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ABSTRACT 

 

This report is based on two papers entitled as follows, 

1. Stochastic stability of the discrete time extended kalman filter [1]. 

2. Stochastic stability of the extended Kalman filter with intermittent observations [2]. 

In particular, the estimation error behavior of the discrete-time extended Kalman filter for 

nonlinear systems is analyzed in a stochastic framework. It is shown that under certain 

assumptions the estimation error remains bounded. The results are then generalized to systems 

with intermittent observations. Furthermore, modelling the arrival of the observations as a 

random process, the effect of two different measurement models on the bounds for the error 

covariance matrices is studied. 
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1 Chapter 1: Introduction 
 

The Kalman filter, under Gaussian assumption, is the optimal state estimator for linear dynamic 

systems. Although originally devised for linear systems, nonlinear systems can also be addressed 

by the Kalman filter through some modifications to it as approximations to the optimal state 

estimator. The extended Kalman filter (EKF) is one of the most popular estimation techniques 

that has been largely investigated for state estimation of nonlinear systems [3],[4]. The EKF uses 

the standard Kalman filter equations to the first-order approximation of the nonlinear model 

about the last estimate. It is very sensitive to initialization, and filter divergence is inevitable if 

the arbitrary noise matrices have not been chosen appropriately [1]. The stability results for the 

usual Kalman filter are studied in [5]-[7]. 

Recently there has been an increased research attention for Networked Control Systems. A 

common feature of these systems is the presence of significant communication delays and data 

loss across the network. Therefore, it has become necessary to jointly address the issues of 

control and communication in these systems [8]-[13]. In contrast to traditional filtering problems, 

an important feature in networked systems is that the delivery of measurements to the estimator 

is not always reliable and losses of data may occur. This leads to estimation schemes which are 

required to handle missing data. For example, Figure 1 shows a structure where the arrival of an 

observation is modelled by a binary stochastic variable ߛ௧. If a measurement arrives after the ݐ௧௛ 

step, ߛ௧ is set to 1, if no measurement arrives after the ݐ௧௛ step, ߛ௧ is set to 0. The stability and 

convergence properties of the estimation process have been studied in the case of linear Kalman 

filtering with intermittent observations in [10], where it is shown that there exists a certain 

threshold of the packet loss rate above which the state estimation error diverges in the expected 

sense, i.e., the expected value of the error covariance matrix becomes unbounded as time goes to 

infinity. The lower and upper bounds of the threshold value is also provided. 
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Figure 1. An estimation scheme for Kalman filtering with measurement loss 
 

In this report, the estimation error behavior of the extended Kalman filter is studied. Due to 

stochasticity, the exponential stability of the nonlinear system is analyzed in the mean square 

error sense. Furthermore, these results are generalized to systems with intermittent observations 

and the impact of the data loss process model on the stability of the estimation process is 

discussed. 

The rest of the report is organized as follows. Chapter 2 provides some preliminaries. Next 

chapter studies the stochastic stability of the discrete-time extended Kalman filter. In chapter 4 

these results are generalized for the case of intermittent observations. A critical arrival 

probability in the case of a Bernoulli process and deterministic bounds for the error covariance 

matrices in the case of a maximum dropout interval are also derived. Finally, concluding remarks 

are made in chapter 5.   
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2 Chapter 2: Preliminaries 
 

In this section we recall some auxiliary results for the state estimation problem of nonlinear 

stochastic discrete-time systems as well as their stochastic stability. 

 

2.1 Nonlinear Control System 

Consider a nonlinear control system of the type 

௧ାଵݔ				 ൌ ݂ሺݔ௧, ,௧ݑ ௧ሻݓ
௧ݕ		 ൌ ݄ሺݔ௧, ௧ሻݒ

 (1) 

where	ݔ௧ ∈ Թ௡ is the state of the system, 	ݑ௧ ∈ Թௗ the control input and 	ݕ௧ ∈ Թ௠ the 

measurements. The stochastic variables ݓ௧ ∈ Թ௦ and ݒ௧ ∈ Թ௧ denote the process noise and the 

measurement noise, respectively. They are both assumed to be uncorrelated white noise 

processes, and be independent from initial	ݔ଴. Note that if we assume linear additive white noise, 

and therefore, no nonlinear dependency between the state and the system noise, then we can 

represent the nonlinear control system as  

௧ାଵݔ				 ൌ ݂ሺݔ௧, ௧ሻݑ ൅ ௧ݓ௧ܩ
௧ݕ		 ൌ ݄ሺݔ௧ሻ ൅ ௧ݒ௧ܦ

 (2) 

 

2.1.1 General Assumptions 

In this report, we will refer to the following assumptions as the general assumptions. 

1) f and h are continuously differentiable ܥଵ functions, and the following Jacobian matrices 

are found for every ݐ	 ൒ 	0. 

௧ܣ				 ൌ
డ௙

డ௫
ሺݔො௧|௧, ,௧ݑ 0ሻ, ௧ܩ	 ൌ

డ௙

డ௪
ሺݔො௧|௧, ,௧ݑ 0ሻ 		

௧ܥ	 ൌ
డ௛

డ௫
൫ݔො௧|௧ିଵ, 0൯, ௧ܦ				 ൌ

డ௛

డ௩
൫ݔො௧|௧ିଵ, 0൯ 

(3) 

2) There are positive real numbers തܽ, ݃̅, ܿ̅, ݀̅, ݍ
¯
, ݎ
¯
൐ 0	 such that the following bounds on 

various matrices are fulfilled for every 	ݐ	 ൒ 	0.	
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‖௧ܣ‖ ൑ തܽ										‖ܩ௧‖ ൑ ݃̅ 									 ݍ
¯
௡ܫ ൑ ܳ௧

‖௧ܥ‖ ൑ ‖௧ܦ‖											̅ܿ ൑ ݀̅ 								 ݎ
¯
௠ܫ ൑ ܴ௧

(4) 

3) There are positive real numbers ߝఝ, ,ఞߝ ,ఝߜ ఞߜ ൐ 0 such that the nonlinear functions ߮, ߯ 

which are the remaining terms of the Taylor expansions, 

݂ሺݔ௧, ,௧ݑ ௧ሻݓ ൌ ݂ሺݔො௧|௧, ,௧ݑ 0ሻ ൅ ௧ݔ௧ሺܣ െ ො௧|௧ሻݔ ൅ ௧ݓ௧ܩ ൅ ߮ሺݔ௧, ,ො௧|௧ିଵݔ ,௧ݑ ௧൯ݓ

݄ሺݔ௧, ௧ሻݒ ൌ ݄ሺݔො௧|௧ିଵ, 0ሻ ൅ ௧ݔ௧ሺܥ െ ො௧|௧ିଵሻݔ ൅ ௧ݒ௧ܦ ൅ ߯ሺݔ௧, ,ො௧|௧ିଵݔ ௧൯ݒ
	 (5) 

are bounded via 

‖߮ሺݔ௧, ,ො௧|௧ݔ ,௧ݑ ௧൯‖ଶݓ ൑ ௧ݔఝฮߝ െ ො௧|௧ฮଶݔ
ଶ
݄ݐ݅ݓ ௧ݔ‖∀ െ ො௧|௧‖ଶݔ ൑ 	,ఝߜ

					‖߯ሺݔ௧, ,ො௧|௧ݔ ,௧ݑ ௧൯‖ଶݓ ൑ ௧ݔఞฮߝ െ ො௧|௧ିଵฮଶݔ
ଶ
݄ݐ݅ݓ ௧ݔ‖∀ െ ො௧|௧ିଵ‖ଶݔ ൑  ఞߜ

(6) 

 

2.2 Extended Kalman Filter Formulations 

There are two common formulations of the discrete-time extended Kalman filter in engineering 

literature: a two-step recursion with a relinearization between these two steps or a one-step 

formulation. In this section we review these formulations. 

 

2.2.1 One-step EKF 

The one-step extended Kalman filter formulation consists of the following coupled difference 

equations [11], 

ො௧ାଵݔ ൌ ௧ݕ௧൫ܭ൅(௧ݑ ,ො௧ݔ)݂ െ ݄ሺݔො௧ሻ൯ (7) 

௧ܲାଵ ൌ ௧ܣ ௧ܲܣ௧
் ൅ ܳ௧ െ ௧ܥ)௧ܭ ௧ܲܥ௧

்+ܴ௧) ܭ௧
் (8) 

௧ܣ ൌ
డ௙

డ௫
ሺݔො௧, ௧ܥ  ,௧ሻݑ ൌ

డ௛

డ௫
ሺݔො௧ሻ (9) 

௧ܭ ൌ ௧ܣ ௧ܲܥ௧
்ሺܥ௧ ௧ܲܥ௧

் ൅ ܴ௧ሻିଵ (10) 

 

2.2.2 Two-step EKF 

The two-step extended Kalman filter formulation consists of the following coupled difference 

equations [12], 
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ො௧ାଵ|௧ݔ ൌ ݂ሺݔො௧|௧, ,௧ݑ 0ሻ (11) 

ො௧ାଵ|௧ାଵݔ ൌ ො௧ାଵ|௧ݔ ൅ ௧ାଵݕ௧ାଵሺܭ െ ݄൫ݔො௧ାଵ|௧, 0൯ሻ (12) 

௧ܲାଵ|௧ ൌ ௧ܣ ௧ܲ|௧ܣ௧் ൅ ܳ௧ (13) 

௧ܲାଵ|௧ାଵ ൌ ௧ܲାଵ|௧ െ ௧ାଵܥ௧ାଵܭ ௧ܲାଵ|௧ (14) 

௧ାଵܭ ൌ ௧ܲାଵ|௧ܥ௧ାଵ
் ൫ܥ௧ାଵ ௧ܲାଵ|௧ܥ௧ାଵ

் ൅ ܴ௧ାଵ൯
ିଵ

(15) 

 

Remark 2.1 

These two formulations may have a different performance and transient behavior, but the 

convergence properties are the same [11]. 

 

2.3 Stochastic Boundedness 

Consider the estimation error as 

݁௧ ൌ ௧ݔ െ  ො௧  (16)ݔ

 For the analysis of the EKF error dynamics, let us recall two definitions: 

 

Definition 2.1 

The stochastic process ݁௧ is said to be exponentially bounded in mean square, if there are real 

numbers β, ν ൐ 0 and 0 ൏ ߙ ൏ 1 such that 

ॱሾ‖݁௧‖ଶሿ ൑ β‖݁଴‖ଶߙ௧ ൅ν  (17) 

holds for every ݐ	 ൒ 	0. 

 

Definition 2.2 

The stochastic process ݁௧ is said to be bounded with probability one, if 

݌ݑݏ
௧ஹ଴

‖݁௧‖ ൏ ∞ 
(18) 

holds with probability one. 
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Next, some standard results concerning the boundedness of stochastic processes are given. 

 

Proposition 2.1 

Consider the nonlinear discrete-time system represented by 

݁௧ାଵ ൌ ሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ݎ ൅  ௧ (19)ݏ

with 

௧ݎ ൌ ߮ሺݔ௧, ,ො௧ݔ ௧ሻݑ െ ,௧ݔ௧߯ሺܭ  ො௧ሻ (20)ݔ

௧ݏ ൌ ௧ݓ௧ܩ െ  ௧      (21)ݒ௧ܦ௧ܭ

Assume there is a stochastic process ௧ܸሺ݁௧ሻ and real numbers ̅ݒ, ,ݒ ߤ ൐ 0 and 0 ൏ ߙ ൑ 1 such 

that 

௧‖ଶ݁‖ݒ ൑ ௧ܸሺ݁௧ሻ ൑ ௧‖ଶ݁‖ݒ̅  (22) 

and 

ॱሾ ௧ܸାଵሺ݁௧ାଵሻ|݁௧ሿ െ ௧ܸሺ݁௧ሻ ൑ ߤ െ ߙ ௧ܸሺ݁௧ሻ  (23) 

are satisfied for every solution of (19). Then the stochastic process ݁௧ is exponentially bounded 

in mean square, i.e., we have 

ॱሾ‖݁௧‖ଶሿ ൑
ݒ̅
ݒ
ॱሾ‖݁଴‖ଶሿሺ1 െ ሻ௧ߙ ൅

ߤ
ߙݒ

 (24) 

for every ݐ	 ൒ 	0. Moreover, the stochastic process is bounded with probability one. 

௧‖ଶ݁‖ݒ ൑ ௧ܸሺ݁௧ሻ ൑ ௧‖ଶ݁‖ݒ̅  (25) 
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3 Chapter 3: Stochastic Stability of the Extended 

Kalman Filter 
 

In this chapter the estimation error boundedness is proved for the EKF, if certain conditions are 

satisfied. Moreover, the role of nonlinear observability in this context is discussed. 

 

3.1 Boundedness of the Estimation Error for the EKF 

Theorem 3.1 

Consider the nonlinear stochastic systems given by (2) and the one-step EKF formulation as 
stated in section 2.1.1. Further to general assumptions 2.1.1, let the following assumptions hold: 

	ݐ	 ௧ is nonsingular for everyܣ .1 ൒ 	0. 

2. There exist real constants ̅݌, ݌
¯
>0 such that 

݌
¯
ܫ ൑ ௧ܲ ൑  (26) ܫ̅݌

If for some ߝ, δ൐ 0 the initial estimation error satisfies 

‖݁଴‖ ൑  (27) ߜ

and the covariance matrices are bounded via 

௧்ܩ௧ܩ ൑ ,ܫଶߝ ௧்ܦ௧ܦ						 ൑  ܫଶߝ
(28) 

Then the estimation error ݁௧ is exponentially bounded in mean square and bounded with 

probability one. 

Proof. Noting that ௧ܲ is positive definite, we choose  

௧ܸሺ݁௧ሻ ൌ ݁௧் ௧ܲ
ିଵ݁௧ (29) 

The assumption (26) implies that 

1
̅݌
‖݁௧‖ଶ ൑ ௧ܸሺ݁௧ሻ ൑

1
݌
¯

‖݁௧‖ଶ (30) 
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Moreover, replacing for ݁௧ାଵusing (19) we can write 

௧ܸାଵሺ݁௧ାଵሻ ൌ ሾሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ݎ ൅ ௧ሿ்ݏ ௧ܲାଵ
ିଵሾሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ݎ ൅  ௧ሿ (31)ݏ

Now, applying Lemma 7.1 we can write the following inequality 

௧ܸାଵሺ݁௧ାଵሻ ൑ ሺ1 െ ሻߙ ௧ܸሺ݁௧ሻ ൅ ௧்ݎ ௧ܲାଵ
ିଵሾ2ሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ሿ்ݎ

൅ ௧்ݏ2 ௧ܲାଵ
ିଵሾሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ሿݎ ൅ ௧்ݏ ௧ܲାଵ

ିଵݏ௧ 
(32) 

Observe that by taking the conditional expectation ॱሾ ௧ܸାଵሺ݁௧ାଵሻ|݁௧ሿ and considering the white 

noise property, we have 

ॱൣݏ௧் ௧ܲାଵ
ିଵሺሺܣ௧ െ ௧ሻ݁௧ܥ௧ܭ ൅ ௧ሻ|݁௧൧ݎ ൌ 0 (33) 

because only ݏ௧ ൌ ௧ݓ௧ܩ െ  ,௧. Subsequentlyݒ ௧ andݓ ௧ depends (linearly) on white noisesݒ௧ܦ௧ܭ

applying Lemma 7.2 and Lemma 7.3 the remaining terms are expressed as the following 

inequality 

ॱሾ ௧ܸାଵሺ݁௧ାଵሻ|݁௧ሿ െ ௧ܸሺ݁௧ሻ ൑ െߙ ௧ܸሺ݁௧ሻ ൅ ௡௢௡௟‖݁௧‖ଷߢ ൅  ௡௢௜௦௘ε (34)ߢ

for ‖݁௧‖ ൑   ᇱ. On the other hand, definingߜ

ߜ ൌ ݉݅݊ ൬
ߙ

௡௢௡௟ߢ̅݌2
,  ᇱ൰ (35)ߜ

and using (29) and (30) yields 

௡௢௡௟‖݁௧‖‖݁௧‖ଶߢ  ൑
ఈ

ଶ௣̅
‖݁௧‖ଶ ൑

ఈ

ଶ ௧ܸሺ݁௧ሻ (36) 

for ‖݁௧‖ ൑  Replacing (36) into (34), we get .ߜ

ॱሾ ௧ܸାଵሺ݁௧ାଵሻ|݁௧ሿ െ ௧ܸሺ݁௧ሻ ൑ െఈ

ଶ ௧ܸሺ݁௧ሻ ൅  ௡௢௜௦௘ε (37)ߢ

for ‖݁௧‖ ൑ ‖Now we can apply Proposition 2.1 with ‖݁଴ .ߜ ൑ ݒ ,ߜ ൌ ଵ

௣
ݒ̅ , ൌ ଵ

௣
, and  ߤ ൌ  .௡௢௜௦௘εߢ

Furthermore, choosing  
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ε ൌ
ሚଶߜߙ

௡௢௜௦௘ߢ̅݌2
 (38) 

with some ߜሚ ൑ ‖݁௧‖ ൑   we have ߜ

௡௢௜௦௘εߢ ൑
ߙ
̅݌2

‖݁௧‖ଶ ൑
ߙ
2 ௧ܸሺ݁௧ሻ (39) 

Therefore, the inequality 

ॱሾ ௧ܸାଵሺ݁௧ାଵሻ|݁௧ሿ െ ௧ܸሺ݁௧ሻ ൑ െ
ߙ
2 ௧ܸሺ݁௧ሻ ൅ ௡௢௜௦௘εߢ ൑ 0 (40) 

guarantees the boundedness of the estimation error. This ends the proof.                                      ■ 

 

Remark 3.1 

This result states that if the nonlinearity is small then the EKF is stable if initialised close enough 

to the true initial value. The greater the deviation from linearity the better the initialisation needs 

to be. It is also noted that the proof presented here provides a technique for calculating 

conservative bounds for ε and ߜ. Moreover, simulation studies suggest that ε and ߜ can be 

significantly larger than these bounds in some situations. 

 

3.2 The Significance of Nonlinear Observability for the EKF 

Consider nonlinear autonomous systems of the following type 

௧ାଵݔ				 ൌ ݂ሺݔ௧ሻ
௧ݕ		 ൌ ݄ሺݔ௧ሻ ൅ ௧ݒ௧ܦ

 (41) 

and recall the following observability rank condition [14]. 
 

Definition 3.1 

A nonlinear autonomous system of the form (41) satisfies the nonlinear observability rank 

condition at x୲ ∈ R୬, if the nonlinear observability matrix Ο has full rank n at x୲, where
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ߍ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

߲݄
ݔ߲

ሺݔ௧ሻ

߲݄
ݔ߲

ሺݔ௧ାଵሻ
߲݂
ݔ߲

ሺݔ௧ሻ

⋮
߲݄
ݔ߲

ሺݔ௧ା௡ିଵሻ
߲݂
ݔ߲

ሺݔ௧ା௡ିଶሻ…
߲݂
ݔ߲

ሺݔ௧ሻے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 (42) 

 

Definition 3.2 

The pair ሺܣ௧,  ௧ሻ is said to satisfy the uniform observability condition [7], if there are realܥ	

numbers ݉,݉ ൐ 0 and an integer ݈ ൐ 0 , such that 

ܫ݉ ൑ ௧ା௟,௧ܯ ൌ ∑ ሺߔ௝,௞
௝ܥ்

௝,௞ሻߔ௝ܥ் ൑
௧ା௟
௝ୀ௧  (43) .ܫ݉ 

With ߔ௧,௧ ൌ  and ܫ

௝,௧ߔ ൌ ௝ିଵܣ  ௧ (44)ܣ…

 
Theorem 3.2 

Consider the nonlinear autonomous systems given by (41) and the one-step EKF formulation as 

stated in section 2.1.1. Let the following assumptions hold: 

1. There is a compact subset ࣥ of R୬ and the autonomous system satisfies the observability 

rank condition for every ݔ୲ ∈ ࣥ. 

2. The nonlinear functions ݂, 	݄ are twice continuously differentiable and 
డ௙

డ௫
ሺݔ௧ሻ ് 0  holds 

for every ݔ௧ ∈ ࣥ. 

3. The sample paths of ݔ௧	are bounded with probability one, and ࣥ	contains these sample 

paths as well as all points with distance smaller than ߜ఑ from these sample paths, where 

	఑ߜ ൐ 0 is a real number independent of ݐ. 

4. There are positive real numbers q
¯
, r
¯
൐ 0 such that the following bounds are fulfilled for 

every 	t	 ൒ 	0. 

q
¯
I୬ ൑ Q୲

								 r
¯
I୫ ൑ R୲

 (45) 
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If for some ߝ, δ൐ 0 the initial estimation error satisfies 

‖݁଴‖ ൑  (46) ߜ

and the covariance matrix is bounded via 

௧்ܦ௧ܦ ൑  (47) ܫଶߝ

Then the estimation error ݁௧ is exponentially bounded in mean square and bounded with 

probability one. 

Proof. To prove this theory, we show that the conditions of Theorem 3.1 are implied by the 

conditions 1–4 of Theorem 3.2 as well as the observability results in Lemma 7.4 and Lemma 7.5. 

In particular, it can be seen immediately that conditions given by (45)  also hold in Theorem 3.1. 

Moreover, since ݂, 	݄ are twice continuously differentiable for every ݔ௧ ∈ ࣥ and ࣥ is compact, 

it follows that the Hessian matrices of ௜݂and ݄௜ are bounded with respect to the spectral norm of 

matrices, where ௜݂ and ݄௜ are the components of ݂ and ݄, respectively. Consequently, the 

constants ߝఝ and ߝఞ in the following conditions (which hold for Theorem 3.1)  

‖߮ሺݔ, ,ොݔ ‖ሻݑ ൑ ݔ‖ఝߝ െ ො‖ଶݔ ݄ݐ݅ݓ ݔ‖∀ െ ‖ොݔ ൑ ,ఝߜ

				‖߯ሺݔ, ‖ොሻݔ ൑ ݔ‖ఞߝ െ ො‖ଶݔ ݄ݐ݅ݓ ݔ‖∀ െ ‖ොݔ ൑    ఞߜ
(48) 

are given by  

ఝߝ	 ൌ max
ଵஸ௜ஸ௡

sup
௫∈ࣥ

‖Hes ௜݂ሺݔሻ‖ ,

ఞߝ ൌ max
ଵஸ௜ஸ௠

sup
௫∈ࣥ

‖Hes ݄௜ሺݔሻ‖
(49) 

For the remaining conditions of Theorem 3.1 it is sufficient to ensure these conditions one time-

step in advance. We have to show that the boundedness with probability one of ݁௧ and ݔ௧ implies 

the desired bounds on ܣ௧, ܥ௧and ௧ܲ. Then we obtain the boundedness of ݁௧ାଵ. Repeating this 

procedure we get bounds on ܣ௧ାଵ, ܥ௧ାଵand ௧ܲାଵ and therefore on ݁௧ାଶ. This strategy can be 

repeated to get the desired result. Since ݊ െ 1 steps are required to set up the uniform 

observability condition, we treat the cases 0 ൑ ݐ ൏ ݊ and ݐ ൒ ݊ separately. Firstly, for the case 

0 ൑ ݐ ൏ ݊, using the proof of Lemma 7.1 it follows that ௧ܲାଵ ൐ 0 if ௧ܲ ൐ 0; because the Riccati 
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difference equation determines the evolution for the error covariance, which is positive definite if 

ܳ௧ ൐ 0. Taking the minimum and maximum eigenvalue of ௧ܲ and the maximum singular value 

of ܣ௧, ܥ௧ for 0 ൑ ݐ ൏ ݊ we obtain the bounds on ܣ௧, ܥ௧and ௧ܲ. Secondly, for the case ݐ ൒ ݊ we 

have to ensure that neither any eigenvalue of ௧ܲ converges to zero nor any of the matrices ܣ௧, ܥ௧ 

and ௧ܲdiverges. The bounds on ௧ܲ follow from Lemma 7.4, Lemma 7.5 and applying the 

boundedness with probability one of ݁௜ for ݊ ൑ ݅ ൏ ‖in the region ‖݁௜ ݐ ൑ ߳௢௕௦. Furthermore, the 

boundedness for ܣ௧ and ܥ௧ follows from the continuity of  
డ௙

డ௫
 and 

డ௛

డ௫
, the compactness of ࣥ and 

the fact that ݔො௧ ∈ ࣥ with probability one, and using ‖ݔ௧ െ ‖ො௧ݔ ൑  ఑. Considering theseߜ

arguments, Theorem 3.1 can be applied by changing (35) with  

ߜ ൌ ݉݅݊ ൬
ߙ

௡௢௡௟ߢ̅݌2
, ,఑ߜ  ௢௕௦൰ (50)ߝ

This ends the proof.                 ■   

 

Remark 3.2 

We observe that for autonomous systems the condition on the solution of the Riccati difference 

equation as imposed in Theorem 3.1, can be reduced to a nonlinear observability rank condition, 

which can be checked in advance. 

 

Remark 3.3 

The proof of Theorem 3.2 can be generalized to nonlinear autonomous systems with process 

noise, i.e., 

෤௧ାଵݔ				 ൌ ݂ሺݔ෤௧ሻ ൅ ௧ݓ
෤௧ݕ				 ൌ ݄ሺݔ෤௧ሻ ൅ ௧ݒ

 (51) 

If we assume that the solution ݔ෤௧ for ݐ ൒ 0 is bounded with probability one sufficiently close to 

the nominal solution ݔ௧ for ݐ ൒ 0. 

One can compare the results of Theorem 3.1and Theorem 3.2 with the stability results for the 

linear Kalman filter expressed below [5]-[7]. 
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Remark 3.4 

Consider the following discrete-time linear dynamical system: 

௧ାଵݔ ൌ ௧ݔ௧ܣ ൅  ௧ݓ௧ܩ
(52) 

௧ݕ	 ൌ ௧ܥ
௧ݔ் ൅  ௧ݒ

where, ݓ௧ and ݒ௧ are independent, zero mean, white processes with ॱሾݓ௧ݓ௧்ሿ ൌ ௧்ሿݒ௧ݒॱሾ ,ܫ ൌ  .ܫ

(A nonunit covariance for ݓ௧ is absorbed in ܩ௧ and a nonunit covariance for ݒ௧ is absorbed by 

scaling 	ݕ௧ and ܥ௧
், as long as the covariance is nonsingular). Moreover, it is assumed that 

ॱሾݔ଴ݔ଴
்ሿ ൌ ଴ܲ, ॱሾݔ଴ሿ ൌ ݉, and ݔ଴, ݓ௧ and ݒ௧ are independent. Additionally, ܣ௧, ܩ௧, and ܥ௧ are 

assumed to be bounded. Then we have the following results: 

1. The pair ሺܣ௧,  ௧ሻ uniformly detectable is sufficient for the optimal Kalman filter errorܥ

covariance to be bounded.  

2. Furthermore, if the pair ሺܣ௧,  ௧ሻ is uniformly stabilizable, the Kalman filter isܩ

exponentially stable. 

3. Uniform detectability of the pair ሺܣ௧,  ௧ሻ  is sufficient for the existence of a boundedܥ

sequence ܭ௧ such that ሺܣ௧ െ	ܭ௧ܥ௧
்ሻ	ݔ௧ is exponentially stable. 

4. If the pair ሺܣ௧, -௧ሻ  is uniformly detectable, the (Kalman) filter error covariance and oneܥ

step predictor error covariance are bounded. 
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4 Chapter 4: Stochastic Stability of the EKF with 

Intermittent Observation 
 

The estimation error boundedness of the EKF with intermittent observations is studied in this 

chapter. Moreover, the role of the modeling approach for measurement process will be discussed 

in the context of the boundedness of the error covariance matrices. 

 

4.1 Boundedness of the Estimation Error 

In this section we will study the behavior of estimation error for the extended Kalman filter with 

intermittent observations. 

 

Theorem 4.1 

Suppose that there exists positive real constants ݎ ,ݍ ,݌ ,݌ such that: 

ܫ݌ ൑ ௧ܲାଵ|௧ାଵ ൑ ௧ܲାଵ|௧ ൑   ܫ݌
(53) 

ܫݍ ൑ ܳ௧ ܽ݊݀ ܫݎ ൑ ܴ௧ 

Considering the general assumptions, one can characterize the behavior of estimation error as 

follows: 

ߢ∀ ൐ 0, ߝ∃ ൐ ݐ݄ܽݐ	݄ܿݑݏ	0 ॱሾݓ௧ݓ௧்ሿ ൑ ܫଶߝ ܽ݊݀ ॱሾݒ௧ݒ௧்ሿ ൑  ܫଶߝ
(54) 

ߢ∀ ൐ 0, ߜ∃ ൐ 0 ݄ܿݑݏ ݐ݄ܽݐ ॱ ቂฮ݁ଵ|଴ฮ
ଶ
ቃ ൑  ߜ

Based on (54) the estimation error ݁௧ାଵ|௧ is exponentially bounded in mean square and  

ॱ ቂฮ݁௧ାଵ|௧ฮ
ଶ
ቃ ൑  (55) ߢ
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Proof. Let’s assume that ௧ܸሺ݁௧|௧ିଵሻ ൌ ݁௧|௧ିଵ
்

௧ܲ|௧ିଵ
ିଵ ݁௧|௧ିଵ. Substituting  

݁௧ାଵ|௧ ൌ ௧ܫ௧ሺܣ െ ௧ሻ݁௧|௧ିଵܥ௧ܭ௧ߛ ൅ ௧ݎ ൅  ௧ (56)ݏ

in ௧ܸሺ݁௧|௧ିଵሻ will equal to: 

௧ܸାଵ൫݁௧ାଵ|௧൯ ൌ ݁௧|௧ିଵ
் ሺܫ െ ௧்ܣ௧ሻ்ܥ௧ܭ௧ߛ ௧ܲାଵ|௧

ିଵ ܫ௧ሺܣ െ ௧ሻ݁௧|௧ିଵܥ௧ܭ௧ߛ

൅ ௧்ݎ ௧ܲାଵ|௧
ିଵ ܫ௧ሺܣ2ൣ െ ௧ሻ݁௧|௧ିଵܥ௧ܭ௧ߛ ൅ ௧൧ݎ

൅ ௧்ݏ ௧ܲାଵ|௧
ିଵ ሾ2ܣ௧ሺܫ െ ௧ሻ݁௧|௧ିଵܥ௧ܭ௧ߛ ൅ ௧ݎ2 ൅  ௧ሿݏ

(57) 

The first term in the above equation is estimated using Lemma 7.7. Furthermore, replacing ܥ௧ by 

ሚ௧ܥ ൌ  ௧ will vanish in the filter, error and Riccatiߛ ௧, one can notice that the effect ofܥ௧ߛ

equations. Since ฮܥሚ௧ฮ ൑ ܿ̅ one can follow the proof of Theorem 3.1and we establish: 

ॱൣ ௧ܸାଵ൫݁௧ାଵ|௧൯൧ ൑ ሺ1 െ ሻॱൣߙ ௧ܸ൫݁௧|௧ିଵ൯൧ ൅ ଵฮ݁௧|௧ିଵฮଶߢ
ଷ
൅  (58) ߝଶߢ

,ఞߜ ଶ in equation (58) are dependent on the boundsߢ ଵ  andߢ ,ఝߜ  ఝ from generalߝ ఞ andߝ

assumptions and the parameters of the system തܽ, ݃̅, ܿ̅, ݀̅, ,݌ ,̅݌ ,ݍ ,തݍ ,ݎ  థtend to zeroߝ ఞ andߝ If .ݎ̅

then ߢଵ  and ߢଶ will tend to zero too. From this point, we may proceed as the proof of (Satz IX.9) 

in [15].                               ■  

 

Remark 4.1 

Proof of Theorem 4.1 states that as long as there is at least one measurement in a finite set of 

time steps, one can use arbitrary probabilities for measurements in state prediction. Otherwise, 

the boundedness of ௧ܲାଵ|௧ାଵ and ௧ܲାଵ|௧ is violated if for infinitely many ݐ ∈ Գ, ℙሼߛ௧ ൌ 1ሽ ് 1. 

 

4.2 Boundedness of the Error Covariance Matrices 

As we discussed earlier, the error covariance matrices of the extended Kalman filter which meets 

the nonlinear observability rank condition are bounded for certain measurements. In this section 

we aim to study the boundedness of the error covariance matrices for the extended Kalman filter 

with intermittent observations. 
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For the randomly sampled system with the associated linearized system  

௧ାଵݔ ൌ ௧ݔ௧ܣ ൅  ௧ݓ௧ܩ
(59) 

௧ݕ ൌ ௧ݔ௧ܥ ൅  ௧ݒ௧ܦ

we assume that the measurements are only taken at those time steps ݐ at which ߛ௧ ൌ 1.  If the 

Jacobian bound  ܽ ൏ 1 and for all ݐ ∈ Գ, ߛ௧ ൌ 0, then the bounds of the error covariance 

matrices are independent from measurement process.   

In this section the boundedness of the error covariance matrices for two different modeling 

approaches of intermittent observations will be studied: Bernoulli process and maximum drop 

out interval. 

 

4.2.1 Boundedness of Error Covariance Matrices for Bernoulli Process 

Considering a Bernoulli process, the intermittent observations are modeled using a binary 

random variable, ߛ௧, in each time step. ߛ௧ determines the arrival of measurements after time t. If 

there is no measurement after time ߛ ,ݐ௧ will be set to zero, otherwise ߛ௧ will be 1.  The 

boundedness of the error covariance matrices in this scenario follows Theorem 4.2. 

 

Theorem 4.2 

Let’s assume that in this system the initial solution of the Riccati equation, ଵܲ|଴, is symmetric 

positive definite and there are real numbers ݍ, ,ݍ ,ݎ ݎ ൐ 0 such that: 

ܫݍ ൑ ܳ௧ ൑ ܫݍ ܽ݊݀ ܫݎ ൑ ܴ௧ ൑  (60) ܫݎ

If ݉ ൌ ݊ and for all ݐ ∈ Գ, ܥ௧ is invertible and is bounded by ܿିଵ, i.e. ‖ܥ௧ିଵ‖ ൑ ܿିଵ. Under 

these assumptions and if ߛ ൐ 1 െ ܽିଶ, then there will exist positive value ݌ ,݌ such that: 

ܫ݌ ൑ ௧ܲାଵ|௧ାଵ ൑ ௧ܲାଵ|௧ 
(61) 

ॱሾ ௧ܲାଵ|௧ାଵሿ ൑ ॱሾ ௧ܲାଵ|௧ሿ ൑  ܫ݌
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Proof. Since ܥ௧ is invertible and the pair ሺܣ௧, ,௧ܣ௧ሻ is observable, ሺܥ  ௧ሻ will be detectable. Thenܥ

if for all ݐ ∈ Գ, ߛ௧ ൌ 1, the lower bound follows from [7], [Corollary 5.2., p.29]. Substituting ௧ܲ|௧ 

and ܭ௧ in ௧ܲାଵ|௧ and rearranging the terms ௧ܲାଵ|௧ can be rewritten as follow: 

௧ܲାଵ|௧ ൌ ௧ܣ ቀ ௧ܲ|௧ିଵ െ ௧ߛ ௧ܲ|௧ିଵܥ௧்൫ܥ௧ ௧ܲ|௧ିଵܥ௧் ൅ ܴ௧൯
ିଵ
௧ܥ ௧ܲ|௧ିଵቁ ௧்ܣ ൅ ܳ௧ (62) 

Using Lemma 7.8 and defining ܣ ൌ ௧ܥ ௧ܲ|௧ିଵܥ௧் and ܤ ൌ ܴ௧ we will obtain: 

௧ܲାଵ|௧ ൑ ሺ1 െ ௧ܣ௧ሻߛ ௧ܲ|௧ିଵܣ௧் ൅ ௧்ܣ௧ି்ܥ௧ିଵܴ௧ܥ௧ܣ௧ߛ ൅ ܳ௧ (63) 

One may also note that: 

௧ି்ܥ௧ିଵܴ௧ܥ ൑ ௧ି்ܥ௧ିଵܥݎ ൑  ௡ (64)ܫଶିܿݎ

Using (64) and the fact that ܳ௧ ൑  :inequality (63) will change to ,ܫݍ

௧ܲାଵ|௧ ൑ ሺ1 െ ௧ܣ௧ሻߛ ௧ܲ|௧ିଵܣ௧் ൅ ௧ߛ
ݎ
ܿଶ
௧்ܣ௧ܣ ൅  (65) ܫݍ

Using induction, one can show that for all ݐ ൒ 1 and ݌ ൌ max	ሺฮ ଵܲ|଴, ܽ
ଶିܿݎߛଶ ൅ ฮሻ, ॱሾݍ ௧ܲାଵ|௧ሿ 

is bounded, i.e.: 

ॱሾ ௧ܲାଵ|௧ሿ ൑ ෍ሾሺ1݌ െ ௡ܫሻܽଶሿ௝ߛ

௧ିଵ

௝ୀ଴

 (66) 

If ߛ ൐ 1 െ ܽିଶ, the right hand side of the inequality (66) converges. Therefore the upper bound 

of (61) exists. Stochastically independence of ௧ܲ|௧ିଵ and ߛ௧ can be used to simplify the inequality 

of (65) in induction. 

ॱሾ ଶܲ|ଵሿ ൑ ॱ ቈሺ1 െ ଵܣଵሻߛ ଵܲ|଴ܣଵ
் ൅ ଵߛ

ݎ
ܿଶ
ଵܣଵܣ

் ൅ ቉ܫݍ

൑ ሺ1 െ ሻܽଶߛ ଵܲ|଴ ൅ ߛ
ݎ
ܿଶ
ܽଶܫ௡ ൅ ௡ܫݍ ൑ ሺ1 െ ௡ܫ݌ሻܽଶߛ ൅  ௡ܫ݌

(67) 

(66) holds for the basis of the induction. Now considering that (66) is true for ॱሾ ௧ܲ|௧ିଵሿ, one can 

calculate ॱሾ ௧ܲାଵ|௧ሿ: 
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ॱሾ ௧ܲାଵ|௧ሿ ൑ ॱ ቈሺ1 െ ௧ܣ௧ሻߛ ௧ܲ|௧ିଵܣ௧் ൅ ௧ߛ
ݎ
ܿଶ
௧்ܣ௧ܣ ൅ ቉ܫݍ

൑ ሺ1 െ ሻॱൣܽଶߛ ௧ܲ|௧ିଵ൧ ൅ ߛ
ݎ
ܿଶ
ܽଶܫ௡ ൅ ௡ܫݍ

൑ ሺ1 െ ෍ൣሺ1݌ሻܽଶߛ െ ሻܽଶ൧ߛ
௝

௧ିଵ

௝ୀ଴

௡ܫ ൅ ௡ܫ݌ ൌ ෍ൣሺ1݌ െ ሻܽଶ൧ߛ
௝

௧ିଵ

௝ୀ଴

 ௡ܫ

(68) 

Therefore (66) is held.                      ■ 

 

Remark 4.2 

The assumption of invertible ܥ௧ is quite restrictive but it is required to write the inequality (65). 

If ܥ௧ is not invertible then the best lower bound for ௧ܲ|௧ିଵܥ௧்൫ܥ௧ ௧ܲ|௧ିଵܥ௧் ൅ ܴ௧൯
ିଵ
௧ܥ ௧ܲ|௧ିଵ is 

going to be 0. 

 

Remark 4.3 

One of the drawbacks of using Bernoulli process for modeling the intermittent observation is that 

there is no guarantee that in any finite set of time steps, there will exists at least one 

measurement. Therefore if ܽ ൒ 1 and ߛ ് 1, deriving a deterministic bound will be impossible. 

 

4.2.2 Boundedness of Error Covariance Matrices for Maximum Drop Out 

Interval 

To overcome the problem of Bernoulli process, a new modeling approach proposed named 

maximum dropout interval. Maximum drop out interval assures that in a finite number of time 

steps at least one measurement will be taken by the system. Assuming that ߬௜ is the time step in 

which a measurement occurred, maximum loss rate of ܰ will be defined as ߬௜ାଵ െ ߬௜ ൑ ܰ. In this 

case one can extend the concept of uniform observability to this system. 
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Definition 4.1 

The pair ሺܣ௧,  ௧ሻ is said to satisfy the modified uniform observability condition if positive realܥ

numbers ݉ and ݉ and positive integer value ݈ exist such that the following modified 

observability gramian is bounded, i.e. ݉ܫ௡ ൑ ෩௧ାଵ,௧ܯ ൑  .௡ܫ݉

෩௧ାଵ,௧ܯ ൌ෍ߛ௝Φ௝,௧
் ௝ܥ

௝Φ௝,௧ܥ்

௧ାଵ

௝ୀ௧

 (69) 

 

Theorem 4.3 

If the linearized system defined by (59) satisfies the modified uniform observability condition 

and ଵܲ|଴ ൐ 0, then if there are real numbers ݍ, ,ݍ ,ݎ ݎ ൐ 0 such that 

ܫݍ ൑ ܳ௧ ൑ ܫݍ ܽ݊݀ ܫݎ ൑ ܴ௧ ൑  (70) ܫݎ

the solutions of the Riccati equations will have deterministic bounds with ݌,  :݌

ܫ݌ ൑ ௧ܲାଵ|௧ାଵ ൑ ௧ܲାଵ|௧ ൑  (71) ܫ݌

Proof. Consider the following associated system which is randomly sampled with measurement 

times ߬௧ and ݓ෥ఛ೟ ൌ ሾݓఛ೟, … , ఛ೟శభିଵሿݓ
்: 

ఛ೟శభݔ ൌ ఛ೟ݔሚఛ೟ܣ ൅  ෥ఛ೟ݓ෨ఛ೟ܩ
(72) 

ఛ೟ݕ ൌ ఛ೟ݔఛ೟ܥ ൅  ఛ೟ݒఛ೟ܦ

In this system ܣሚఛ೟ and ܩ෨ఛ೟ are defined as follow: 

ሚఛ೟ܣ ൌ ෑ ௝ܣ

ఛ೟శభିଵ

௝ୀఛ೟

 (73) 

෨ఛ೟ܩ ൌ ቎ቌ ෑ ௝ܣ

ఛ೟శభିଵ

௝ୀఛ೟

ቍܩఛ೟, … , ,ఛ೟శభିଶܩሚఛ೟శభିଵܣ  ఛ೟శభିଵ቏ (74)ܩ

And the Cartesian products, ݓ෥ఛ೟, of white noise processes, ݓ௝, are white noise processes. Also 

from maximum loss rate ߬௧ାଵ െ ߬௧ ൑ ܰ will be held. Then given the bounds in general 
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assumption (‖ܣ௧‖ ൑ തܽ, ‖௧ܩ‖ ൑ ݃̅), one can establish ฮܣሚఛ೟ฮ ൏ max	ሺ1, തܽேሻ and ฮܩ෨ఛ೟ฮ ൏

maxሺ݃̅, തܽேିଵ݃̅ሻ. Furthermore, the uniform observability condition of the linearized system is 

inferred from the modified uniform observability condition of the linearized system (72). 

Therefore (72) is detectable. Using [7], [Corollary 5.2., p.29] one can achieve (71).       ■ 
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5 Conclusions 
 

In this report, the estimation error behavior of the extended Kalman filter was analyzed. In 

particular, it was shown that under certain conditions the estimation error remains bounded in 

mean square and bounded with probability one. These conditions include the requirements that 

the initial estimation error and the disturbing noise terms are small enough, the nonlinearities are 

not discontinuous, and the solution of the Riccati difference equation remains positive definite 

and bounded. For autonomous systems the condition on the solution of the Riccati difference 

equation is reduced to a nonlinear observability rank condition. 

The results are then generalized to a setting, in which measurements may randomly be lost due to 

an unreliable communication channel between the sensor and the control unit of a nonlinear 

control system. One special feature of this result is that it holds for an arbitrary modelling of the 

intermittent observations. Moreover, two approaches for the modelling of the intermittent 

measurements were discussed: an i.i.d. Bernoulli process and a random process with a maximum 

dropout interval. Specifically, in the case of the Bernoulli model, a critical loss probability is 

derived which ensures the boundedness of the expectation value of the error covariance matrices. 

Additionally, by generalizing the concept of nonlinear observability to systems with intermittent 

observations, the existence of the deterministic bounds for the error covariance matrices in the 

case of a maximum dropout interval was shown. 
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7 Appendix 
 

Lemma 7.1 

Consider that the conditions of Theorem 3.1 hold. Then there exist a real number 0 ൏ ߙ ൏ 1 
such that for ݐ ൒ 0, ௧ܲ

ିଵ satisfies: 

ሺܣ௧ െ ௧ሻ்ܥ௧ܭ ௧ܲାଵ
ିଵ ሺܣ௧ െ ௧ሻܥ௧ܭ ൑ ሺ1 െ ሻߙ ௧ܲ

ିଵ  (75) 

Proof. Using definitions of ௧ܲାଵ and ܭ௧ following equation is achieved: 

௧ܲାଵ ൌ ௧ܣ ௧ܲܣ௧் ൅ ܳ௧ െ ௧ܣ ௧ܲܥ௧்ܭ௧் ൌ ሺܣ௧ െ ௧ሻܥ௧ܭ ௧ܲሺܣ௧ െ ௧ሻ்ܥ௧ܭ ൅ ܳ௧ ൅

௧ܥ௧ܭ ௧ܲሺܣ௧ െ   ௧ሻ்ܥ௧ܭ
(76) 

with the definition of ܭ௧ it can be shown that the result of the following equation is symmetric: 

௧ܣ௧ିଵሺܣ െ ௧ሻܥ௧ܭ ௧ܲ ൌ ௧ܲ െ ௧ܲܥ௧்ሺܥ௧ ௧ܲܥ௧் ൅ ܴ௧ሻିଵܥ௧ ௧ܲ (77) 

Using matrix inversion lemma and knowing that ௧ܲ
ିଵ ൐ 0 the left hand side of (77) can be 

rewritten like: 

௧ܣ௧ିଵሺܣ െ ௧ሻܥ௧ܭ ௧ܲ ൌ ሺ ௧ܲ
ିଵ ൅ ௧ሻିଵܥ௧்ܴ௧ିଵܥ ൐ 0 (78) 

Using ௧ܲ ൐ 0 and ܴ௧ ൐ 0 and from the definition of Kalman gain, one can obtain: 

௧ܥ௧ܭ௧ିଵܣ ൌ ௧ܲܥ௧்ሺܥ௧ ௧ܲܥ௧் ൅ ܴ௧ሻିଵܥ௧ ൒ 0 (79) 

Considering ௧ܲ ൌ ௧ܲ
் and by combining (78) and (79) one will establish that: 

௧ܥ௧ܭ ௧ܲሺܣ௧ െ ௧ሻ்ܥ௧ܭ ൌ ௧ܣ௧ିଵሺܣ௧ሿሾܥ௧ܭ௧ିଵܣ௧ሾܣ െ ௧ሻܥ௧ܭ ௧ܲሿ்ܣ௧் ൒ 0 (80) 

Substituting (80) into (76) leads to: 

௧ܲାଵ ൒ ሺܣ௧ െ ௧ሻܥ௧ܭ ௧ܲሺܣ௧ െ ௧ሻ்ܥ௧ܭ ൅ ܳ௧  (81) 

From (78) one can imply that ሺܣ௧ െ  :௧ሻିଵ exists andܥ௧ܭ

௧ܲାଵ ൒ ሺܣ௧ െ ௧ሻሾܥ௧ܭ ௧ܲ ൅ ሺܣ௧ െ ௧ܣ௧ሻିଵܳ௧ሺܥ௧ܭ െ ௧ܣ௧ሻି்ሿሺܥ௧ܭ െ  ௧ሻ்  (82)ܥ௧ܭ
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By the definition of Kalman gain and considering general assumptions and the bounds on ௧ܲ 

following will be held: 

‖௧ܭ‖ ൑ തܽ̅ܿ̅݌ ଵ
௥
  (83) 

and 

௧ܲାଵ ൒ ሺܣ௧ െ ௧ሻሾܥ௧ܭ ௧ܲ ൅
௤

ሺ௔ା௔௣௖మ ௥⁄ ሻమ
௧ܣሿሺܫ െ  ௧ሻ்  (84)ܥ௧ܭ

Since ௧ܲ ൒ ௧ܣ and ܫ݌ െ  ௧ is nonsingular, one can take the inverse of both sides. Byܥ௧ܭ

multiplying ሺܣ௧ െ ௧ܣ௧ሻ் and ሺܥ௧ܭ െ ܫ݌ ௧ሻ from left and right respectively and usingܥ௧ܭ ൑ ௧ܲ ൑

 :the following will be held ܫ݌

ሺܣ௧ െ ௧ሻ்ܥ௧ܭ ௧ܲାଵ
ିଵ ሺܣ௧ െ ௧ሻܥ௧ܭ ൑ ൤1 ൅

௤

௣ሺ௔ା௔௣௖మ ௥⁄ ሻమ
൨
ିଵ

௧ܲ
ିଵ  (85) 

which is inequality (75) with 

1 െ ߙ ൌ ଵ

ଵା
೜

೛ሺೌశೌ೛೎
మ
ೝൗ ሻమ

  
(86) 

 

Lemma 7.2 

Considering the conditions of Theorem 3.1, there exist real numbers ߜᇱ, ௡௢௡௟ߢ ൐ 0 such that for 

௧ݔ‖ െ ‖ො௧ݔ ൑  ᇱߜ

௧்ݎ ௧ܲ
ିଵሾ2ሺܣ௧ െ ௧ݔ௧ሻሺܥ௧ܭ െ ො௧ሻݔ ൅ ௧ሿݎ ൑ ௧ݔ‖௡௢௡௟ߢ െ  ො௧‖ଷ  (87)ݔ

Proof. Under general assumptions and by considering ܫ݌ ൑ ௧ܲ ൑ ௧ܥ and ܫ݌ ௧ܲܥ௧் ൐ 0 and using 

the definition of ܭ௧ we will have: 

‖௧ܭ‖ ൑ ܿ݌ܽ ଵ
௥
  (88) 

Substituting (88) into the equation of ݎ௧ one will obtain: 

‖௧ݎ‖ ൑ ‖߮ሺݔ௧, ,ො௧ݔ ‖௧ሻݑ ൅ തܽ̅ܿ̅݌ ଵ
௥
‖߯ሺݔ௧,  ො௧ሻ‖  (89)ݔ
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Choosing ߜᇱ ൌ minሺߜఝ, ௧ݔ‖ ఞሻ, then forߜ െ ‖ො௧ݔ ൑  :ᇱߜ

‖௧ݎ‖ ൑ ௧ݔ‖ఝߝ െ ො௧‖ଶݔ ൅ തܽ̅ܿ̅݌ ଵ
௥
௧ݔ‖ఞߝ െ ො௧‖ଶݔ ൌ ௧ݔ‖ᇱߝ െ  ො௧‖ଶ  (90)ݔ

in which 

ᇱߝ ൌ ఝߝ ൅ തܽ̅ܿ̅݌ ଵ
௥
 ఞ  (91)ߝ

Using (90) and under general assumptions for ‖ݔ௧ െ ො௧‖ଶݔ ൑  ᇱߜ

௧்ݎ ௧ܲ
ିଵሾ2ሺܣ௧ െ ௧ݔ௧ሻሺܥ௧ܭ െ ො௧ሻݔ ൅ ௧ሿݎ ൑ ௧ݔ‖ᇱߝ െ ො௧‖ଶݔ

ଵ

௣
ሺ2 ቀܽ ൅ ܿ݌ܽ ଵ

௥
ܿቁ ௧ݔ‖ െ ‖ො௧ݔ ൅

௧ݔ‖ᇱߜᇱߝ െ   ො௧‖ሻݔ
(92) 

which is (87) with 

௡௢௡௟ߢ ൌ ᇱߝ ଵ
௣
ሺ2 ቀܽ ൅ ܿ݌ܽ ଵ

௥
ܿቁ ൅  ᇱሻ  (93)ߜᇱߝ

 

Lemma 7.3 

Assuming that the conditions of Theorem 3.1 hold. Then there is a real number ߢ௡௢௜௦௘ ൐ 0 which 

is independent of ߝ such that 

ॱሼݏ௧் ௧ܲାଵ
ିଵ ௧ሽݏ ൑  (94) ߝ௡௢௜௦௘ߢ

Proof. ݒ௧ and ݓ௧ are uncorrelated white noises. Therefore the expectation value of the 

crossterms that contains both ݒ௧ and ݓ௧ will become zero. Hence, 

௧்ݏ ௧ܲାଵ
ିଵ ௧ݏ ൌ ௧்ܩ௧்ݓ ௧ܲାଵ

ିଵ ௧ݓ௧ܩ ൅ ௧்ܭ௧்ܦ௧்ݒ ௧ܲାଵ
ିଵ  ௧ (95)ݒ௧ܭ

If one assume that the general assumptions hold and ܥ௧ ௧ܲܥ௧் ൐ 0, then 

‖௧ܭ‖ ൑ ܿ݌ܽ ଵ
௥
  (96) 

Using (96) in (95) and considering ܫ݌ ൑ ௧ܲ ൑  :yields ܫ݌
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௧்ݏ ௧ܲାଵ
ିଵ ௧ݏ ൑

1
݌
௧ݓ௧ܩ௧்ܩ௧்ݓ ൅

ܽଶܿଶ݌ଶ

ଶݎ݌
 ௧ (97)ݒ௧ܦ௧்ܦ௧்ݒ

Since left-hand side and right-hand side of (97) are scalars, one may take the trace on the right-

hand side without changing its value 

௧்ݏ ௧ܲାଵ
ିଵ ௧ݏ ൑

1
݌
௧ሻݓ௧ܩ௧்ܩ௧்ݓሺݎݐ ൅

ܽଶܿଶ݌ଶ

ଶݎ݌
 ௧ሻ (98)ݒ௧ܦ௧்ܦ௧்ݒሺݎݐ

Simplifying this and taking the mean value we get: 

ॱሼݏ௧் ௧ܲାଵ
ିଵ ௧ሽݏ ൑

1
݌
௧்ሻܩ௧்ሽݓ௧ݓ௧ॱሼܩሺݎݐ ൅

ܽଶܿଶ݌ଶ

ଶݎ݌
 ௧்ሻ (99)ܦ௧்ሽݒ௧ݒ௧ॱሼܦሺݎݐ

In which ܦ௧ and ܩ௧ are deterministic matrices. Since ݒ௧ and ݓ௧ are standard vector-valued white 

noise processes, then ॱሼݒ௧ݒ௧்ሽ ൌ ௧்ሽݓ௧ݓand ॱሼ ܫ ൌ  and ܫ

ॱሼݏ௧் ௧ܲାଵ
ିଵ ௧ሽݏ ൑

1
݌
௧்ሻܩ௧ܩሺݎݐ ൅

ܽଶܿଶ݌ଶ

ଶݎ݌
 ௧்ሻ (100)ܦ௧ܦሺݎݐ

Using ܩ௧ܩ௧் ൑ ௧்ܦ௧ܦ and ܫߝ ൑ ,ߜ for some ܫߝ ߝ ൐ 0 following equations will held: 

௧்ሻܩ௧ܩሺݎݐ ൑ ሻܫሺݎݐߝ ൌ  (101) ߝݍ

௧்ሻܦ௧ܦሺݎݐ ൑ ሻܫሺݎݐߝ ൌ  (102) ߝ݉

 ௧ respectively. Settingܦ ௧ andܩ and ݉ are the number of the rows for ݍ

௡௢௜௦௘ߢ ൌ
ݍ
݌
൅
ܽଶܿଶ݌ଶ݉
ଶݎ݌

 (103) 

yields 

ॱሼݏ௧் ௧ܲାଵ
ିଵ ௧ሽݏ ൑  (104) ߝ௡௢௜௦௘ߢ

which is the desired inequality (94). 
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Lemma 7.4 

Assume that for ݊ ൒ 0, ௧ܲ is the solution of the following Riccati difference equation. 

௧ܲାଵ ൌ ௧ܣ ௧ܲܣ௧் ൅ ܳ௧ െ ௧ܥ௧ሺܭ ௧ܲܥ௧் ൅ ܴ௧ሻܭ௧் (105) 

Furthermore, consider that following conditions are held: 

1) Positive real numbers ݍ, ,ݍ ܫݍ exist such that ݎ and ݎ ൑ ܳ௧ ൑ ܫݎ and ܫݍ ൑ ܳ௧ ൑  ܫݎ

2) The matrices ܣ௧ and ܥ௧ satisfy the uniform observability condition. 
3) The initial ଴ܲ of (105) is positive definite. 

Then for every ݊ ൒ 0, ௧ܲ will be bounded, i.e. ܫ݌ ൑ ௧ܲ ൑  .ܫ݌

 

Lemma 7.5 

Let’s assume ࣥ ⊂ ܴ௡ is a compact subset. If the following nonlinear system 

௧ାଵݔ				 ൌ ݂ሺݔ௧ሻ
௧ݕ		 ൌ ݄ሺݔ௧ሻ ൅ ௧ݒ௧ܦ

 (106) 

satisfies the nonlinear observability condition for every ݔ௧ ∈ ࣥ, then there exists a positive real 

number ߝ௢௕௦ ൐ 0 such that ܣ௧ ൌ
డ௙

డ௫
ሺݔො௧ሻ and ܥ௧ ൌ

డ௙

డ௫
ሺݔො௧ሻ satisfy the uniform observability 

condition, provided that ‖ݔ௧ െ ‖ො௧ݔ ൑  .௢௕௦ߝ

 

Lemma 7.6 

If for matrices ܣ, ,ܤ ܥ ∈ Թ௡ൈ௡ we assume that ܤ and ܥ are symmetric positive definite and 

ܥ െ ்ܣܤܣ ൐ 0, then ିܤଵ െ ܣଵିܥ்ܣ ൐ 0. 

Proof. Since ܥ െ ்ܣܤܣ ൐ 0, then ሺܥ െ  .ሻିଵ exists and is symmetric positive definite்ܣܤܣ

Knowing ܤ ൐ 0 the following will be held: 

ܤ ൅ ܥሺ்ܣܤ െ ܤܣሻିଵ்ܣܤܣ ൌ ሺିܤଵ െ ሻିଵܣଵିܥ்ܣ ൐ 0 (107) 
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Therefore ሺିܤଵ െ  .ሻିଵ is symmetric definite as well as its inverseܣଵିܥ்ܣ

Lemma 7.7 

Further to general assumption, let’s consider that the following assumption holds: 

,݌∃ ̅݌ ൐ ݐ݄ܽݐ	݄ܿݑݏ	0 ܫ݌ ൑ ௧ܲାଵ|௧ାଵ ൑ ௧ܲାଵ|௧ ൑  (108) ܫ݌

then there is a ߙ ∈ Թ which value is in interval ሺ0,1ሻ such that: 

ሺܫ௡ െ ௧்ܣ௧ሻ்ܥ௧ܭ௧ߛ ௧ܲାଵ|௧
ିଵ ௡ܫ௧ሺܣ െ ௧ሻܥ௧ܭ௧ߛ ൐ ሺ1 െ ሻߙ ௧ܲ|௧ିଵ

ିଵ  (109) 

Proof. One can observe that 

௧ܲାଵ|௧ ൌ ௧ܣ ௧ܲ|௧ܣ௧் ൅ ܳ௧ ൐ ሺ1 ൅
ݍ

2ܽଶ݌
ሻܣ௧ ௧ܲ|௧ܣ௧் 

(110) 

From 

௧ାଵܭ ൌ ௧ܲାଵ|௧ܥ௧ାଵ
் ሺܥ௧ାଵ ௧ܲାଵ|௧ܥ௧ାଵ

் ൅ ܴ௧ାଵሻିଵ (111) 

And the fact that ߛ௧ ൌ  ௧ଶ, one obtainsߛ

௧ܲ|௧ ൌ ሺܫ௡ െ ௧ሻܥ௧ܭ௧ߛ ௧ܲ|௧ିଵሺܫ௡ െ ௧ሻ்ܥ௧ܭ௧ߛ ൅  ௧் (112)ܭ௧ܴ௧ܭ௧ߛ

Substituting (112) in (111) and using ܴ௧ ൐ 0 following inequality will be obtained: 

௧ܲାଵ|௧ ൐ ቆ1 ൅
ݍ

2ܽଶ݌
ቇܣ௧ሺܫ௡ െ ௧்ܣ௧ሻܥ௧ܭ௧ߛ ௧ܲ|௧ିଵሺܫ௡ െ  ௧்ܣ௧ሻ்ܥ௧ܭ௧ߛ

(113) 

Let’s define ܣ ൌ ௡ܫ௧ሺܣ െ ܤ ,௧ሻܥ௧ܭ௧ߛ ൌ 1 ൅
௤

ଶ௔మ௣ ௧ܲ|௧ିଵ and ܥ ൌ ௧ܲାଵ|௧. By choosing ߙ to be 

equal to ݍሺ2ܽଶ݌ ൅   ሻିଵ which is in interval ሺ0,1ሻ and applyingݍ

Lemma 7.6, one can show that (109) holds. 

 

Lemma 7.8 

For symmetric positive definite matrices ܣ, ܤ ∈ Թ௡ the following inequality holds: 
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ሺܣ ൅ ሻିଵܤ ൐ ଵିܣ െ  ଵ (114)ିܣܤଵିܣ

Proof. Following will be established if one applies twice the matrix inversion lemma: 

ሺܣ ൅ ሻିଵܤ ൌ ଵିܣ െ ଵିܤଵሾିܣ ൅ ଵିܣଵሿିଵିܣ ൌ ଵିܣ െ ܤଵሾିܣ െ ܣሺܤ ൅ ଵିܣሿܤሻିଵܤ

ൌ ଵିܣ െ ଵିܣܤଵିܣ ൅ ܣሺܤଵିܣ ൅ ଵିܣܤሻିଵܤ ൐ ଵିܣ െ  ଵିܣܤଵିܣ
(115) 

 

 

 


