
Ill-Conditioning and Bandwidth Expansion in Linear Prediction of Speech

Peter Kabal

Electrical & Computer Engineering
McGill University

Montreal, Quebec H3A 2A7

Abstract

This paper examines schemes that modify linear prediction
(LP) analysis for speech signals. First, techniques which
improve the conditioning of the LP equations are exam-
ined. White noise compensation for the correlations is jus-
tified from the point of view of reducing the range of values
which the predictor coefficients take on. The efficacy of the
procedure is measured over a large speech database. Vari-
ous techniques for bandwidth expansion of the LP spectral
peaks are also examined. These include lag windowing of
the correlation, windowing of the predictor coefficients, and
modification of the line spectral frequencies. New formulas
for the bandwidth expansion factor are given.

1 Introduction

This paper examines techniques which have been employed
to modify the linear prediction (LP) analysis of speech sig-
nals. First, there are approaches which attempt to provide
improved conditioning of the LP equations. Second, there
are a number of approaches to bandwidth expansion of the
resonances in the LP spectral models.

2 Linear Predictive Analysis

Linear predictive analysis fits an all-pole model to the local
spectrum of a (speech) signal. The model is derived from
the autocorrelation sequence of a segment of the speech.

Let the input signal be x(n). This signal is windowed,

xw(n) = w(n)x(n). (1)

The linear prediction formulation minimizes the difference
between the windowed signal and a linear combination of
past values of the windowed signal,

e(n) = xw(n) −
Np∑
k=1

pkxw(n − k). (2)

The goal is to minimize the total squared error,

ε =
∑

n

|e(n)|2. (3)

The predictor coefficients (pk) which minimize ε can be
found from the following set of equations



r(0) r(1) · · · r(Np−1)
r(1) r(0) · · · r(Np−2)

...
...

. . .
...

r(Np−1) r(Np−2) · · · r(0)







p1

p2

...
pNp


 =




r(1)
r(2)

...
r(Np)


. (4)

The autocorrelation values are given by

r(k) =

∞∑
n=−∞

xw(n)xw(n − k). (5)

In vector-matrix notation,

Rc = r. (6)

The prediction error filter will be denoted by A(z),

A(z) = 1 −
Np∑
k=1

pkz−k. (7)

For the autocorrelation formulation, the Levinson-Durbin
algorithm can be used to efficiently solve for the predictor
coefficients. The prediction error filter (A(z)) will be mini-
mum phase and the corresponding synthesis filter (1/A(z))
will be stable.

2.1 Conditioning and Predictor Coefficient Values

Of importance for implementations using fixed point arith-
metic is the dynamic range of the predictor coefficients. Co-
efficient pk is the sum of the products of the roots taken k
at a time. Since the roots have magnitude less than one, the
largest possible value for a coefficient occurs for coefficient
Np/2 and is

(
Np

k

)
. For the case of Np = 10, the predictor

coefficients can be as large as 252. Many modern speech
coders (G.729 [1] and SMV [2], for example) store the pre-
dictor coefficients in 16-bit fixed point, with 12 fractional
bits (Q12 format). This requires that the predictor values
be less than 8 in magnitude.

Problems with the predictor coefficient values will be
worst for systems with singularities near the unit circle.
These are the systems that are most predictable. The nu-
merical conditioning of a system of equations can be mea-
sured by the condition number. The 2-norm condition num-
ber is the ratio of the largest eigenvalue to the smallest
eigenvalue,

γ =
λmax

λmin
. (8)

As an example, consider a 240 sample Hamming window
and 10’th order LP analysis. The input speech is filtered
(modified IRS response) and sampled at 8 kHz. The con-
dition number of the autocorrelation matrix and the max-
imum predictor coefficient values were measured across a
data base of 25 speakers, including two children, for a total
of 224,779 frames. Figure 1 below shows a histogram of the
condition number expressed in power dB. The largest con-
dition number encountered was 56.4 dB. The largest predic-
tor coefficient generated was 11.0 for a frame with a condi-
tion number of 48.7 dB. These frames occur during normal
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speech. For instance, the frame with the largest condition
number occurs in male speech in the middle of the word
“both”. The largest predictor coefficient occurs in female
speech at the end of the word “floor”. In both cases, the
waveforms in these regions are somewhat sinusoidal.
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Fig. 1 Histogram of condition numbers (dB)

2.2 Power Spectrum Modification

The eigenvalues of a Toeplitz matrix formed from autocor-
relation values are bounded by the minimum and maximum
values of the power spectrum. The power spectrum is given
by

S(ω) =
∞∑

k=−∞
r(k)e−jωk. (9)

This sum involves all of the autocorrelation coefficients, not
just those that appear in the correlation matrix. The con-
dition number is related to the fluctuations in the power
spectrum — a flat spectrum gives the best conditioned
equations, while spectra with large dynamic ranges can give
badly conditioned equations.

Consider spectra with large peaks. These can be due to
sinusoidal components, for instance DTMF tones used for
signalling. They can, however, also occur in speech. A high
pitched voice (female or child) uttering a nasalized sound
can generate a surprisingly sinusoidal waveform. Problems
occur because these sinusoidal components are very pre-
dictable. For pure sines, only two predictor coefficients per
sinusoid are needed to achieve perfect prediction. After
applying a tapered window, we no longer have a pure sinu-
soids, but the ill-conditioning is still present.

A simple modification to reduce the eigenvalue spread is
diagonal loading of the correlation matrix (adding a pos-
itive term to the zero’th autocorrelation coefficient). In
the power spectral domain, this is equivalent to adding a
constant white noise term (white noise correction). This
reduces the bounds on the eigenvalue spread.

The same approach is used in fractional spacing equal-
izers for data transmission [3]. There the problem is ill-
conditioning due to over-sampling. Adaptive adjustment
algorithms such as LMS are subject to having the taps wan-
der into overload regions. The mean-square error criterion
can be modified to constrain the sum of the squared coeffi-
cient values,

ε′ = ε + µcT c. (10)

Taking the derivative with respect to the tap weights gives
equations of the same from as earlier, but with the correla-
tion matrix replaced by

R′ = R + µI . (11)

Applying diagonal loading by multiplying the zero’th cor-
relation value by the factor 1.0001 improves the condition
numbers (see Fig. 2) by compressing the tails of the distri-
bution. The largest condition number is now 47.6 dB and
the largest predictor value is now 4.65 (within the range of
±8 for Q12 representation).
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Fig. 2 Histogram of condition numbers (dB) with white noise
correction

A slightly different tack to improve conditioning was
taken by Atal and Schroeder [4]. They attacked the problem
of ill-conditioning due to use of sharp lowpass filters. These
filters leave a null in the spectrum near the half-sampling
frequency. The solution proposed was to use high-frequency
correction by adding the correlation for high-pass noise to
the speech correlation matrix. This way, the solution is not
as biased as it is when white noise correction is used.

Some wideband (16 kHz sampling rate) coders employ
preemphasis of the input signal to help reduce the spec-
tral dynamic range. They also use a higher order analysis.
The preemphasis will reduce the condition number in many
cases, but not for the frames which are troublesome because
the waveform is nearly sinusoidal.

These approaches bias the solutions even when the equa-
tions are already well conditioned. An approach which only
modifies the equations for ill-conditioned equations would
be preferable. For instance, instead of adding a constant
power spectrum (white noise correction), a “water-pouring”
approach which fills in spectral valleys can be employed,

S′(ω) = max(S(ω), µr(0)). (12)

Alternately, correction can be applied while solving the
equations. In a standard Levinson-Durbin recursion, re-
flection coefficients with magnitude near unity signal ill-
conditioning. Such a reflection coefficient can be set to a
value away from unity and remaining reflection coefficients
can be set to zero (thereby setting the rest of the predictor
coefficients to zero also).

3 Bandwidth Expansion
In speech coding resonances correspond to the formant fre-
quencies. Bandwidth expansion is the process of taking a
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frequency response and broadening the bandwidths of those
peaks. Such an expansion is useful in speech processing to
prevent unnatural spectral peaks due to formant/pitch in-
teractions. Modern speech coders use bandwidth expansion
in one or both of two places: lag windowing of correlation
values before LP analysis and modification of the LP coef-
ficients after LP analysis.

3.1 Time Windows

The input signal is usually windowed with a tapered win-
dow (Hamming or other) prior to calculating the correlation
values. The effect of the window can be described in the fre-
quency domain as a convolution of the frequency response
of the window with the frequency response of the (infinite)
signal. This constitutes bandwidth expansion — the main
lobe width (measured between zero crossings) for a Ham-
ming window is 8π/N (asymptotically in N), where N is the
window length. For a 240 sample Hamming window (sam-
pling rate 8 kHz), the main lobe width of the frequency
response of the Hamming window is 135 Hz between zero
crossings and 44 Hz at the 3 dB points.

3.2 Correlation Windowing

Explicit bandwidth expansion prior to LP analysis is done
by lag windowing the autocorrelation sequence [5, 6], often
with a Gaussian or binomial shaped window. Correlation
(lag) windowing corresponds to a periodic convolution of
the frequency response of the window with the power spec-
trum.

Consider a Gaussian window which is a function of con-
tinuous time,

w(t) = exp(−1

2
(at)2) . (13)

The frequency response of this window also has a Gaussian
shape,

W (Ω) =

√
(2π)

a
exp(−1

2

(Ω

a

)2
). (14)

The (double-sided) bandwidth measured between the 1
standard deviation points for response is 2a. The 3 dB
bandwidth is bigger by a factor

√
2 log(2) (about 1.18).

The window is actually applied in discrete-time leading to
frequency aliasing. However with reasonably chosen band-
width expansion factors, the effect of aliasing can be largely
ignored in the calculation of the effective bandwidth expan-
sion. The discrete-time window is

w[k] = exp(−1

2

(πfok

Fs

)2
), (15)

where fo is the two-sided bandwidth and Fs is the sampling
rate.

The G.729 and SMV coders speech coder use a band-
width expansion of fo = 120 Hz (so-called 1-σ bandwidth
of 60 Hz) relative to a sampling rate Fs = 8000 Hz. With
no white noise compensation, the largest condition num-
ber over the database is 56.0 dB with lag windowing and
the largest predictor value is 10.70. This indicates that lag
windowing by itself does not improve the conditioning by
much. However, note that white noise compensation can
itself be represented as a lag window. White noise compen-

sation plus lag windowing can be combined into a single lag
window.

3.3 Spectral Damping

Consider a digital filter H(z) and a bandwidth expanded
version of this filter. In many cases, it is important that
the bandwidth expanded version of the filter have the same
form as the original filter. For instance if H(z) is an all-pole
filter (as would arise from a standard LP analysis), we want
the bandwidth-expanded version to be all-pole. Replacing
z by z/α satisfies this requirement. Consider the all-pole
filter H(z) = 1/A(z). With bandwidth scaling, the filter
has the same form, but with a new set of coefficients,

p′
k = αkpk. (16)

Replacing z by z/α scales the singularities of H(z) inward
(α < 1) or outward (α > 1). For a filter with resonances,
choosing α < 1 has the effect of expanding the bandwidth
of the resonances.

3.3.1 Windowing with an exponential sequence

For a causal filter, the effect of radial scaling of the sin-
gularities is such that the impulse response coefficients are
modified to become

h′[n] = αnh[n], (17)

i.e., the impulse response coefficients are multiplied by an
exponential (infinite length) time window. Equivalently,
the frequency response of the bandwidth expanded filter is
convolved with the frequency response of the window,

W (ejω) =
1

1 − αe−jω
. (18)

The 3 dB bandwidth of the frequency response of the
window is

BW = 2 cos−1(1− (1 − α)2

2α
) for 3 − 2

√
2 ≤ α ≤ 1 . (19)

Below the lower limit for α, the response does not decrease
sufficiently to fall 3 dB below the peak. This bandwidth
is the bandwidth expansion for a very narrow resonance in
the LP filter.

3.3.2 Radial scaling of a bandpass filter

For an alternate derivation, consider a continuous-time
bandpass filter with a single resonance

H(s) =
s

s2 + (Ωo/Q)s + Ω2
o

. (20)

The corresponding digital filter can be found from the
continuous-time filter using a bilinear transformation,

z = −s + a

s − a
or s = a

z − 1

z + 1
. (21)

For complex poles, the poles get mapped to new locations
z1,2 = rpe±jωo ,

H(z) =
z2 − 1

z2 − 2rp cos ωo z + r2
p

. (22)

Using the bilinear relationship, the 3 dB bandwidth is

BW = π/2 − 2 tan−1(r1r2) . (23)

where r1 and r2 are the radii of the poles of the digital filter.
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Consider scaling the z-transform

H ′(z) = H(z/α) , (24)

where 0 < α ≤ 1. Then the new poles have radii r′1 = αr1

and r′2 = αr2. The 3 dB bandwidth of the resonance is now

ω′
u − ω′

l = π/2 − 2 tan−1(α2r1r2) . (25)

The difference in bandwidth due to radial scaling by α is

∆BW = 2 tan−1
(r1r2(1 − α2)

1 + α2r2
1r2

2

)
. (26)

In the limiting case of complex poles near the unit circle,
the bandwidth expansion is For r1 = r2 = 1,

∆BW = π/2 − 2 tan−1(α2). (27)

3.3.3 Comparison of Bandwidth Formulas

We now have two formulas, Eqs. (19) and (27) for the ef-
fect of radial scaling of the z-transform. This bandwidth
expansion expressions derived here can be compared to ap-
proximations that have appeared in the literature. Paliwal
and Kleijn [7] give the bandwidth expansion (converted to
our notation)

∆BW = −2 log(α). (28)

This formulation can be derived from an impulse invariant
transformation of a continuous-time exponential sequence.
As such it ignores the aliasing effects.

For α near unity, the three expressions (Eqs. (19), (27)
and (28)) give similar results. An examination of the Taylor
series for the three expressions shows that they agree in
value and the first derivative at α = 1,

∆BW = 2(1 − α) + (1 − α)2 + O((1 − α)3). (29)

The bandwidth expansions given by the different expres-
sions are plotted in Fig. 3. The ordinate is the band-
width expansion normalized to the sampling frequency,
(∆BW/(2π)). From this figure we see that the simple two
term Taylor series from Eq. (29) is itself a good estimate of
the bandwidth expansion for useful values of α.
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Fig. 3 Relative bandwidth expansion ∆BW/(2π) as a function
of the bandwidth expansion parameter α. From bottom to top,
the curves are the different estimates of ∆BW: π/2−2 tan−1(α2),
2(1 − α) + (1 − α)2, −2 log(α), and 2 cos−1(1 − (1 − α)2/(2α))

In speech coding, bandwidth expansions of 10 Hz to 25
Hz are used. With a sampling rate of 8000 Hz, these end
points correspond to relative bandwidth expansion values
of α of 0.996 and 0.990 (for r = 1).

3.4 Line Spectral Frequencies

Line spectral frequencies (LSF’s) are a representation of
LP coefficients. The LSF’s are an ordered set of values in
the range (0, π). Closely spaced LSF’s tend to indicate a
spectral resonance at the corresponding frequency. Several
standard coders impose minimum separation constraints on
the LSF’s. A bandwidth expansion scheme, albeit for use
as a postfilter for speech processing, is described in [8]. In
that paper, the LSF’s are pushed apart by interpolating
the given LSF’s with a set corresponding to a flat spectrum
(equally spaced LSF’s).

An experiment was carried out to investigate this type
of bandwidth expansion. An artificial LP filter with a sin-
gle constant bandwidth resonance was created. Bandwidth
expansion of the LSF’s was applied. As the centre fre-
quency of the resonance was varied, the resulting band-
width depended on the centre frequency, varying by more
than ±10%. This result shows that amount of bandwidth
expansion is not consistent and depends on the frequency
of the resonances.

4 Summary
This paper has demonstrated the problems of ill-
conditioning of the LP equations for speech signals. The
standard technique of white noise compensation ensures
that the prediction coefficients values are reasonable. Band-
width expansion to prevent abnormally narrow formant
peaks can be provided by lag windowing of the correla-
tion values and/or spectral damping applied to the predic-
tion coefficients. A new simple formula for calculating the
bandwidth expansion by spectral damping has been given.
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