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ABSTRACT

This report is based on two papers entitled as follows,

1. Stochastic stability of the discrete time extended kalman filter [1].

2. Stochastic stability of the extended Kalman filter with intermittent observations [2].

In particular, the estimation error behavior of the discrete-time extended Kalman filter for
nonlinear systems is analyzed in a stochastic framework. It is shown that under certain
assumptions the estimation error remains bounded. The results are then generalized to systems
with intermittent observations. Furthermore, modelling the arrival of the observations as a
random process, the effect of two different measurement models on the bounds for the error

covariance matrices is studied.
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Chapter 1: Introduction

The Kalman filter, under Gaussian assumption, is the optimal state estimator for linear dynamic
systems. Although originally devised for linear systems, nonlinear systems can also be addressed
by the Kalman filter through some modifications to it as approximations to the optimal state
estimator. The extended Kalman filter (EKF) is one of the most popular estimation techniques
that has been largely investigated for state estimation of nonlinear systems [3],[4]. The EKF uses
the standard Kalman filter equations to the first-order approximation of the nonlinear model
about the last estimate. It is very sensitive to initialization, and filter divergence is inevitable if
the arbitrary noise matrices have not been chosen appropriately [1]. The stability results for the

usual Kalman filter are studied in [5]-[7].

Recently there has been an increased research attention for Networked Control Systems. A
common feature of these systems is the presence of significant communication delays and data
loss across the network. Therefore, it has become necessary to jointly address the issues of
control and communication in these systems [8]-[13]. In contrast to traditional filtering problems,
an important feature in networked systems is that the delivery of measurements to the estimator
is not always reliable and losses of data may occur. This leads to estimation schemes which are
required to handle missing data. For example, Figure 1 shows a structure where the arrival of an
observation is modelled by a binary stochastic variable y,. If a measurement arrives after the t*"
step, ¥, is set to 1, if no measurement arrives after the t** step, y, is set to 0. The stability and
convergence properties of the estimation process have been studied in the case of linear Kalman
filtering with intermittent observations in [10], where it is shown that there exists a certain
threshold of the packet loss rate above which the state estimation error diverges in the expected

sense, 1.¢., the expected value of the error covariance matrix becomes unbounded as time goes to

infinity. The lower and upper bounds of the threshold value is also provided.
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Figure 1. An estimation scheme for Kalman filtering with measurement loss

In this report, the estimation error behavior of the extended Kalman filter is studied. Due to
stochasticity, the exponential stability of the nonlinear system is analyzed in the mean square
error sense. Furthermore, these results are generalized to systems with intermittent observations
and the impact of the data loss process model on the stability of the estimation process is

discussed.

The rest of the report is organized as follows. Chapter 2 provides some preliminaries. Next
chapter studies the stochastic stability of the discrete-time extended Kalman filter. In chapter 4
these results are generalized for the case of intermittent observations. A critical arrival
probability in the case of a Bernoulli process and deterministic bounds for the error covariance
matrices in the case of a maximum dropout interval are also derived. Finally, concluding remarks

are made in chapter 5.



Chapter 2: Preliminaries

In this section we recall some auxiliary results for the state estimation problem of nonlinear

stochastic discrete-time systems as well as their stochastic stability.

2.1 Nonlinear Control System
Consider a nonlinear control system of the type

Xep1 = f(Xe, Up, We) .
Ve = h(xe, vp) (1)

where x, € R" is the state of the system, u, € R? the control input and y, € R™ the
measurements. The stochastic variables w, € R® and v, € R¢ denote the process noise and the
measurement noise, respectively. They are both assumed to be uncorrelated white noise
processes, and be independent from initial x,. Note that if we assume linear additive white noise,
and therefore, no nonlinear dependency between the state and the system noise, then we can

represent the nonlinear control system as

Xep1 = f (X, up) + Gewy
Ve = h(x;) + Dy, (2)

2.1.1 General Assumptions
In this report, we will refer to the following assumptions as the general assumptions.

1) fand h are continuously differentiable C! functions, and the following Jacobian matrices
are found for every t > 0.
of o of /4
Ay = I (Xt ur, 0), Gy = w (Xejer U, 0)

G = Z—:(J?m-l’ 0), D= %(ft”_” 0)

3)

2) There are positive real numbers a, g, C, cz,q,r > 0 such that the following bounds on

various matrices are fulfilled for every t > 0.



lAdl<a  GI<g ql,<Q )
ICll<e D]l <d R, )
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3) There are positive real numbers Epr Exr 64), 6)( > 0 such that the nonlinear functions ¢, y
which are the remaining terms of the Taylor expansions,

f e ugwe) = f(fqt'ut' 0) + Ae(x; — £t|t) + Gewe + @ (x¢, £t|t—1l Ug, Wt)

R o N (5)
h(x, ve) = h(Xgje-1,0) + Ce(xe — Xyje—1) + Deve + X(xt'xﬂt—lrvt)
are bounded via
~ ~ 2 . ~
Il Cxe, xt|t'utﬂwt)”2 = S(p”xt - xt|t”2 with V||x; — xt|t”2 < 8y,
(6)

~ ~ 2, ~
|1 (xer Xeper Ue we)ll < €X||xt - xt|t—1||2 with ¥||x, — X¢e—1ll2 < 6y

2.2 Extended Kalman Filter Formulations

There are two common formulations of the discrete-time extended Kalman filter in engineering
literature: a two-step recursion with a relinearization between these two steps or a one-step

formulation. In this section we review these formulations.

2.2.1 One-step EKF

The one-step extended Kalman filter formulation consists of the following coupled difference

equations [11],

Xepr = f(%Xe, ut)+Kt(yt - h(ft)) (7)

Peyr = AP A" + Qp — Ki(CP.CT+R,) K" (8)
of ,~ oh , o

Ay = a(xt' up), G = I (%) 9)

K. = A;P.C" (C,P.C," + R)™* (10)

2.2.2 Two-step EKF

The two-step extended Kalman filter formulation consists of the following coupled difference

equations [12],



£t+1|t = f(fqt:ut: 0) (11)

Rer1je41 = Xew1pe + Kewor Yesr — h(£t+1|t) 0)) (12)
Piiqe = AtPt|tA’£ + Q¢ (13)

Pri1jev1 = Praaje — Kex1Crva Peyage (14)

Ke1 = Pei1jeClea (CosrPesr)eClin + Rt+1)_1 (15)

Remark 2.1

These two formulations may have a different performance and transient behavior, but the

convergence properties are the same [11].

2.3 Stochastic Boundedness

Consider the estimation error as

er = Xp — X¢ (16)

For the analysis of the EKF error dynamics, let us recall two definitions:

Definition 2.1

The stochastic process e; is said to be exponentially bounded in mean square, if there are real

numbers B, v> 0 and 0 < a < 1 such that

EfllelI?] < Blleoll*a’ +v (17)

holds for every t > 0.

Definition 2.2

The stochastic process e; is said to be bounded with probability one, if

Su e < 0
tz(?)?” t” (18)

holds with probability one.



Next, some standard results concerning the boundedness of stochastic processes are given.

Proposition 2.1

Consider the nonlinear discrete-time system represented by

erv1 = (At — KiCp)er + 1+ s, (19)

with
e = @ (e, e, ue) — Kex (X, %) (20)
St = GtWt - KtDtUt (21)

Assume there is a stochastic process V;(e;) and real numbers v,v,u > 0 and 0 < a@ < 1 such

that
vllell* < Vi(er) < vllecll? (22)

and
E[Vi+1(ecs1)le] — Vile) < p—aVi(er) (23)

are satisfied for every solution of (19). Then the stochastic process e; is exponentially bounded

in mean square, i.e., we have

Ellecl*] < Ellleol1(1 ~ )" + 24)

for every t = 0. Moreover, the stochastic process is bounded with probability one.

vllecll® < Ve(er) < wllecll? 25)



Chapter 3: Stochastic Stability of the Extended

Kalman Filter

In this chapter the estimation error boundedness is proved for the EKF, if certain conditions are

satisfied. Moreover, the role of nonlinear observability in this context is discussed.

3.1 Boundedness of the Estimation Error for the EKF

Theorem 3.1

Consider the nonlinear stochastic systems given by (2) and the one-step EKF formulation as
stated in section 2.1.1. Further to general assumptions 2.1.1, let the following assumptions hold:

1. A; is nonsingular for every t = 0.

2. There exist real constants p, p>0 such that
pl <P, <pl (26)
If for some &, 6> 0 the initial estimation error satisfies
lleoll <6 27)
and the covariance matrices are bounded via
G.GF < €21, D.Df <¢&?I 28)

Then the estimation error e; is exponentially bounded in mean square and bounded with

probability one.
Proof. Noting that P; is positive definite, we choose
Ve(e) = e"P, te, (29)

The assumption (26) implies that

1 2 1 2
glletll < V(e < E llecll (30)

7



Moreover, replacing for e, using (19) we can write

Vier(err1) = [(Ac — KcCep + 1 + 5] TPy T [(Ae — KiCo)ep + 11 + 5¢]

€1y
Now, applying Lemma 7.1 we can write the following inequality
Veri(ersr) < (1= a)Vi(ee) + 1. Py [2(A — K Cplee +1¢]” (32)
+ 25, Py ' [(Ar — KiCep + 1] + 5. Peyy sy

Observe that by taking the conditional expectation E[V,,;(es+1)|e;] and considering the white
noise property, we have

]E[StTPt+1—1((At - KtCt)et + Tt)|€t] = 0 (33)

because only s; = G,w; — K;D,;v,; depends (linearly) on white noises w; and v;. Subsequently,

applying Lemma 7.2 and Lemma 7.3 the remaining terms are expressed as the following
inequality

E[Vi1(ecr)lec] — Vi(er) < —aVi(er) + knonillecll® + Knoise

(34)
for ||le.|| < &'. On the other hand, defining
5 = mi ( ? 5')
=min |=— ,
ZpKnonl (35)
and using (29) and (30) yields
2 a 2 a
Knontlleclllleg]]* < P llecll* < EVt(et) (36)
for ||e;]| < &. Replacing (36) into (34), we get
E[Vi41(ecr1)le] — Vilen) < _%Vt(et) + Knoise€ (37)
for ||le¢]| < 8. Now we can apply Proposition 2.1 with ||lgy]| < 5, v = %, U= %, and U = Kppise€.
Furthermore, choosing



ab?

E=o—— 38
2pKnoise ( )
with some § < |le;|| < & we have
a a
Knoise€ < 2_15 ”etllz < EVt(et) (39)
Therefore, the inequality
a
E[Viy1(errr)le] —Viler) < _EVt(et) + Knoise€ < 0 (40)
guarantees the boundedness of the estimation error. This ends the proof. n

Remark 3.1

This result states that if the nonlinearity is small then the EKF is stable if initialised close enough
to the true initial value. The greater the deviation from linearity the better the initialisation needs
to be. It is also noted that the proof presented here provides a technique for calculating
conservative bounds for € and §. Moreover, simulation studies suggest that € and § can be

significantly larger than these bounds in some situations.

3.2 The Significance of Nonlinear Observability for the EKF

Consider nonlinear autonomous systems of the following type

Xev1 = f(x¢)
Ve = h(x) + Dv; (41)

and recall the following observability rank condition [14].

Definition 3.1

A nonlinear autonomous system of the form (41) satisfies the nonlinear observability rank

condition at x, € R", if the nonlinear observability matrix O has full rank n at x,, where



dh

ox (%)
oh of
0= a(xt-l-l.)&(xt) (42)

oh of of

ox (Xt+n-1) E (Xt1n—2) - ox (x¢) |

Definition 3.2

The pair (4;, C;) is said to satisfy the uniform observability condition [7], if there are real

numbers m, m > 0 and an integer [ > 0, such that

ml < Meyye = X550(@ " G G ) < mll. (43)

Wlth ¢t,t == I and
ot = Aj—l At (44)

Theorem 3.2

Consider the nonlinear autonomous systems given by (41) and the one-step EKF formulation as

stated in section 2.1.1. Let the following assumptions hold:

1. There is a compact subset X of R™ and the autonomous system satisfies the observability
rank condition for every x; € K.
2. The nonlinear functions f, h are twice continuously differentiable and Z—i (x¢) # 0 holds

for every x; € K.

3. The sample paths of x; are bounded with probability one, and K contains these sample

paths as well as all points with distance smaller than §, from these sample paths, where

6, > 0is areal number independent of ¢.

4. There are positive real numbers q,r>0 such that the following bounds are fulfilled for

every t = 0.

e
—
IA A
L

Z

(45)

—
8
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If for some &, 6> 0 the initial estimation error satisfies

lleoll < 6 (46)

and the covariance matrix is bounded via
DD < &2l (47)

Then the estimation error e; is exponentially bounded in mean square and bounded with

probability one.

Proof. To prove this theory, we show that the conditions of Theorem 3.1 are implied by the
conditions 1-4 of Theorem 3.2 as well as the observability results in Lemma 7.4 and Lemma 7.5.
In particular, it can be seen immediately that conditions given by (45) also hold in Theorem 3.1.
Moreover, since f, h are twice continuously differentiable for every x; € X and K is compact,
it follows that the Hessian matrices of f;and h; are bounded with respect to the spectral norm of
matrices, where f; and h; are the components of f and h, respectively. Consequently, the

constants €, and €, in the following conditions (which hold for Theorem 3.1)

lo(x, 2, Wl < g,llx — £1|2 with V|jx — 2| < &,

A . . X 48
lx(Cx, Dl < &, llx — %12 with V||x — %|| < &, (48)
are given by
€, = max sup |[Hes f; ()|,
1<isn yex
(49)

&, = max sup ||Hes h;(x
¥ = max sup [[Hes ()|

For the remaining conditions of Theorem 3.1 it is sufficient to ensure these conditions one time-
step in advance. We have to show that the boundedness with probability one of e; and x; implies
the desired bounds on A;, C;and P;. Then we obtain the boundedness of e;,;. Repeating this
procedure we get bounds on A;,;, Ciyiand Py,; and therefore on e;,,. This strategy can be
repeated to get the desired result. Since n— 1 steps are required to set up the uniform
observability condition, we treat the cases 0 < t < n and t > n separately. Firstly, for the case

0 <t < n, using the proof of Lemma 7.1 it follows that P,,; > 0 if P, > 0; because the Riccati

11



difference equation determines the evolution for the error covariance, which is positive definite if
Q; > 0. Taking the minimum and maximum eigenvalue of P; and the maximum singular value
of A;, C; for 0 < t < n we obtain the bounds on A;, C;and P;. Secondly, for the case t > n we
have to ensure that neither any eigenvalue of P, converges to zero nor any of the matrices A;, C;
and Pydiverges. The bounds on P; follow from Lemma 7.4, Lemma 7.5 and applying the
boundedness with probability one of e; forn < i < t in the region ||e;|| < €,ps. Furthermore, the
o
F)

boundedness for A; and C; follows from the continuity of g—i and - the compactness of K and

the fact that X, € K with probability one, and using ||x; — X|| < §,. Considering these

arguments, Theorem 3.1 can be applied by changing (35) with

6 = min <2?5Knonl , 0 80b5> (50)

This ends the proof. [

Remark 3.2

We observe that for autonomous systems the condition on the solution of the Riccati difference
equation as imposed in Theorem 3.1, can be reduced to a nonlinear observability rank condition,

which can be checked in advance.

Remark 3.3

The proof of Theorem 3.2 can be generalized to nonlinear autonomous systems with process

noise, i.e.,

Xepr = f(&e) + we
Je = h(X) + v, S

If we assume that the solution X, for t > 0 is bounded with probability one sufficiently close to

the nominal solution x; for t = 0.

One can compare the results of Theorem 3.1and Theorem 3.2 with the stability results for the

linear Kalman filter expressed below [5]-[7].

12



Remark 3.4

Consider the following discrete-time linear dynamical system:
Xe1 = Aexe + Gewy
(52)
Ve =C % + v,
where, w, and v, are independent, zero mean, white processes with E[w,w! ]| = I, E[v,v]] = I.
(A nonunit covariance for w; is absorbed in G; and a nonunit covariance for v, is absorbed by
scaling y, and C,”, as long as the covariance is nonsingular). Moreover, it is assumed that
E[xox2] = Py, E[x,] = m, and x,, w; and v, are independent. Additionally, A;, G, and C, are
assumed to be bounded. Then we have the following results:
1. The pair (4;, C;) uniformly detectable is sufficient for the optimal Kalman filter error
covariance to be bounded.
2. Furthermore, if the pair (4 G;) is uniformly stabilizable, the Kalman filter is
exponentially stable.
3. Uniform detectability of the pair (4., C;) is sufficient for the existence of a bounded
sequence K, such that (4, — K,C,") x, is exponentially stable.
4. 1If the pair (4, C;) is uniformly detectable, the (Kalman) filter error covariance and one-

step predictor error covariance are bounded.

13



Chapter 4: Stochastic Stability of the EKF with

Intermittent Observation

The estimation error boundedness of the EKF with intermittent observations is studied in this
chapter. Moreover, the role of the modeling approach for measurement process will be discussed

in the context of the boundedness of the error covariance matrices.

4.1 Boundedness of the Estimation Error

In this section we will study the behavior of estimation error for the extended Kalman filter with

intermittent observations.

Theorem 4.1

Suppose that there exists positive real constants p, p, q, r such that:

Pl < Pryqjesr < Pryqpe < p!
(33)
ql < Q.andrl <R,

Considering the general assumptions, one can characterize the behavior of estimation error as

follows:

Vi > 0,3¢ > 0 such that Elw,w/[] < €21 and E[v,v]] < €21

(34)
Vk > 0,35 > 0 such that E [||el|0||2] <é
Based on (54) the estimation error e.44; is exponentially bounded in mean square and
2
E [leceuell] < x (55)

14



Proof. Let’s assume that Vy(e¢¢—1) = €/jr—1 Prj{—1€¢je—1. Substituting
Crr1t = Al — VthCt)et|t—1 +71:+ S (56)
in V;(ey)¢—1) will equal to:

Vt+1(et+1|t) = egt—1(1 - ythCt)TAZPt_-I-lﬂtAt(I — VeKeCoeyi-1
+ rtTPt_-|-11|t[2At(I — VeKeCrle—1 + T't] (57)

+ StTPt_+11|t[2At(I —VeKiCeye—1 + 21 + 5¢]

The first term in the above equation is estimated using Lemma 7.7. Furthermore, replacing C; by
C; = y,C,, one can notice that the effect of ¥, will vanish in the filter, error and Riccati

equations. Since ||Ct || < ¢ one can follow the proof of Theorem 3.1and we establish:

E[Ves1(errnye)] < 1 — QE[Ve(ege-r)] + Kllletlt—lllz + Ka€ (58)

k; and k, in equation (58) are dependent on the bounds 6,,6,,¢, and &, from general
assumptions and the parameters of the system a, g, C, d, p,p,qqr 7. If Ey and £¢tend to zero

then k; and k, will tend to zero too. From this point, we may proceed as the proof of (Satz 1X.9)

in [15]. ]

Remark 4.1
Proof of Theorem 4.1 states that as long as there is at least one measurement in a finite set of
time steps, one can use arbitrary probabilities for measurements in state prediction. Otherwise,

the boundedness of Py, 1|41 and Py, is violated if for infinitely many ¢ € N, P{y, = 1} # 1.

4.2 Boundedness of the Error Covariance Matrices

As we discussed earlier, the error covariance matrices of the extended Kalman filter which meets
the nonlinear observability rank condition are bounded for certain measurements. In this section
we aim to study the boundedness of the error covariance matrices for the extended Kalman filter

with intermittent observations.

15



For the randomly sampled system with the associated linearized system

Xey1 = Agxe + Gewy (59)
Ve = Cexe + Devg

we assume that the measurements are only taken at those time steps t at which y, = 1. If the
Jacobian bound a <1 and for all t €N, y; = 0, then the bounds of the error covariance

matrices are independent from measurement process.

In this section the boundedness of the error covariance matrices for two different modeling
approaches of intermittent observations will be studied: Bernoulli process and maximum drop

out interval.

4.2.1 Boundedness of Error Covariance Matrices for Bernoulli Process

Considering a Bernoulli process, the intermittent observations are modeled using a binary
random variable, y;, in each time step. y, determines the arrival of measurements after time t. If
there is no measurement after time t, y; will be set to zero, otherwise y; will be 1. The

boundedness of the error covariance matrices in this scenario follows Theorem 4.2.

Theorem 4.2

Let’s assume that in this system the initial solution of the Riccati equation, P;|g, 1S symmetric

positive definite and there are real numbers g, q,r,7 > 0 such that:
ql <Q,<qlandrl <R <7l (60)

If m =n and for all t € N, C, is invertible and is bounded by ¢, i.e. ||C/ || < ¢™. Under

these assumptions and if y > 1 — E_z, then there will exist positive value p, p such that:

EI < Peiajer1 < Pryage

E[Prs1)t+1] < E[Pryqye] < I

(61)

16



Proof. Since C; is invertible and the pair (4;, C;) is observable, (4, C;) will be detectable. Then
if forall t € N, y; = 1, the lower bound follows from [7], [Corollary 5.2., p.29]. Substituting Py,

and K; in Py44); and rearranging the terms Py, |, can be rewritten as follow:
Peraje = Ae (Peje—s = ¥ePrie-1CT (CcPeje—rCT + Re)” CePyecs ) AT + Q; (62)
Using Lemma 7.8 and defining A = Cth_lCtT and B = R; we will obtain:
Piiqe < 1- Vt)AtPt|t—1A{ + VtAtCt_lRtCt_TA’{ + Q; (63)
One may also note that:
CFIR.CIT <7vCiiciT <7vc™, (64)

Using (64) and the fact that Q; < qI, inequality (63) will change to:

r _
Peiqe < 1- )’t)‘éltpﬂt—lA%w + Ve C—ZAtAZ +ql (65)

Using induction, one can show that forallt > 1 and p = max(||P1|0,Ezng‘2 + 6”), E[Pey1)c]

is bounded, i.e.:
t—-1
ElPesre] <p ) [(1= @V, (66)
=0

fy>1- E_Z, the right hand side of the inequality (66) converges. Therefore the upper bound
of (61) exists. Stochastically independence of Py;_; and y; can be used to simplify the inequality

of (65) in induction.

r _
E[P;1] < E|(1 = y1)A:1PyoA] + 14 C—2A1AI +ql
_ (67)

—2 r _» — —2
< (1_)/)‘1 P1|0+Vc_za In+q1n =< (1_)/)‘1 pln"'pln

(66) holds for the basis of the induction. Now considering that (66) is true for E[P¢;_1], one can

calculate E[Pyyq)¢]:

17



E[Pesqje] < E

T —
(1- Vt)AtPt|t—1A’£ + 7t C_zAtA{ + qll

<(1- y)IE[a Pyje— 1] + ]/ >a 1 +ql, (683)
<(1-y)a pZ[u—y)a] I+ Pl —pZ[(l—wa In
Therefore (66) is held. ]

Remark 4.2
The assumption of invertible C; is quite restrictive but it is required to write the inequality (65).
If C; is not invertible then the best lower bound for Pt|t_1CtT(CtPt|t_1CtT + Rt)_lCth_l is

going to be 0.

Remark 4.3

One of the drawbacks of using Bernoulli process for modeling the intermittent observation is that
there is no guarantee that in any finite set of time steps, there will exists at least one

measurement. Therefore if @ > 1 and y # 1, deriving a deterministic bound will be impossible.

4.2.2 Boundedness of Error Covariance Matrices for Maximum Drop Out

Interval

To overcome the problem of Bernoulli process, a new modeling approach proposed named
maximum dropout interval. Maximum drop out interval assures that in a finite number of time
steps at least one measurement will be taken by the system. Assuming that 7; is the time step in
which a measurement occurred, maximum loss rate of N will be defined as 7;,; — t; < N. In this

case one can extend the concept of uniform observability to this system.

18



Definition 4.1

The pair (A, C;) is said to satisfy the modified uniform observability condition if positive real

numbers m and m and positive integer value [ exist such that the following modified

observability gramian is bounded, i.e. ml,, < 1\71t+1‘t < ml,.

t+1

Mt+1,t = z Vi q)jT,thTCj D, (69)
j=t

Theorem 4.3

If the linearized system defined by (59) satisfies the modified uniform observability condition

and Py >0, then if there are real numbers q q,r,7 > 0 such that
ql <Qr<qlandrl <R <7l (70)
the solutions of the Riccati equations will have deterministic bounds with v p:
Pl < Priqjevr < Pryae <01 (71)

Proof. Consider the following associated system which is randomly sampled with measurement

: -~ T.
times 7, and Wy, = [Wy,, ..., Wg,,, 1] :

x = Ag, X, + G Wy,

Te+1 (72)
yTt = CTtht + DTtht

In this system A;, and G,, are defined as follow:

Te41—1
A= ] 4 (73)

j=t¢
Te+1—1
Gft = 1_[ Aj GTt‘ ""Aft+1—1GTt+1—2' GTt+1—1 (74)
J=T¢

And the Cartesian products, W, of white noise processes, w;, are white noise processes. Also
from maximum loss rate 7,44 —7; < N will be held. Then given the bounds in general
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assumption (||4;]| < a,||G¢|]| < g), one can establish ||/Irt|| < max(1,a") and ||Grt|| <
max(g,a’~1g). Furthermore, the uniform observability condition of the linearized system is

inferred from the modified uniform observability condition of the linearized system (72).

Therefore (72) is detectable. Using [7], [Corollary 5.2., p.29] one can achieve (71). ]

20



Conclusions

In this report, the estimation error behavior of the extended Kalman filter was analyzed. In
particular, it was shown that under certain conditions the estimation error remains bounded in
mean square and bounded with probability one. These conditions include the requirements that
the initial estimation error and the disturbing noise terms are small enough, the nonlinearities are
not discontinuous, and the solution of the Riccati difference equation remains positive definite
and bounded. For autonomous systems the condition on the solution of the Riccati difference

equation is reduced to a nonlinear observability rank condition.

The results are then generalized to a setting, in which measurements may randomly be lost due to
an unreliable communication channel between the sensor and the control unit of a nonlinear
control system. One special feature of this result is that it holds for an arbitrary modelling of the
intermittent observations. Moreover, two approaches for the modelling of the intermittent
measurements were discussed: an i.i.d. Bernoulli process and a random process with a maximum
dropout interval. Specifically, in the case of the Bernoulli model, a critical loss probability is
derived which ensures the boundedness of the expectation value of the error covariance matrices.
Additionally, by generalizing the concept of nonlinear observability to systems with intermittent
observations, the existence of the deterministic bounds for the error covariance matrices in the

case of a maximum dropout interval was shown.
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Appendix

Lemma 7.1

Consider that the conditions of Theorem 3.1 hold. Then there exist a real number 0 < a < 1
such that for t > 0, P ! satisfies:

Ay — K:C)TPrin (A — KeC) < 1 — )Pt (75)
Proof. Using definitions of P;,, and K; following equation is achieved:

Pep1 = APAT + Qe — APCTK] = (A — K COP(Ar — K C)T + Qc +
KiCoPu(Ar = KT 7o
with the definition of K, it can be shown that the result of the following equation is symmetric:

A7 (A — K COP, = Py — P.C[ (CP.CL + R)T'CP, (77)

Using matrix inversion lemma and knowing that P;* > 0 the left hand side of (77) can be

rewritten like:
AN (A — K COP = (PF M+ C/R;IC)™ >0 (78)
Using P; > 0 and R; > 0 and from the definition of Kalman gain, one can obtain:
A7'K Co = P.CL(CP.CI +R)TMC 2 0 (79)
Considering P, = P} and by combining (78) and (79) one will establish that:
K.CiP (A — K COT = AJAT 'K C[AL (A — K C)P]TAT 2 0 (80)
Substituting (80) into (76) leads to:
Per1 = (A — K CP(Ay — K C)T + Q; (81)
From (78) one can imply that (4, — K,C,)™! exists and:

Pey1 = (A — K COPy + (Ar — K C) 1 Qe (A — K C) ™I (A, — K, C)T (82)
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By the definition of Kalman gain and considering general assumptions and the bounds on P,

following will be held:
___1
IK.|l < ape (83)
and
q
Pryy = (A — K. C)[Py + ml] (Ae — K:C)T (84)

Since P, = pl and A; — K,;C; is nonsingular, one can take the inverse of both sides. By
multiplying (4; — K,C,)T and (4, — K,C,) from left and right respectively and using pI < P, <
pl the following will be held:

-1
_ q _
(A — K. COTPRA (A — KeC) S 1+ ——| P! (85)

p(@+apc’/r)?
which is inequality (75) with

1
l—a=——73—
1+

(86)

§(H+apc2/r)2

Lemma 7.2

Considering the conditions of Theorem 3.1, there exist real numbers &', ky; > 0 such that for

llx, — Xl < 67
TtTPt_l[Z(At — K Co) (e — %) + 1] < kepomullxe — ft”?’ (87)

Proof. Under general assumptions and by considering pI < P, < pI and C.P,C! > 0 and using

the definition of K; we will have:
—1
IKe|l < apc (88)
Substituting (88) into the equation of r; one will obtain:

“ ___1 ~
I7ell < Nl (xe, X, ue) Il + apCZ”)((xt,xt)H (89)
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Choosing 8" = min(§,, &, ), then for |[x, — £;|| < 6"
- ___1 - , -
7l < 5<p”xt — &> + aPCZEX”xt — Rell? = &'llxe — ZelI? (90)
in which
, ___1
g =g, +apc-ey 1)
Using (90) and under general assumptions for ||x, — £;]|2 < &'

_ ~ , ~ 1 - ——1— ~
T PTH[2(Ac = KeCO (e = 2) + 1) < 'l — 21752 (@ + @pe 5¢) llx, — %ll +
. - (92)
£'8"llx, — 21

which is (87) with

i1 - — 1 1o
Knont = € ;(2(a+apc;c)+e5) (93)

Lemma 7.3

Assuming that the conditions of Theorem 3.1 hold. Then there is a real number ;5. > 0 which

is independent of ¢ such that

]E{StTPt_-I-llst} < Knoise€ (94)

Proof. v, and w; are uncorrelated white noises. Therefore the expectation value of the

crossterms that contains both v; and w, will become zero. Hence,
st Peiyse = wi Gf Py Gewy + v{ DK Py Ky (95)
If one assume that the general assumptions hold and C,P,C{ > 0, then
1
IKe|l < apc (96)

Using (96) in (95) and considering pI < P; < pl yields:
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—2_22
1 ac
St Prise < EWtTGtTGtWt + Tf”gDthvt (97)

Since left-hand side and right-hand side of (97) are scalars, one may take the trace on the right-

hand side without changing its value

—2-2-—-2
cp
pr?

1
stPRY s, < Etr(WtTGtTGtWt) +

tr(v{ D{ Dyvy) (98)

Simplifying this and taking the mean value we get:

—2=2-=2

acyp
pr?

1
[E{StTPt:L11St} < ; tT(GtIE{WtWtT}Gz) +

tr (D E{v,v{}D{) (99)

In which D; and G, are deterministic matrices. Since v, and w; are standard vector-valued white

noise processes, then E{v,v!} = I and E{w,w]} = I and

626252
——tr(D:Df) (100)

1
E{sTP7}Ys} < Etr(GthT) +

Using G,G! < el and D,D{ < &l for some &, & > 0 following equations will held:

tr(G,.GI) < etr(I) = q¢ (101)
tr(D,Df) < etr(I) = me (102)

q and m are the number of the rows for G, and D, respectively. Setting

2-2-2
q acpm
Knoise » + o (103)
yields
E{StTPt_-Fllst} =< Knoise€ (104)

which is the desired inequality (94).
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Lemma 7.4
Assume that for n > 0, P; is the solution of the following Riccati difference equation.

Peyy = AcPAL + Qe — Ko (CoPCl + ROK] (105)
Furthermore, consider that following conditions are held:

1) Positive real numbers q,q,r and 7 exist such that g/ < Q; < gl andrl < Q; <7l

2) The matrices A; and C; satisfy the uniform observability condition.
3) The initial P, of (105) is positive definite.

Then for every n = 0, P, will be bounded, i.e. pl < P, < pl.

Lemma7.5

Let’s assume K < R™ is a compact subset. If the following nonlinear system

Xeyr1 = f(Xe)
Ve = h(x) + Do (106)

satisfies the nonlinear observability condition for every x; € K, then there exists a positive real
of ;o f ;o . . o
number &,,s > 0 such that A; = é(xt) and C; = é(xt) satisfy the uniform observability

condition, provided that [|x; — X¢|| < €,ps-

Lemma 7.6

If for matrices 4,B,C € R™"™ we assume that B and C are symmetric positive definite and

C — ABAT > 0,then B~ — ATC™A > 0.

Proof. Since C — ABAT > 0, then (C — ABAT)™! exists and is symmetric positive definite.
Knowing B > 0 the following will be held:

B+ BAT(C — ABAT)™AB = (B~1 — ATC™14)"1 > 0 (107)
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Therefore (B~ — ATC~1A)~! is symmetric definite as well as its inverse.

Lemma7.7

Further to general assumption, let’s consider that the following assumption holds:

3p,p > 0 such that pI < Pryqjt41 < Peyq)e < 0l

then there is a « € R which value is in interval (0,1) such that:
(L, — YthCt)TA’II;Pt_-I—lHtAt(In — VK C) > (1 - a)Pt_|t1—1

Proof. One can observe that
T q T
Pt+1|t = AtPt|tAt +0:>(1+ ZEzﬁ)AtPtltAt

From
iy = ProgicCEoy(CoutPrss1iCluq + Resy) ™
t+1 = Praq)eCri1 (Cer1Priq)eCerr + Reqq
And the fact that y, = y?Z, one obtains

Py = (I, — VthCt)Pqt—l(ln —VeKeC)T + v KeReK{

Substituting (112) in (111) and using R; > 0 following inequality will be obtained:

q
Peyqpe > <1 + 25_25> Al — ythCt)AZPﬂt—l(ln — VK COTAY

(108)

(109)

(110)

(111)

(112)

(113)

Let’s define A = A, (I, — y:K:C;), B =1+ %Ptlt—l and C = P;y4);. By choosing a to be
a’p

equal to 6(2525 + @)~! which is in interval (0,1) and applying

Lemma 7.6, one can show that (109) holds.

Lemma 7.8

For symmetric positive definite matrices A, B € R" the following inequality holds:
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(A+B)t>A"1—A1BA?

Proof. Following will be established if one applies twice the matrix inversion lemma:

(A+B) 1=A1—A B 14+A 1A =4A1-AB-B(A+B)'B]A!
=Al'—A'BA '+ A'B(A+ B)"'BAl > A1 — A"1BA™!
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