(x; y) is associated with diagonally-oriented spatial features at scale j � 1 and concentrates its energy

in the four blocks labeled  3j�1. High energy at the output of the �lter in the subband associated with  3j�1(x; y)

indicates the presence of this class of features. The  3j�1 blocks in the upper-left and lower-right corners indicate
features at �45 degrees, while those in the upper-right and lower-left corners indicate features at +45 degrees. Since
all four blocks are associated with the output of one �lter in the DWT, we cannot di�erentiate between these two
orientations. Similarly, features oriented at +15 degrees and �15 degrees are indistinguishable from their wavelet
coeÆcients since they are both associated with energy in the  2j�1 subband. Features oriented at +75 degrees and
�75 degrees su�er a similar fate. It is evident that the poor directional selectivity of the real DWT is due to
positively- and negatively-oriented blocks both being associated with the same subband.

3. NON-REDUNDANT POST-PROJECTION

Decoupling the positively- and negatively-oriented blocks associated with each subband of the DWT improves direc-
tional selectivity. Figure 2 shows how this may be done using our non-redundant post-projection framework. The
�rst two columns of �lters obtain the �rst level of the DWT and output the subbands with the j � 1 subscripts in
Figure 1. The �lters in the third and fourth columns have +(�) superscripts to indicate that they retain positive
(negative) frequencies and suppress negative (positive) frequencies. These +(�) �lters are one-dimensional projec-
tion �lters that project real signals onto subspaces consisting of only positive (negative) frequencies on the Fourier
line. These projection �lters enhance the directional selectivity of the real DWT transform that precedes them by
decoupling the subband blocks in Figure 1 to obtain the subbands in Figure 3.

Consider the subband corresponding to the two blocks labeled  1j�1 in Figure 1. If we �lter this subband in the y
direction (along columns) with a �lter h+y as shown in Figure 2, we obtain a new subband containing the two blocks

labeled  1�j�1 and  1+j�1 in Figure 3. We obtain a decoupled subband  1+j�1 by �ltering this new subband in the x

direction (along rows) with h+x . The other decoupled subband  1�j�1 is similarly obtained by row �ltering with h�x .

The decoupled subband  1�j�1 indicates features at -75 degrees, while the other decoupled subband  1+j�1 indicates
features at +75 degrees.

By applying the projection �lters to the other subbands in Figure 1, we can now distinguish between features
oriented in 6 directions at any particular scale. At scale j � 1, these 6 directions correspond to the 6 directional
subbands labeled  2+j�1,  

3+
j�1,  

1+
j�1,  

1�
j�1,  

3�
j�1 and  2�j�1 in Figure 3. These directional subbands correspond to
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Figure 2. Non-redundant post-projection analysis �lter-bank structure for separable, directional, complex 2D DWT . The
y (x) subscripts indicate �ltering along the columns (rows) of an image. The + ( �) superscripts indicate projection �lters
that attenuate negative ( positive) frequencies.

features oriented at +15, +45, +75, -75, -45 and -15 degrees respectively. To get the directional subbands at scale
j in Figure 3, we iterate the processing in Figure 2 on the �j�1 subband. We can then use the projection �lters to
decouple the lowpass subband �j into �

�
j�1 and �

+
j�1 blocks that discriminate between low-scale features oriented at

-45 and +45 degrees.

In practice, it is impossible to retain positive (negative) frequencies and suppress negative (positive) frequencies
perfectly, with a �nite length �lter. Instead, we use projection �lters that attenuate negative (or positive) frequencies.
To compare the directional selectivity of various di�erent transforms, we used the zone-plate image displayed in
Figure 4 (a). It contains features oriented at all possible directions with low-scale features in the center and high
scale features at the periphery.

The separable, single-level Daubechies 2D DWT of the image is displayed in Figure 4 (c). The wavelet coeÆcients
for both the +45 and�45 degree orientations appear in the diagonal-orientation subband and cannot be distinguished.
The transform also su�ers from severe aliasing artifacts. Figure 4 (b) shows the 2D, single-level CDWT obtained
using Kingsbury's dual-tree (upper right). The transform shows enhanced directional selectivity but also some
aliasing. Furthermore the lowpass band has not been transformed, but is cut into halves. This representation is
four times redundant for images. Figure 4 (d) presents the 2D, single-level post-projection CDWT obtained using
the �lter-bank structure of Figure 2. Both the dual-tree transform and the post-projection transform provide six
highpass directional subbands. In addition, the post-projection transform discriminates between features oriented at
+45 and -45 degrees in the lowpass subband.

Although the post-projection CDWT uses length-4 �lters and the dual-tree CDWT uses length-10 �lters, the
features are better localized in each subband of the former. We emphasize that the dual-tree transform has a
redundancy of four whereas our post-projection transform is critically sampled. However, there are some applications
for which transforms with a small amount of redundancy yield signi�cantly improved results. In the next section,
we introduce an alternative, redundant projection-based transform that proves bene�cial for such applications.

4. REDUNDANT PRE-PROJECTION

The non-redundant post-projection transform introduced in the previous section employs projection �lters on the
subbands of a DWT to obtain the Fourier-plane tiling shown in Figure 3. Another way to arrive at this tiling
is to perform �rst the projection operation on the image to suppress its positive (or negative) frequencies, and
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Figure 3. Fourier plane partitioning after post-projection.

then compute the DWT of the image projection. We call this the non-redundant pre-projection transform since
the projection precedes the DWT. The �lter bank implementation of the non-redundant pre-projection transform is
shown in Figure 5(a). Eliminating the downsamplers in Figure 5(a) results in the redundant pre-projection transform
shown in Figure 5(b).

Pre-projection provides a convenient mechanism for restricting the redundancy required to both suppress aliasing
and provide directional selectivity. The imaginary part of the image projection is approximately the Hilbert transform
of the real part of the image projection. Therefore the real and imaginary parts of the projected image are related
through an approximate quadrature relationship. This is useful for certain applications.5 Moreover, it means that
less redundancy (a factor of two times the number of dimensions) is required to restrict aliasing and provide a genuine
indication of where image energy is located in the frequency domain.

Having established that the redundant pre-projection transform performs better than the redundant post-
projection transform, we now compare the non-redundant versions of these transforms. To do so, we emphasize
that in either transform, the DWT performs a multiscale decomposition of the input while the projection opera-
tor extracts directional information from its input. In the non-redundant post-projection transform the multiscale
decomposition is performed on an unaliased image while the directional information is extracted from an aliased
image. Hence aliasing artifacts impair the directional selectivity of the transform rather than its multiscale nature.
On the other hand, in the non-redundant pre-projection transform aliasing artifacts impair the multiscale nature
of the transform rather than its directional selectivity. Since the multiscale property is usually more important
than directional selectivity in most applications, post-projection fares better than pre-projection in a non-redundant
framework.

We tested the directional selectivity of the redundant pre-projection transform on the zone-plate image in Figure
4(a). The resulting transform envelope is shown in Figure 4(e). We used the length-4 Daubechies �lters to generate
the projection �lter and compute the DWT. The transform shows the same angles as the transform with post-
projection but is better localized in space because there is no downsampling after projection.

5. PERFECT RECONSTRUCTION

In Sections 3 and 4, we introduced projection �lters that provide transform coeÆcients with directional information.
This information may be exploited for image analysis or image processing. In an image processing application, a
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(a) zone-plate (b) dual-tree

(c) DWT (d) post-projection

(e) pre-projection

Figure 4. (a) Zone-plate Image. (b) Dual-tree CDWT. Clockwise from upper-rightmost block: -75, +45, -15, +15, -45, +75
degree highpass subband, upper half of lowpass subband, lower half of lowpass subband. (c) 2D Daubechies DWT. Clockwise
from upper-right block: vertical-, diagonal-, horizontal-orientation subbands and lowpass subband. (d) Directionally post-
projected DWT. Clockwise from upper-rightmost block: -75, +45, -15, +15, -45, +75 degree highpass subbands, -45, +45
degree lowpass subbands. Length-4 Daubechies �lters are used for the wavelet decomposition and to generate the projection
�lter. (e) Directionally pre-projected DWT.
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Figure 5. Analysis �lter bank structure for the separable complex wavelet transform with pre-projection (a) pre-
projection with down-sampling: no redundancy (b) pre-projection without down-sampling: redundancy = 4.

processed version of the image is reconstructed from its processed transform coeÆcients. In the absence of any
processing, this is called the perfect-reconstruction problem.

Obtaining perfect reconstruction for the non-redundant post-projection transform requires the design of a synthe-
sis �lter bank that inverts the e�ect of the analysis �lter bank in Figure 2. The DWT is easily inverted by a synthesis
�lter bank that performs the inverse DWT. The �lter pairs (h+x ; h

�
x ) operate on a complex input signal that is the

downsampled output of a column projection �lter h+y . As explained in implication (3) of Theorem 1 below, (h+x ; h
�
x )

are selected to be the analysis �lters of a 2-band �lter bank. Their input is then reconstructed by the corresponding
synthesis �lters of the 2-band �lter bank. Implication (1) of Theorem 1 proves that the synthesis block in Figure
6 inverts the projection block in that �gure. This projection block corresponds to the column projection �lters h+y
that have real-valued input in Figure 2. Therefore the synthesis block in Figure 6 may be used to reconstruct the
input to the column projection �lters h+y . The synthesis structures discussed above may also be used to reconstruct
the inputs to the projection �lters in the non-redundant pre-projection transform in Figure 5(a).

We now consider perfect reconstruction for the redundant pre-projection transform in Figure 5(b). In this case,
the �lter pairs (h+x ; h

�
x ) operate on a complex input signal that is the output of a column projection �lter h+y .

As explained in implication (4) of Theorem 1 below, (h+x ; h
�
x ) are selected to be the analysis �lters of a 2-band

non-decimated �lter bank. Their input is then reconstructed by the corresponding synthesis �lters of the 2-band
non-decimated �lter bank. Implication (2) of Theorem 1 proves that the synthesis block in Figure 7 reconstructs the
input to the column projection �lters h+y that have real-valued input in Figure 2.
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Figure 6. Reconstruction of real-valued input after projection and downsampling. The symbols 1
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Figure 7. Reconstruction of real-valued input after projection without downsampling.
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Theorem 1. Let h0 be the lowpass analysis �lter of a two-band, real-coeÆcient �lter bank (h0; h1; f0; f1). Denote
the nonzero polyphase components of h0 by h0e; h

0
o. Create a projection �lter h+ by frequency shifting the low-pass

transform H0 by �=2, so that
H+(z) = H0(�jz): (1)

Then the following statements are true.
1. If x 2 L2(R ! R), then x̂ = x in Figure 6.
2. If x 2 L2(R ! R) and F+(z) = F 0(�jz), then x̂ = x in Figure 7.
3. If x 2 L2(R ! C), then the 2-band �lterbank (h+; h�; f+; f�) generated from h+ perfectly reconstructs x.
4. If x 2 L2(R ! C), then the 2-band non-decimated �lterbank (h+; h�; f+; f�) generated from h+ perfectly

reconstructs x.

Proof:

1. We have H+
e (z) = H0

e (�z) and H+
o (z) = jH0

o (�z). Let #h+ denote the linear transform that maps the
input x to its projection s. Then S(z) = H+

e (z)Xe(z) + z�1H+
o (z)Xo(z) and the kernel of the transform is

ker(#h+) = fX(z) : H0
e (�z)Xe(z) = �jz�1H0

o (�z)Xo(z)g = f0g. Therefore, the mapping #h+ is invertible.
The inverse mapping to x̂ is given by x̂ = RefS(z2)g=H0

e (�z
2)+ z�1ImfS(z2)g=H0

o (�z
2), where 1

H0
e (�z

2) and
1

H0
o (�z

2) are in�nite-impulse response (IIR) synthesis �lters. This proves (1).

2. We have

X̂(z) = (F+(z)H+(z) + [F+(z)H+(z)]�)X(z);

= (F 0(�jz)H0(�jz) + F 0(jz)H0(jz))X(z);

= (F 0(�)H0(�) + F 0(��)H0(��))X(z); where � = �jz;

= X(z); by the halfband condition:

3. Implication (3) follows from the de�nition of a 2-band �lter bank.

4. Implication (4) follows from the de�nition of a 2-band undecimated �lter bank. 2

6. CRITERIA FOR FILTER DESIGN

In Sections 3 and 4, we explained how the use of projection �lters that attenuate negative (or positive) frequencies
may be used to enhance the directional selectivity of the DWT. The directional selectivity is directly related to
the frequency-domain performance of the projection �lter; longer projection �lters have better frequency-domain
characteristics, and hence can impart greater directional selectivity to the DWT. However, in Theorem 1, we proved
that to obtain perfect reconstruction in a non-redundant framework, it is necessary to use IIR synthesis �lters
obtained from the polyphase components of the projection �lter. For practical reasons, the design of the projection
�lter h+ must ensure that the IIR synthesis �lters 1=H+

e (z
2) 1=H+

o (z
2) may be implemented in a stable manner.

The experiments in this paper have used the orthonormal, length-4, Daubechies scaling �lter for the h0 �lter that is
used to generate the projection �lter h+ according to Equation 1. The associated IIR synthesis �lters have no poles
on or outside the unit circle and hence enjoy a fast causal implementation. In general, however, we may need to use
longer projection �lters to obtain improved directional selectivity. This section explains how the IIR synthesis �lters
that are associated with arbitrary projection �lters may be implemented in a stable manner.

Using IIR �lters requires the imposition of boundary conditions on the IIR �lter inputs in order to determine the
initial conditions under which they operate. When processing �nite-length images, the symmetric extension method
in which an image is extended by re
ection at its boundaries, performs well compared to other extension methods.6

Since the DWT is a recursive transform, the input to each level must be symmetrically extended. This is achieved by
symmetrically extending the input to the �rst level and using symmetric scaling and wavelet �lters at all levels. Under
these assumptions, the input to the projection �lter may also be symmetrically extended. Figure 8 is a polyphase
implementation of the projection and reconstruction blocks in Figure 6. This polyphase implementation allows for
fast generation of the complex wavelet coeÆcients using only real arithmetic. The E operator performs whole-point
symmetric extension6 on the even and odd polyphase components xe; xo of the input x. The real and imaginary parts
of the projected coeÆcients s are generated separately, by �ltering with the polyphase components h+e ; Imfh

+
o g. If

7



the polyphase components h0e; h
0
o of the lowpass �lter h0 that generates h+ are odd-length symmetric �lters, then

h+e ; Imfh
+
o g are also odd-length symmetric �lters and so the inputs to the IIR synthesis �lters 1

h+e
; Imf 1

h+o
g will also

have whole-point symmetry. This allows us to invoke the symmetric-extension boundary conditions for initialization
of the IIR �lters prior to recovery of the symetrically extended polyphase components Exe and Exo. Restriction of
these signals6 then enables the reconstruction of the input x̂ = xe(z

2) + z�1xo(z
2). Note that h+e ; Imfh

+
o g cannot

be even-length symmetric �lters or anti-symmetric �lters, because these �lters would then necessarily have zeros on
the unit circle.7 The IIR synthesis �lters 1

h
+
e

; 1
Imfh+o g

would then be unstable. Hence we are restricted to using a

projection �lter generated from a lowpass �lter with symmetric, odd-length polyphase components.

synthesisprojection

Exo - Im fh+o g

Exe - h+e

E(Im fsg)
-

E(Re fsg)-

- Im
n

1
h
+
o

o
Exo

- Restriction

- 1
h
+
e

Exe- Restriction
xe

xo

?

6
z�1

h+

6
2

6
2

x̂

Figure 8. Perfect reconstruction with symmetric extension. The symbols h+e and h+o represent the polyphase components
of the projection �lter h+.

Next, we focus on the implementation of the symmetric IIR synthesis �lters. This problem has been studied in
an image-processing context by Smith et al.8 and more recently by Unser et al..9,10 Our approach here is inspired
by the fast algorithms proposed in these references. Let 1=Hs(z) denote the z transform of a symmetric IIR �lter
with real-valued coeÆcients and no poles on the unit circle. These properties imply that the zeros of Hs(z) occur
in sets that may have either two or four distinct elements. The two-element sets consist of a real-valued zero and
its reciprocal while the four-element sets contain a complex-valued zero, its complex-conjugate and their reciprocals.
This enables us to factor Hs(z) as

Hs(z) =

"
NY
i=1

Hc(z; zi)Ha(z; zi)

#24 MY
j=1

Gc(z; zj)Ga(z; zj)

3
5 ; (2)

where

Hc(z; zi) = 1� ziz
�1;

Ha(z; zi) = 1� ziz;

Gc(z; zi) = (1� ziz
�1)(1� z�i z

�1);

Ga(z; zi) = (1� ziz)(1� z�i z);

and the 'c' ('a') subscripts refer to real-coeÆcient �lters that are implemented causally (anti-causally). Therefore,
the symmetric IIR �lter 1=Hs(z) may be implemented as the cascade of N sections as in Figure 9 and M sections
as in Figure 10. Unser et al.9,10 provide more details on the fast implementation of of these sections as well as the
derivation of initial conditions for the IIR �lters in them.

We summarize the �ndings of this section by pointing out that in addition to reducing artifacts at the image
boundaries, the symmetric-extension boundary conditions also allow for fast implementation of the IIR synthesis
�lters. However, to realize these particular boundary conditions at the input to the IIR synthesis �lter, the projection
�lter must have symmetric odd-length polyphase components. This entails the design of an even-length lowpass �lter
with symmetric odd-length polyphase components. The design process should also guarantee that the symmetric
polyphase components h0e(�z); h

0
o(�z) have no zeros on the unit circle. This ensures that the IIR synthesis �lters

may be implemented in a stable manner.

7. SEISMIC ATTRIBUTE ANALYSIS

This section shows how the directional transforms introduced in Sections 3 and 4 provide state-of-the-art performance
in a seismic image-processing application. Seismic imagery of the earth's subsurface plays a critical role in all
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1
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Figure 9. Cascade implementation of two-element set of zeros

aspects of oil and gas exploration and production | from the location of reserves to their appraisal and subsequent
monitoring. In oil and gas exploration, seismic cross-sections are scrutinized by interpreters who search for features
that indicate possible hydrocarbon reservoirs. Previously, interpreters dealt with large plots of 2D cross sections; they
now work on computers with 3D volumes comprising gigabytes of data. Local signal attributes aid the interpretation
of seismic data, elucidating its salient characteristics.

A particularly useful attribute is the local angle (dip) of the re
ecting surface. Dip representations enable 3D
interpretation of structures using seismic depth-slices. Channels and faults appear as dip variations, but are often
barely visible in amplitude slices. Previously, we used the complex steerable pyramid (CSP1) to develop attribute
representations that provide very accurate angle indications for 2D cross-sections.11 However, the overwhelming
redundancy of the pyramid representation prohibits its application to 3D seismic volumes because of computational
expense.

We now outline a two-stage method for developing local angle representations for 2D seismic images using the novel
complex transforms presented in this paper. In the �rst stage, we apply a projection-based transform to the seismic
image. For the non-redundant post-projection transform we use di�erent length �lters in the vertical and horizontal
directions. We generate h+y from the short, length-4 Daubechies scaling �lter since the IIR �lters in the corresponding
synthesis block may be implemented causally. In the horizontal direction the h+x and h�x projection �lters are
generated from the length-20 Daubechies �lters. These longer �lters suppress aliasing and improve di�erentiation
between angles by enhancing the distinction between positive and negative lateral frequencies. For the redundant
pre-projection transform we have used long �lters in both directions as the reconstruction constraints allow this.

In the second stage of the method, we perform six separate reconstructions by considering each angle in isolation.
Each reconstructed image re
ects the extent to which the seismic cross-section is oriented in the corresponding
direction. We estimate the local angle as the weighted average of the six angles.

Figure 11 compares the angle representations generated for a seismic cross-section. The geometry in the section
(Figure 11(a)) shows a structure with substantial angle variations and several smaller scale events such as faults.
The CSP angle representation in Figure 11(b) provides an accurate and smooth representation of the local angles
in the seismic section. Steep uphill dipping re
ections are indicated with high intensity, steeply downward dipping
re
ections are represented in dark gray-value. The non-redundant post-projection transform generates a noisier and
less smooth representation with a somewhat �ner resolution (Figure 11(c)). This transform however requires 14
times less redundancy. The result of the angle detection with the redundant pre-projection transform in Figure 11
(d) looks almost equally informative as the result with CSP (b), but has a higher spatial resolution and is only 4
times redundant.

8. CONCLUSION

This paper demonstrates persuasively that the projection technique improves directional selectivity. Both our meth-
ods partition highpass coeÆcients into six directional subbands at each scale, and lowpass coeÆcients into two
directional subbands. Although our transform uses shorter �lters than Kingsbury's dual-tree transform, it achieves

- 1
Gc(z;zj)

1
Ga(z;zj)

-

Figure 10. Cascade implementation of four-element set of zeros
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tighter localization of features in each of the subbands. The novel synthesis �lter bank structure is an important
contribution, since it guarantees perfect reconstruction in a non-redundant framework. In conclusion, we stress the

exibility and elegance of our technique, since it enhances any DWT with superior directional selectivity.
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(a) (b)

(c) (d)

Figure 11. (a) Seismic section showing substantial angle variations (b) Angle analysis results using complex steerable
pyramid. (c) Angle analysis results using the non-redundant post-projection transform. (d) Angle analysis using the redundant
pre-projection transform. In (b),(c) and (d) intensity represents angle, black (-90 degrees) through white (+90 degrees).
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