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1. Introduction

Multi-armed bandit (MAB) problems are a class of sequential resource allo-

cation problems concerned with allocating one or more resources among sev-

eral alternative (competing) projects. Such problems are paradigms of a fun-

damental conflict between making decisions (allocating resources) that yield

high current rewards, versus making decisions that sacrifice current gains with

the prospect of better future rewards. The MAB formulation models resource

allocation problems arising in several technological and scientific disciplines

such as sensor management, manufacturing systems, economics, queueing and

communication networks, clinical trials, control theory, search theory, etc.

(see [88] and references therein).

In the classical MAB problem (discussed in Section 2) at each instant of

time a single resource is allocated to one of many competing projects. The

project to which the resource is allocated can change its state; the remaining

projects remain frozen (do not change state). In the variants of the MAB prob-

lem (discussed in Section 3) one or more resources are dynamically allocated

among several projects; new projects may arrive; all projects may change state;

delays may be incurred by the reallocation of resources, etc.
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In general, sequential resource allocation problems can be solved by dy-

namic programming, as discussed in Chapter 2. Dynamic programming, which

is based on backwards induction, provides a powerful method for the solution

of dynamic optimization problems, but suffers from the “curse of dimension-

ality.” The special structure of the classical MAB problem has led to the dis-

covery of optimal “index-type” allocation policies that can be computed by

forward induction (see Section 2.2), which is computationally less intensive

than backward induction. Researchers have also discovered conditions under

which forward induction leads to the discovery of optimal allocation policies

for variants of the classical MAB (see Section 3). Discovering conditions un-

der which “index-type” allocation policies are optimal or nearly optimal for

sequential resource allocation problems remains an active area of research.

In this chapter we present a qualitative description of the classical MAB

problem and its variants. All problems are formulated in discrete time. MAB

problems have also been studied in continuous time (see for example [167,

80]). The emphasis in this chapter is on describing the key features of MAB

problems and explaining the nature of their solutions. A rigorous proof of the

results can be found in the references. The chapter is organized as follows. In

Section 2 we present the formulation and the nature of the solution of the clas-

sical MAB problem. In Section 3 we describe the formulation and the nature

of the solution of several variants of the classical MAB problem. We briefly

discuss the relations of the MAB problem and its variants to sensor manage-

ment in Section 4. A presentation of σ-fields and stopping times, concepts that

are important in understanding the nature of the solution of the classical MAB

problem, appears in Section 3 of the Appendix.

Remark on notation. Throughout this Chapter, we use uppercase

letters to represent random variables and the corresponding lowercase letters

to represent their realizations.

2. The Classical Multi-armed Bandit

In this section we present a general formulation of the MAB problem, high-

light its salient features and describe its optimal solution. We also discuss

forward induction, which provides insight into the nature of an optimal solu-

tion.
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2.1 Problem Formulation

2.1.1 A Bandit Process. A (single-armed) bandit process is de-

scribed by a machine/arm/project and is characterized by the pair of random se-

quences
({

X(0), X(1), . . . ,
}

,
{
R
(
X(0)

)
, R

(
X(1)

)
, . . .

})
, where X(n) de-

notes the state of the machine1 after it has been operated n times, and R
(
X(n)

)

denotes the reward obtained when the machine is operated for the nth time. The

state X(n) is a real-valued random variable and R
(
X(n)

)
is a random variable

taking values in R+. In general when the machine is operated for the nth time

its state changes according to

X(n) = fn−1

(
X(0), . . . , X(n − 1), W (n − 1)

)
, (6.1)

where fn−1(·) is given and {W (n);n = 0, 1, . . . } is a sequence of indepen-

dent real-valued random variables that are also independent of X(0) and have

known statistical description. Thus a (single-armed) bandit process is not nec-

essarily described by a Markov process.

2.1.2 The Classical Multi-armed Bandit Problem. A

multi-armed (k-armed) bandit process is a collection of k independent single-

armed bandit processes. The classical MAB problem consists a multi-armed

bandit process and one controller (also called a processor). At each time, the

controller can choose to operate exactly one machine; all other machines re-

main frozen. Each machine i, i = 1, 2, . . . , k, is described by sequences

{
(
Xi(Ni(t)), Ri

(
Xi(Ni(t))

))
; Ni(t) = 0, 1, 2, . . . , t; t = 0, 1, 2, . . . }, where

Ni(t) denotes the number of times machine i has been operated until time t.

Ni(t) is machine i’s local time. Let U(t) :=
(
U1(t), . . . , Uk(t)

)
denote the

control action2 taken by the controller at time t. Since the controller can oper-

ate on exactly one machine at each time, the control action U(t) takes values

in { e1, . . . , ek }, where ej = (0, . . . , 0, 1, 0, . . . , 0) is a unit k-vector with 1 at

the jth position. Machines that are not operated remain frozen. Specifically,

the system evolves according to

Xi

(
Ni(t + 1)

)

=

{
fNi(t)

(
Xi(0), . . . , Xi(Ni(t)), Wi(Ni(t))

)
, if Ui(t) = 1,

Xi

(
Ni(t)

)
, if Ui(t) = 0,

(6.2)

1The state X(n) is similar to state sn of Markov decision model adopted in Chapter 2, even though, as

noted in this chapter, machines are not necessarily described by Markov processes.
2The control action U(t) is similar to the control action at of the Markov decision model of Chapter 2.
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and

Ni(t + 1) =

{
Ni(t), if Ui(t) = 0,

Ni(t) + 1, if Ui(t) = 1,
(6.3)

for all i = 1, 2, . . . , k. Thus Ni(t), the local time of machine i, is incremented

only when the controller operates on machine i at t; i.e., only when Ui(t) = 1.

{Wi(n); i = 1, . . . , k; n = 0, 1, . . . } is a sequence of independent primi-

tive random variables that are independent of {X1(0), . . . , Xk(0) } and have

known statistical description3.

Machine i generates a reward only when it is operated. Let Ri(t) denote the

reward generated by machine i at time t; then

Ri(t) = Ri

(
X(Ni(t)), Ui(t)

)
=

{
Ri

(
Xi(Ni(t))

)
, if Ui(t) = 1,

0, if Ui(t) = 0,
(6.4)

A scheduling policy γ := (γ1, γ2, . . . ) is a decision rule such that at each

time instant t, the control action U(t) takes values in { e1, . . . , ek } according

to4

U(t) = γt

(
Z1(t), . . . , Zk(t), U(0), . . . , U(t − 1)

)
, (6.5)

where

Zi(t) = [Xi(0), . . . , Xi(Ni(t))].

The MAB problem is the following: Determine a scheduling policy that

maximizes

Jγ := E

[
∞∑

t=0

βt

k∑

i=1

Ri

(
Xi(Ni(t)), Ui(t)

)
∣∣∣∣∣Z(0)

]
. (6.6)

subject to (6.2)–(6.5).

This problem was originally formulated around 1940. It was known that

it can be solved by a stochastic dynamic programming (SDP) approach, but

no substantial progress in understanding the nature of its optimal solution was

made until Gittins and Jones [89] showed that an optimal solution is of the

index type. That is, for each bandit process one can compute what Gittins

called a dynamic allocation index (DAI), which depends only on that process,

and then at each time the controller operates on the bandit process with the

3 As it is usually assumed, the processes {Xi(Ni(t)), Wi(Ni(t)); Ni(t) = 0, 1, . . . t; t = 0, 1, 2, . . . ;
i = 1, . . . , k} are defined on the same probability space (Ω,F , P ).
4Formally U(t) needs to be measurable with respect to appropriate σ-fields. However, in this exposition

we adopt an informal approach and do not explicitly talk about measurability requirements.
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highest index. Thus, finding an optimal scheduling policy, which originally

requires the solution of a k-armed bandit problem, reduces to determining the

DAI for k single-armed bandit problems, thereby reducing the complexity of

the problem exponentially. The DAI was later referred to as the Gittins index

in honor of Gittins’s contribution.

Following Gittins several researchers provided alternative proofs of the op-

timality of the Gittins index rule (see [249, 240, 246, 85, 22, 29, 232, 166,

115, 116, 123, 129, 166, 167] and [88] and references therein). Another for-

mulation of the MAB problem with a performance criterion described by a

“learning loss” or “regret” has been investigated in the literature [156, 7, 8,

3, 5, 4]. We will not discuss this formulation as we believe it is not directly

related to sensor management problems.

Before we present the solution of the MAB problem we briefly present the

method of forward induction. Knowing when forward induction is optimal is

critical in understanding the nature of the solution of the MAB problem.

2.2 On Forward Induction

For centralized stochastic control problems, SDP provides a methodology

for sequentially determining optimal decision rules/control laws/decision strate-

gies. The SDP algorithm proceeds backward in time and at every stage t deter-

mines an optimal decision rule by quantifying the effect of every decision on

the current and future conditional expected rewards. This procedure is called

backward induction. SDP provides a powerful methodology for stochastic op-

timization, but it is computationally hard in many instances.

A procedure (computationally) simpler than backward induction is to make,

at each decision time t, a decision that maximizes the conditional expected

reward acquired at t. This procedure concentrates only on the present and

completely ignores the future; it is called a myopic approach and results in a

myopic policy. In general, myopic policies are not optimal.

The notion of a myopic policy can be extended to form T -step-look-ahead

policies: make, at each decision time t, a decision that maximizes the con-

ditional expected reward acquired at t plus the conditional expected reward

acquired over the next T stages. In general, T -step-look-ahead policies are

suboptimal. As T increases their performance improves at the cost of an in-

crease in computational complexity.

The notion of a T -step-look-ahead policy can be extending as follows: allow

the number τ of steps over which we look ahead at each stage to depend on

how the system evolves while these steps are taking place; thus the number τ
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of steps is a stopping time5 with respect to the increasing family of σ-fields that

describe the information accumulated by the decision maker/controller during

the evolution of the process. This extension of a T -step-look-ahead policy

involves two maximizations. An inner maximization that assumes that decision

rule for taking a sequence of decisions is given and chooses a stopping time τ to

maximize the conditional expected reward rate. The outer maximization is to

choose a decision rule to maximize the result of the inner maximization for that

decision rule. This extension of the T -step-look-ahead policy works as follows.

At t = 0, given the information about the initial state of the process, select a

decision rule and a stopping time τ1 and follow it for the next τ1 steps. The

process of finding a new decision rule and a corresponding stopping time τ2 is

then repeated by conditioning on the information accumulated during the first

τ1 steps. The new rule is followed for the next τ2 steps, and this procedure is

repeated indefinitely. This procedure determines a policy for the entire horizon

and is called forward induction; the policy produced by this procedure is called

a forward induction policy.

In general forward induction results in suboptimal policies for stochastic

control/optimization problems. This is demonstrated by the the following ex-

ample from Gittins [87, pg 152].

Consider the problem of choosing a route for a journey by car. Suppose

there are several different possible routes all of the same length which intersect

at various points, and the objective is to choose a route which minimizes the

time taken for the journey. The problem may be modeled as a Markov decision

process by interpreting the distance covered so far as the “time” variable, the

time taken to cover each successive mile as negative reward, the position as the

state, and by choosing a value just less than one for the discount factor β. The

action space U(x) has more than one element when the state x corresponds

to cross-roads, the different control actions representing the various possible

exits.

For this problem the first stage in a forward induction policy is to find a route

ζ1, and a distance σ1 along ζ1 from the starting point, such that the average

speed in traveling the distance σ1 along ζ1 is maximized. Thus a forward

induction policy might start with a short stretch of highway, which is followed

by a very slow section, in preference to a trunk road which permits a good

steady average speed. The trouble is that irrevocable decisions have to be taken

at each cross-roads in the sense that those exits which are not chosen are not

available later on.

5For the definition of stopping time, we refer the reader to Section 3 of the Appendix.
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The above example illustrates the reason why, in general, forward induction

results in suboptimal policies. Irrevocable decisions have to be made at some

stage of the decision process, that is, some alternatives that are available at that

stage and are not chosen, do not remain available later.

Forward induction policies are optimal if the decisions made at any stage

are not irrevocable; that is, any alternative that is available at any stage and is

not chosen, may be chosen at a later stage and with exactly the same sequence

of rewards (apart from a discount factor). Thus, there is no later advantage of

not choosing a forward induction policy.

In the next section we explain why the MAB problem belongs to a class of

stochastic controlled processes for which forward induction results in optimal

policies.

2.3 Key Features of the Classical MAB Problem
and the Nature of its Solution

Four features delimit the MAB problem within the general class of stochas-

tic control problems:

(F1) only one machine is operated at each time instant. The evolution of the

machine that is being operated is uncontrolled; that is, the processor

chooses which machine to operate but not how to operate it;

(F2) machines that are not operated remain frozen;

(F3) machines are independent;

(F4) frozen machines contribute no reward.

Features (F1)–(F4)6 imply that an optimal policy can be obtained by forward

induction. Decisions made at any instant of time t are not irrevocable since

any bandit process that is available for continuation at t but is not chosen at t,

can be continued at any later time instant with exactly the same resulting se-

quence of rewards, apart from the discount factor. This means that there is no

later compensation for any initial loss resulting from not choosing a forward

induction policy. Consequently, without any loss of optimality, we can restrict

attention to forward induction policies. The first stage of a forward induction

policy must be such that the expected discounted reward per unit of expected

6In Section 3.6 we show that feature (F4) is not essential for obtaining an optimal policy by forward induc-

tion.
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discounted time up to an arbitrary stopping time is maximized. Gittins [87]

argued (and proved rigorously) that this maximum can be achieved by a policy

under which only one bandit process is continued up to the stopping time in

question. To determine the bandit process to be continued in the first stage

and the corresponding stopping time the following arguments, due to Whit-

tle [249], can be used. Consider arm i of the MAB process and let xi(0) be

its state at t = 0 and let Ni(t) = 0. Suppose two options are available at

t = 0: continue the process, or retire and receive a retirement reward v. Let

vXi

(
xi(0)

)
be the retirement reward that can be offered at xi(0) so that the

controller is indifferent to both options. This reward is given by

vXi

(
xi(0)

)
:= max

τ>0

E

[
τ−1∑
t=0

βtRi

(
Xi(t)

)∣∣∣∣xi(0)

]

E

[
τ−1∑
t=0

βt

∣∣∣∣xi(0)

] . (6.7)

Then vXi

(
xi(0)

)
is the maximum expected discounted reward per unit of ex-

pected discounted time that can be obtained at the first stage of a forward induc-

tion policy that continues the arm i with initial state xi(0). The corresponding

stopping time τi

(
xi(0)

)
is the first time at which the expected discounted re-

ward per unit of expected discounted time equals vXi

(
xi(0)

)
. Consequently,

at t = 0 an optimal forward induction policy continues an arm j such that

vXj

(
xj(0)

)
= max

i
vXi

(
xi(0)

)
.

Arm j is continued until τj

(
xj(0)

)
− 1. This constitutes the first stage of an

optimal forward induction policy, and can be summarized as follows:

Step 1 Determine vXi

(
xi(0)

)
, i = 1, . . . , k.

Step 2 Select an arm j such that

j = arg max
i

vXi

(
xi(0)

)
.

Continue operating arm j until the minimum time that achieves the max-

imum in the right hand side of (6.7).

At the end of the first stage, the forward induction proceeds in the same way

as at t = 0. Let τl be the end of the lth stage of an optimal forward induction

policy for the MAB problem. At time τl we must decide which arm to operate

next. The random time τl is a stopping time with respect to the family of

σ-fields
{∨k

i=1 F
i(t), t = 0, 1, 2, . . .

}
, where F i(t) is defined as the sigma

field σ
(
Xi(0), . . . , Xi(Ni(t))

)
, i = 1, 2, . . . , k. For any sample point ω in
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the sample space Ω of the MAB process (see footnote 3), let {xi(0), xi(1),
. . . , xi(Ni(τl(ω))), i = 1, 2, . . . , k} be the realization of the MAB process

obtained under an optimal forward induction policy up to τl(ω). The decision

made by an optimal forward induction policy at τl(ω) can be described by the

following two-step process:

Step 1 For each i = 1, . . . , k, let xl
i(ω) :=

(
xi(0), . . . , xi(Ni(τl(ω)))

)
, and

determine

vXi

(
xl

i(ω)
)

= max
τ>τl(ω)

E

[
τ−1∑

t=τl(ω)

βtRi

(
Xi

(
Ni(τl) + t − τl(ω)

))
∣∣∣∣∣x

l
i(ω)

]

E

[
τ−1∑

t=τl(ω)

βt

∣∣∣∣∣x
l
i(ω)

] ,

(6.8)

and the stopping time τi

(
xl

i(ω)
)

achieves the maximum at the right hand

side of (6.8).

Step 2 Select arm j such that

j = arg max
i

vXi

(
xl

i(ω)
)

and operate it for τj

(
xl

j(ω)
)
− 1 − τl(ω) steps/time units.

The number vXi

(
xl

i(ω)
)

that denotes the maximum expected discounted

reward per unit of expected discounted time obtained by arm i at xl
i(ω) is the

Gittins index of arm i at xl
i(ω).

We examine now what happens between the stopping times τl and τl+1,

l = 0, 1, . . . . Suppose arm j is continued at τl. Then at t = τl +1, . . . , τl+1−1
the Gittins index of arm j is higher than its index at τl (see [240]). The Gittins

indices of all other arms remain the same as in τl since these arms are frozen.

Thus an equivalent method to describe the above procedure is to consider the

MAB problem at each instant of time t and continue the arm with the highest

index. This observation allows us to understand the nature of the solution of

some generalizations of the MAB problem (e.g., the arm-acquiring bandit).

In summary, an optimal scheduling policy for the MAB problem can be

obtained by forward induction. Forward induction is computationally less in-

tensive than backward induction; an optimal forward induction policy can be

obtained by solving k one-dimensional problems (by computing the Gittins

indices of each bandit process) instead of one k-dimensional problem.
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In many formulations of the MAB problem it is assumed that the machines

are Markovian7, that is

fNi(t)

(
Xi(Ni(0)), . . . , Xi(Ni(t)), Wi(Ni(t))

)

= fNi(t)

(
Xi(Ni(t)), Wi(Ni(t))

)
. (6.9)

In this case (6.8) reduces to

vXi

(
xl

i(ω)
)

= vXi

(
xi(Ni(τl))

)

= max
τ>τl(ω)

E

[
τ−1∑

t=τl(ω)

βtRi

(
Xi

(
Ni(τl(ω)) + t − τl(ω)

))
∣∣∣∣∣xi(Ni(τl))

]

E

[
τ−1∑

t=τl(ω)

βt

∣∣∣∣∣xi(Ni(τl(ω)))

] ,

(6.10)

and such an index is considerably easier to compute (see [240, 127, 100, 126]).

2.4 Computational Issues

We concentrate on the classical MAB problem where the machines are time-

homogeneous finite-state Markov chains (MCs)8. We assume that machine i,

i = 1, 2, . . . , k, has state space {1, 2, . . . ,∆i} and matrix of transition proba-

bilities P (i) :=
{
P

(i)
a,b , a, b ∈ {1, 2, . . . ,∆i}

}
.

In this case we do not need to keep track of the local time of the machines

because of the Markovian property and the time-homogeneity of the Markov

chains. The evolution of machine i, i = 1, 2, . . . , k, can be described by the

following set of equations. If Xi(t) = a, a ∈ {1, 2, . . . ,∆i}, then

Xi(t + 1) = a, if Ui(t) = 0, (6.11)

P
(
Xi(t + 1) = b | Xi(t) = a

)
= P

(i)
a,b , if Ui(t) = 1. (6.12)

7Such formulations are considered in Section 2 of Chapter 7 where applications of MAB theory to sensor

management is considered.
8Throughout this chapter we assume that the state of each machine is perfectly observable. For the case

where state is imperfectly observable we refer the reader to [171].
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Further, X(t) :=
(
X1(t), X2(t), . . . , Xk(t)

)
is an information state (sufficient

statistic, see Chapter 3 and [153] ) at time t. Thus (6.10) can be rewritten as

νXi

(
xi(t)

)
= max

τ>t

E

[
τ−1∑
t′=t

βt′Ri

(
Xi(t

′)
)∣∣∣∣xi(t)

]

E

[
τ−1∑
t′=t

βt′

∣∣∣∣xi(t)

] (6.13)

Thus to implement the index policy we need to compute, for each machine i,

i = 1, . . . , k, the Gittins index of state xi(t). This can be done in either an

off-line or an on-line manner. For an off-line implementation, we must com-

pute the Gittins index corresponding to each state xi ∈ {1, 2, . . . ,∆i} of each

machine i, i = 1, . . . , k. This computation can be done off-line and we only

need to store the values of νXi
(xi), xi ∈ {1, . . . ,∆i} for each machine i,

i = 1, . . . , k. For an on-line implementation, at stage 0 we need to compute

νXi

(
xi(0)

)
for each machine i, i = 1, . . . , k where xi(0) is given9. We operate

machine j = arg maxi νXi

(
xi(0)

)
until the smallest time τ1 at which machine

j achieves its Gittins index. At any subsequent stage l, we only need to com-

pute the Gittins index of the machine operated at stage l− 1. The computation

of these Gittins indices has to be done on-line, but only for the stopping states

that are reached during the evolution of the bandit processes. To achieve such

a computation we need to store the reward vector and the matrix of transition

probabilities for each machine.

We next describe the notions of continuation and stopping sets, which are

key concepts for the off-line and on-line computation of the Gittins index rule

(see [87]). Suppose we start playing machine i which is initially in state xi.

Then the state space {1, 2, . . . ,∆i} can be partitioned into two sets Ci(xi)
(the continuation set of xi) and Si(xi) (the stopping set of xi). When the

state of machine i is in Ci(xi) we continue processing the machine. We stop

processing machine i the first instant of time the state of the machine is in

Si(xi). Therefore, the Gittins index policy can be characterized by determining

Ci(xi) and Si(xi) for each xi ∈ {1, 2, . . . ,∆i}.

A computational technique for the off-line computation of the Gittins index

rule, proposed by Varaiya, Walrand and Buyukkoc in [240], is based on the

following observation. If for a, b ∈ {1, 2, . . . ,∆i} νXi
(a) > νXi

(b), then

b ∈ Si(a) and a ∈ Ci(b). If νXi
(a) = νXi

(b) then either a ∈ Ci(b) and

b ∈ Si(a), or a ∈ Si(b) and b ∈ Ci(a). Thus, to determine Ci(xi) and Si(xi)
for each xi ∈ {1, 2, . . . ,∆i} we must find first an ordering l1, l2, . . . , l∆i

of

9It is the observed state of machine i at time 0.
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the states of machine i such that

νXi
(l1) ≥ νXi

(l2) ≥ · · · ≥ νXi
(l∆i

), (6.14)

and then set for all lj , j = 1, 2, . . . ,∆i,

Ci(lj) = {l1, l2, . . . , lj},

Si(lj) = {lj+1, lj+2, . . . , l∆i
}.

(6.15)

To obtain such an ordering l1, l2, . . . , l∆i
the following computational proce-

dure was proposed in [240].

Given a machine i, i = 1, 2, . . . , k, with state space {1, 2, . . . ,∆i}, matrix

of transition probabilities P (i) :=
{
P

(i)
a,b , a, b ∈ {1, 2, . . . ,∆i}

}
, and reward

function Ri(xi), xi ∈ {1, 2, . . . ,∆i} set

l1 = arg max
xi

Ri(xi). (6.16)

Break ties by choosing the smallest xi that satisfies (6.16). The Gittins index

of state l1 is

νXi
(l1) = Ri(l1). (6.17)

States l2, l3, . . . , l∆i
can be recursively determined by the following procedure.

Suppose l1, l2, . . . , ln−1 have been determined; then

νXi
(l1) ≥ νXi

(l2) ≥ · · · ≥ νXi
(ln−1). (6.18)

Define

P
(i,n)
a,b :=

{
P

(i)
a,b , if b ∈ {l1, l2, . . . , ln−1}

0, otherwise
, (6.19)
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and the vectors

Ri :=
(
Ri(1), Ri(2), · · · , Ri(∆i)

)
⊺
, (6.20)

1 :=
(
1, 1, · · · , 1

)
⊺

︸ ︷︷ ︸
∆itimes

, (6.21)

D(i,n) := β
[
I − βP (i,n)

]−1
Ri =

⎛

⎜⎜⎜⎝

D
(i,n)
1

D
(i,n)
2
· · ·

D
(i,n)
∆i

⎞

⎟⎟⎟⎠
, (6.22)

B(i,n) := β
[
I − βP ((i,n))

]−1
1 =

⎛

⎜⎜⎜⎝

B
(i,n)
1

B
(i,n)
2
· · ·

B
(i,n)
∆i

⎞

⎟⎟⎟⎠
. (6.23)

Then

ln = arg max
a∈{1,2,...,∆i}\{l1,l2,...,ln−1}

D
(i,n)
a

B
(i,n)
a

, (6.24)

and

νXi
(ln) =

D
(i,n)
ln

B
(i,n)
ln

. (6.25)

Another method for off-line computation of Gittins index, which has the

same complexity as the algorithm of [240] presented above, appears in [29].

The following method for on-line implementation of the Gittins index was

proposed by Katehakis and Veinott in [127]. As explained earlier, to obtain

the Gittins index for state xi only the sets Ci(xi) and Si(xi) need to be deter-

mined. In [127], Katehakis and Veinott proposed the “restart in xi” method

to determine these sets. According to this method, we consider an alternative

problem where in any state a ∈ {1, . . . ,∆i} we have the option either to con-

tinue operating machine i from state a or to instantaneously switch to state xi

and continue operating the machine from state xi. The objective is to choose

the option that results in the maximum expected discounted reward over an in-

finite horizon (see Chapter 2, Section 2.2). This approach results in a dynamic
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program

V (a) = max

⎧
⎨

⎩Ri(a) + β
∑

b∈{1,...,∆i}

, P
(i)
a,bV (b) , R(xi) + β

∑

b∈{1,...,∆i}

, P
(i)
xi,b

V (b)

⎫
⎬

⎭ ,

a ∈ {1, . . . ,∆i} (6.26)

that can be solved by various standard computational techniques for finite state

Markov decision problems (see Chapter 2). The solution of this dynamic pro-

gram determines the sets Ci(xi) and Si(xi). These sets are given by

Ci(xi) =
{

a ∈ {1, . . . ,∆i} : Ri(a) + β
∑

b∈{1,...,∆i}

P
(i)
a,bV (b) ≥ V (xi)

}
(6.27)

Si(xi) =
{

a ∈ {1, . . . ,∆i} : Ri(a) + β
∑

b∈{1,...,∆i}

P
(i)
a,bV (b) < V (xi)

}
(6.28)

and the Gittins index is given by

νXi
(xi) = (1 − β)V (xi) (6.29)

Another method for on-line implementation similar in spirit to [240] appears

in E. L. M. Beale’s discussion in [87].

Several variations of the classical MAB problem have been considered in

the literature. We briefly present them in Section 3.

3. Variants of the Multi-armed Bandit Problem

In this section we present various extensions of the classical MAB problem.

In general, in these extensions, forward induction does not provide a method-

ology for determining an optimal scheduling policy. Index-type solutions are

desirable because of their simplicity, but, in general, they are not optimal. We

identify conditions under which optimal index-type solutions exist.

3.1 Superprocesses

A superprocess consists of k independent components and one controller/

processor. At each time t each component i = 1, 2, . . . , k accepts control

inputs Ui(t) ∈ Ui := {0, 1, . . . , Mi}. The control action Ui(t) = 0 is a

freezing control; the action Ui(t) = j, j = 1, 2, . . . , Mi is a continuation con-

trol. Thus, each component of a superprocess is a generalization of an arm

of a classical MAB problem (where at each t Ui(t) ∈ {0, 1}.) In fact, each
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component of a superprocess is a controlled stochastic process. For any fixed

control law this stochastic process is a single-armed bandit process. Conse-

quently, each component of a superprocess consists of a collection of bandit

processes/machines, each corresponding to a distinct control law. Component

i = 1, 2, . . . , k evolves as follows

Xi

(
Ni(t + 1)

)
= Xi

(
Ni(t)

)
if Ui(t) = 0, (6.30)

and

Xi

(
Ni(t + 1)

)
= fNi(t)

(
Xi(0), . . . , Xi(Ni(t)), Ui(t), Wi(Ni(t))

)

if Ui(t) �= 0, (6.31)

where Ni(t) is the local time of component i at each t and {Wi(n), n =
1, 2, . . . } is a sequence of independent random variables that are also inde-

pendent of {X1(0), X2(0), . . . , Xk(0)}. Furthermore, the sequences {Wi(n);
n = 1, 2, . . . }, {Wj(n);n = 1, 2, . . . } , i �= j, i, j = 1, 2, . . . , k, are indepen-

dent.

A reward sequence {Ri

(
Xi(t), Ui(t)

)
; t = 1, 2, . . . } is associated with each

component i = 1, 2, . . . , k, such that

Ri(t) = Ri

(
Xi(t), Ui(t)

)
, if Ui(t) �= 0, (6.32)

and

Ri(t) = 0, if Ui(t) = 0 . (6.33)

At each time t the controller/processor can choose to operate/continue ex-

actly one component. If the controller chooses component j at t, i.e., Ui(t) = 0
for all i �= j, and Uj(t) takes values in {1, 2, . . . , Mj}, a reward Rj

(
Xj(Nj(t)),

Uj(t)
)

is acquired according to (6.32).

A scheduling policy γ := (γ1, γ2, . . . ) is a decision rule such that the ac-

tion U(t) = (U1(t), U2(t), . . . , Uk(t)) is a random variable taking values in⋃k
i=1{0}

i−1 × {1, 2, . . . , Mi} × {0}k−i, and

U(t) = γt

(
Z1(t), Z2(t), . . . , Zk(t), U(0), . . . , U(t − 1)

)
, (6.34)

where

Zi(t) := [Xi(0), Xi(1), . . . , Xi(Ni(t))]. (6.35)

The objective in superprocesses is to determine a scheduling policy γ that max-

imizes

Jγ := E
γ

⎡

⎣
∞∑

t=0

βt

k∑

j=1

Rj

(
Xj(Nj(t)), Uj(t)

)
∣∣∣∣∣∣
Z(0)

⎤

⎦ (6.36)
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subject to (6.30)–(6.35) and the above constraints on U(t), t = 0, 1, 2, . . .

where

Z(0) := [X1(0), X2(0), . . . , Xk(0)].

Even though features (F2)-(F4) of the MAB problem are present in the su-

perprocess problem, (F1) is not, and as a result of this superprocesses do not

in general admit an index-type of solution. Specifically: in the MAB prob-

lem, once a machine/process is selected for continuation, the evolution of this

process and the accumulated rewards are uncontrolled; on the contrary, in su-

perprocesses, once a component is selected for continuation, the evolution of

this component and the accumulated rewards are controlled. Choosing the con-

trol law that maximizes the infinite horizon expected discounted reward for the

component under consideration leads to a standard stochastic control problem

which can only be solved optimally by backward induction.

Consequently, superprocesses are more complex problems than standard

MAB problems. There is one situation where superprocesses admit an in-

dex form type of solution, namely, when each component has a dominating

machine.

The concept of a dominating machine can be formally described as follows.

Consider a machine {X(n), R
(
X(n)

)
, n = 0, 1, 2, . . . } and let µ ∈ R. Define

L(X, µ) := max
τ>0

E

[
τ−1∑

t=0

βt
[
R
(
X(t))

)
− µ

]
]

, (6.37)

where τ ranges over all stopping times of {Ft := σ
(
X(0), X(1), . . . , X(t)

)
,

t = 0, 1, 2, . . . } (see Appendix Section 3 for a discussion on σ-fields and

stopping times). Notice that L(X, µ) ≥ 0 since for τ = 1 the right hand side

of (6.37) is equal to zero with probability one.

Definition 6.1 We say that machine {X(n), R
(
X(n)

)
; n = 0, 1, 2, . . . }

dominates machine {Y (n), R
(
Y (n)

)
; n = 0, 1, 2, . . . } if

L(X, µ) ≥ L(Y, µ), ∀µ ∈ R. (6.38)

This inequality can be interpreted as follows. Suppose one operates machines

M(X) := {X(n), R
(
X(n)

)
; n = 0, 1, 2, . . . } and M(Y ) := {Y (n),

R
(
Y (n)

)
; n = 0, 1, 2, . . . } up to some random time after which one retires

and receives the constant reward µ at each subsequent time. Then M(X)
dominates M(Y ) if and only if it is optimal to choose M(X) over M(Y ) for

any value of the retirement reward µ.
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As mentioned above, a component of a superprocess is a collection of bandit

processes {Xγi(n), R
(
Xγi(n), Uγi(n)

)
; n = 0, 1, 2, . . . }, γi ∈ Γi, where Γi

is the set of all possible control laws for component i.

Definition 6.2 A component of a superprocess is said to have a domi-

nating control law γ∗ and a corresponding dominating machine {Xγ∗

(n),
R
(
Xγ∗

(n)
)
; n = 1, 2, . . . } if

L
(
Xγ∗

, µ
)
≥ L

(
Xγ , µ

)
, ∀γ ∈ Γ, ∀µ ∈ R

where Γ is the set of all control laws for that component.

When each component of the superprocess has a dominating machine an

index-type solution is optimal for the following reason. In every component

of the superprocess one can restrict attention, without any loss of optimality,

to its dominating machine. Each dominating machine is a single-armed bandit

process. Thus, the superprocess problem reduces to a MAB problem for which

an optimal solution is of the index type.

The condition that each component of a superprocess has a dominating ma-

chine is quite restrictive and difficult to satisfy in most problems.

3.2 Arm-acquiring Bandits

The arm-acquiring bandit problem is a variation of the MAB problem where

one permits arrival of new machines. At time t, K(t) independent machines are

available. The machines available at t were either available at t = 0 or arrived

during 1, . . . , t − 1. Denote these machines by {
(
Xi(Ni(t)), Ri(Xi(Ni(t)))

)
;

Ni(t) = 0, 1, 2, . . . , t; i = 1, 2, . . . , K(t); t = 0, 1, 2, . . . }. At each time

instant, the controller decides to apply a continuation control to only one of

the available machines and all other machines remain frozen. Define U(t) :=(
U1(t), . . . , UK(t)(t)

)
. Then U(t) ∈ { e1

(
K(t)

)
, . . . , eK(t)

(
K(t)

)
}, where

ei(j) = (0, . . . , 0, 1, 0, . . . , 0) is a j-dimensional unit vector with 1 at the ith

position. The machines available at time t are independent and evolve in the

same way as in the classical MAB problem.

At time t a set A(t) of new machines arrive. These machines are available

for operation from (t+1) on and are independent of each other and of the K(t)
previous machines. Let |A(t)| denote the number of machines in A(t). Then,

K(t + 1) = K(t) + |A(t)|

It is assumed that { |A(t)|; t = 1, 2, . . . } is a sequence of i.i.d. random vari-

ables. Further, |A(t)| is independent of U(0), . . . , U(t).
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In this context, a scheduling policy γ := (γ1, γ2, . . . ) is a decision rule

such that the action U(t) at any time t is a random variable taking values in

{ e1

(
K(t)

)
, . . . , eK(t)

(
K(t)

)
} and

U(t) = γt

(
Z1(t), . . . , Zk(t)(t), U(0), . . . , U(t − 1)

)
, (6.39)

where

Zi(t) = [Xi(0), . . . , Xi(Ni(t))];

that is, U(t) denotes the machine operated at time t, and this decision depends

on all past states of all machines.

The arm-acquiring bandit problem is to determine a scheduling policy that

maximizes

Jγ := E

⎡

⎣
∞∑

t=0

βt

K(t)∑

i=1

Ri

(
Xi(Ni(t)), Ui(t)

)
∣∣∣∣∣∣
Z(0)

⎤

⎦ , (6.40)

subject to the aforementioned constraints on the evolution of the machines and

the arrival of new machines.

Nash [179] first considered the arm-acquiring bandit problem using Hamil-

tonian and dynamic programming and he did not obtain an index-type of solu-

tion. Whittle [250] first showed that the Gittins index policy is optimal for the

arm-acquiring bandit. Similar results on the optimality of the Gittins index rule

for arm-acquiring bandits were later obtained by [240, 116]. Here we present

briefly the arguments that lead to the optimality of the Gittins index rule.

Decisions are not irrevocable due to the following: bandit processes are in-

dependent; processes that are not operated on remain frozen; future arrivals

are independent of past decisions; and the arrival process is a sequence of

independent identically distributed random variables. Therefore, by the argu-

ments presented in Section 2.3, forward induction obtains an optimal schedul-

ing policy—at each instant of time continue the machine with the highest Git-

tins index. The expressions for the Gittins index of each machine are the same

as in Equation (6.8). If the machines are described by Markov processes then

their dynamics evolve as in (6.9) and the Gittins indices are given by (6.10).

3.3 Switching Penalties

In MAB problem with switching penalties we have the same model as in the

classical MAB problem with one additional feature. Every time the processor

switches from one machine to another, a switching penalty (switching cost c or
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switching delay d) is incurred. The inclusion of switching penalties is a real-

istic consideration. When the processor switches between different machines

a new setup may be needed; during this setup time no bandit process is con-

tinued (therefore, no reward is acquired) and this lack of continuation can be

modeled by a switching cost or switching delay.

The inclusion of switching penalties drastically alters the nature of the ban-

dit problem. An index form of solution is no longer optimal. This has been

shown in [12] and is illustrated by the following example from [11].

Consider a two-armed bandit problem with switching penalties. Each arm

is described by a three-state Markov chain. The transition probabilities of the

both are given by PXt+1|Xt
(2|1) = 1, PXt+1|Xt

(3|2) = 1, PXt+1|Xt
(3|3) = 1,

further, both Markov chains start in state 1. The rewards of the first arm are

given by R1(1) = 20, R1(2) = 18, R1(3) = 0; and of the second arm are

given by R2(1) = 19, R2(2) = 17, R1(3) = 0. Assume the switching cost

c = 3 and the discount factor β = 0.5. If we operate the arms according to

the Gittins index policy, the order of operation is 1,2,1,2 and the corresponding

rewards are (20− 3)+ (19− 3)β +(18− 3)β2 +(17− 3)β3 = 30.5, whereas

a policy that operates in order 1,1,2,2 yields a reward (20− 3) + 18β + (19−
3)β2 + 17β3 = 32.125. Thus, the Gittins index policy is not optimal.

The nature of optimal scheduling/allocation strategies for the general MAB

problem with switching penalties and an infinite horizon expected discounted

reward including switching penalties is not currently known. Explicit so-

lutions of special cases of the problem have been determined in Van Oyen

et al. [234, 235]. Agrawal et al. [1] determined an optimal allocation strategy

for the MAB problem with switching cost and the “learning loss” or “regret”

criterion. Asawa and Teneketzis [11] determined qualitative properties of op-

timal allocation/scheduling strategies for the general MAB problem with an

infinite horizon expected discounted reward minus switching penalties perfor-

mance criterion. In this chapter we only consider switching costs. The main

result in [11] states the following. Suppose that at t = 0, it is optimal to select

machine j for continuation. If at t = 0 no switching penalty is incurred, it

is optimal to continue the operation of machine j until its Gittins index corre-

sponding to xj(0) is achieved. If at t = 0 a switching cost c is incurred, it is

optimal to continue the operation of machine j until a switching index

νs
Xj

(xj(0)) = max
τ>0

E

[
τ−1∑
t=0

βtRj(t) − c

∣∣∣∣xj(0)

]

E

[
τ−1∑
t=0

βt

∣∣∣∣xj(0)

] (6.41)
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corresponding to xj(0) is achieved. In general, suppose that at decision epoch

τl(ω) it is optimal to select machine i for continuation. If machine i was oper-

ated at τl(ω)− 1 then it is optimal to continue the operation of machine i until

its Gittins index corresponding to (xl
i(ω)) (and given by (6.8)) is achieved.

If machine i was not operated at τl(ω) − 1, then it is optimal to continue its

operation until a switching index

νs
Xi

(
xl

i

)
= max

τ>τl

E

[
τ−1∑
t=τl

βtRi

(
Xi

(
Ni(τl) + t − τl

))
− βτlc

∣∣∣∣∣x
l
i

]

E

[
τ∑

t=τl

βt

∣∣∣∣∣x
l
i

] (6.42)

corresponding to xl
i(ω) is achieved. (Recall that xl

i := xi(0), . . . , xi(Ni(τl))).

The stopping time τ s
(
xl

i

)
that achieves the maximum on the RHS of (6.42)

is related to the stopping time τ
(
xl

i(ω)
)

that achieves the Gittins index as fol-

lows:

τ s
(
xl

i(ω)
)
≥ τ

(
xl

i(ω)
)

(6.43)

almost surely for all xl
i(ω).

The main result in [11] does not describe which machine to select for con-

tinuation at each decision epoch. Such a selection must be determined by back-

ward induction. Conditions under which it is possible to further simplify the

search for an optimal allocation policy also appear in [11].

3.4 Multiple Plays

In MABs with multiple plays we have k independent processes/machines

labeled 1, 2, . . . , k and one controller that has m processors available (m < k).

At each time instant the controller can allocate each processor to exactly one

process. No process can be operated by more than one processor. Each bandit

process and its evolution are modeled as in the classical MAB problem. A

scheduling policy γ := (γ1, γ2, . . . ) is a decision rule such that the action U(t)
at time t is a random variable taking values in (d1, d2, . . . , d( k

m)) where each di

is a k-dimensional row vector consisting of m ones and (k−m) zeros, and the

positions of the ones indicate the machines/processes to which the processors

are allocated. The objective in MABs with multiple plays is to determine a

scheduling policy γ that maximizes

Jγ := E
γ

[
∞∑

t=1

βt

k∑

i=1

Ri

(
Xi(Ni(t)), Ui(t)

)
∣∣∣∣∣Z(0)

]
, (6.44)
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subject to the constraints describing the evolution of the machines and the al-

location of the processors, where

Z(0) := [X1(0), X2(0), . . . , Xk(0)] (6.45)

and

Ri

(
Xi(Ni(t) − 1), Ui(t)

)
=

{
Ri

(
Xi(Ni(t))

)
, if Ui(t) = 1 ,

0, otherwise.

In general operating machines with the m highest Gittins indices is not an

optimal policy for MAB with multiple plays (see [115, 198]). Anantharam

et al. [7, 8] determined an optimal scheduling policy for MABs with multiple

plays and the “learning loss” or “regret” criterion. Furthermore, Agrawal et

al. [2] determined an optimal scheduling policy for the MAB problem with

multiple plays, a switching cost, and the “learning loss” criterion. Pandelis

and Teneketzis [188] determined a condition sufficient to guarantee the op-

timality of the policy that operates the machines with the m highest Gittins

indices at each instant of time. (We call this strategy the Gittins index rule

for MABs with multiple plays or briefly the Gittins index rule.) The suffi-

cient condition of [188] can be described as follows. For each machine i,

i = 1, 2, . . . , k, let τ i
l denote the successive stopping times at which the Gittins

indices of machine i are achieved, and let νXi

(
Xi(0), . . . , Xi(τ

i
l )
)

denote the

(l + 1)th successive Gittins index of the process i. For every realization ω of

the evolution of machine i we have the corresponding realizations τ i
l (ω) and

νXi

(
Xi(0, ω), . . . , Xi(τ

i
l (ω), ω)

)
, l = 1, 2, . . . of machine i, i = 1, . . . , k.

Consider the following condition.

(C1) For any realization ω of the problem, for any machines i, j such that

i �= j and positive integers p, q such that

νXi

(
Xi(0, ω), . . . , Xi(τ

i
p(ω), ω)

)
> νXj

(
Xj(0, ω), . . . , Xj(τ

j
q (ω), ω)

)

we have

νXi

(
Xi(0, ω), . . . , Xi(τ

i
p(ω), ω)

)
(1 − β)

> νXj

(
Xj(0, ω), . . . , Xj(τ

j
q (ω), ω)

)

The main result in [188] states that if condition (C1) is satisfied then the Git-

tins index rule is optimal. The essence of the result of [188] is the following.

Forward induction does not, in general, lead to optimal processor allocation

decisions in MABs with multiple plays because at each stage of the allocation
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process the optimal scheduling policy jointly decides the m machines to be

processed; thus, the forward induction arguments used in the classical MAB

problem (and were discussed in Section 2.2) do not hold. Consequently, the

full effect of future rewards has to be taken into account in determining an op-

timal scheduling policy. However, if the Gittins indices of different machines

are sufficiently separated, the expected reward rate maximizing portions of

each bandit process starting from its current history become the dominant fac-

tors in determining an optimal scheduling policy. In such situations, an optimal

scheduling strategy can be determined by forward induction, and the Gittins in-

dex rule is optimal. Condition (C1) presents an instance where there is enough

separation among the Gittins indices to guarantee the optimality of the Gittins

index rule.

A search problem formulated as a MAB problem with multiple plays has

been considered in [221]. Conditions under which the Gittins index rule is

optimal for the above problem also appear in [221].

3.5 Restless Bandits

Restless bandits (RBs) consist of k independent machines and m identical

processors, m < k. Each machine evolves over time even when it is not being

processed, and hence is not a bandit process. Specifically, the evolution of

machine i, i = 1, 2, . . . , k, is described by

Xi(t + 1) = fi,t (Xi(0), . . . , Xi(t), Ui(t), Wi(t)) , (6.46)

where Ui(t) ∈ {0, 1}, Ui(t) = 0 (respectively 1) means that machine i is not

processed (respectively processed) at time t, and {Wi(t), t = 0, 1, 2, . . . } is a

sequence of primitive random variables that are independent of X1(0), X2(0),
. . . , Xk(0) and have known statistical description; furthermore, {Wi(t), t =
0, 1, 2, . . . } and {Wj(t), t = 0, 1, 2, . . . }, i �= j are independent. (The reader

is invited to contrast (6.46) with (6.2)). The reward received from machine i at

time t is Ri (Xi(t), Ui(t))
10. At each instant of time each processor can pro-

cess exactly one machine. Each machine can be processed by at most one pro-

cessor. A scheduling policy is defined in exactly the same way as in the MAB

problem with multiple plays. The performance criterion is defined by (6.44)

and (6.45). The objective is to determine a scheduling policy to maximize an

infinite horizon expected discounted reward criterion given by (6.44).

In general, forward induction does not result in an optimal allocation strat-

egy for this problem. To see this, consider separately the cases where m = 1

10In [30] it was shown that without loss of generality we can assume that Ri

(
Xi(t), 0

)
= 0.
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and m > 1. For m = 1, the model and optimization problem are a general-

ization of the classical MAB problem described in Section 2.1.2. In RBs any

machine that is available for continuation at t but is not chosen at t changes

its state after t, so decisions made at time t are irrevocable. Consequently, for

m = 1 forward induction does not result in an optimal scheduling policy. For

m > 1, the model and problem are a generalization of the MAB with multiple

plays described earlier in this section. Forward induction does not, in general,

result in an optimal scheduling policy even for MABs with multiple plays, and

therefore does not, in general, result in an optimal scheduling policy for RBs.

Nevertheless, there are cases where RBs have an optimal solution that is of

the index type. We describe two such cases below.

Case 1. Consider the situation where all machines are identical and each

machine is describe by a finite-state controlled Markov chain that is irreducible

under any stationary Markov policy. That is, (6.46) simplifies to

Xi(t + 1) = fi,t (Xi(t), Ui(t), Wi(t)) , (6.47)

i = 1, 2, . . . , k. Assume that the performance criterion is given by the infinite

horizon average reward-per-unit-time-per-machine, that is

rγ̂(α) =
1

k

[
lim

T→∞

1

T
E

γ̂

[
T∑

t=1

k∑

i=1

Ri (Xi(t − 1), Ui(t))

]]
.

Such a performance criterion is not significantly different from the one consid-

ered so far, as infinite horizon expected discounted reward and infinite horizon

expected reward-per-unit-time are related with one another [153, 251].

For the above model and problem assume that a subsidy Q is provided at

time t to each machine that is not operated at t. Let ν(xi) be the value of Q for

which the expected reward-per-unit-time resulting from processing a machine

(currently in state xi) is equal to that resulting from not processing it plus the

subsidy.

Definition 6.3 The value ν(xi) is defined to be the index of a machine in

state xi.

The notion of subsidy defined above can be used to introduce the concept of

indexability that plays an important role in determining conditions sufficient to

guarantee the optimality of an index-type solution for the above model.

Definition 6.4 Machine i is indexable if the following condition is satisfied.
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(C2) Consider a value Q of the subsidy and suppose that when the machine

is in state x, it is optimal not to operate it. Then, it is also optimal not

to operate the machine in state x for any value of the subsidy higher

than Q.

A restless bandit is indexable if all its arms/machines are indexable.

The above notion of indexability may appear to be trivially true for any ma-

chine, but this it is not the case. In fact, indexability is a very strict requirement

(see [252]). To proceed further we define:

1 an index policy γ̂ according to which the machines with the m highest

indices (specified by Definition 6.3) are operated at each time instant

2 for the index policy γ̂

rγ̂(α) := lim
k→∞
m→∞
α= m

k

1

k

[
lim

T→∞

1

T
E

γ̂

[
T∑

t=1

k∑

i=1

Ri (Xi(t − 1), Ui(t))

]]

(6.48)

Then the following result holds. If the RB process is indexable and certain

technical conditions described in [247] hold,

rγ̂(α) = lim
k→∞
m→∞
α= m

k

1

k

[
sup
γ∈Γ

lim
T→∞

1

T
E

γ

[
T∑

t=1

k∑

i=1

Ri (Xi(t − 1), Ui(t))

]]
(6.49)

where Γ is the set of stationary Markov policies. That is, an optimal alloca-

tion strategy for the above class of RBs is an index policy. The above condi-

tions are sufficient but not necessary to guarantee the optimality of an index

policy γ̂.

As pointed out above, indexability is a strict requirement and is often hard

to check. These difficulties motivated the work in [30, 90, 183, 184]. In [30]

Bertsimas and Niño-Mora provided a sufficient condition for indexability of a

single restless bandit. In [183] Niño-Mora investigated an allocation policy for

restless bandits and showed that if a set of conditions called Partial Conserva-

tion Laws (PCLs) are satisfied and the rewards associated with each machine

belong to a certain “admissible region” (see [183]) then the allocation policy

investigated in [183] is optimal. The ideas of [183] have been further refined

in [184]. An approach to evaluating the sub-optimality of the index proposed
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in [183] when the PCL conditions are satisfied but the rewards are not in the

“admissible region” has been presented in [90]. An application of the results

of [183] to queueing networks appears in [9].

Case 2. Consider k machines and one controller that has m processors

available (m < k). Each machine i, i = 1, . . . , k, is described by a con-

trolled random process {Xi(t); t = 0, 1, 2, . . . } with a countable state-space

{0, 1, 2, . . . } such that

Xi(t + 1) = fi,t

(
Xi(t), Ui(t), Wi(t)

)
(6.50)

where Ui(t) ∈ {0, 1} and Ui(t) = 0 (respectively, Ui(t) = 1) means that

the machine is not processed (respectively, processed) at time t. For each

i, i = 1, . . . , k, {Wi(s), s = 1, 2, . . . } is a sequence of random variables that

take values in {0, 1, . . . , mi}, are not necessarily independent and have known

statistics. The sequences {Wi(s), s = 1, 2, . . . } and {Wj(s), s = 1, 2, . . . }
are independent for all i, j, i �= j. Furthermore, each sequence {Wi(s), s =
1, 2, . . . } is perfectly observed; that is, for each ω ∈ Ω and i, Wi(0, ω),
Wi(1, ω), . . . , Wi(t − 1, ω) are known by the controller at time t, before the

allocation decision at t is made. The functions fi,t(·), i = 1, 2 . . . , k, are

fi,t

(
Xi(t), Ui(t), Wi(t)

)
=

⎧
⎪⎨

⎪⎩

Xi(t) + Wi(t), if Ui(t) = 0,

Xi(t) − Λi + Wi(t), if Xi(t) �= 0, Ui(t) = 1,

Wi(t), if Xi(t) = 0,

(6.51)

where Λi is a random variable taking values in {0, 1} with P[Λi = 0] =
qi > 0 and Wi(t) is a random variable that is not necessarily independent

of Wi(0), . . . , Wi(t − 1).

At each instant of time t a machine is either available for processing (it is

“connected”), or it is not (it is “not connected”). The probability that machine

i is connected at t is pi, i = 1, 2, . . . , k, for all t. The reward received at time t

from a connected machine is

Ri

(
Xi(t), Ui(t)

)
=

{
Yi, if Xi(t) �= 0 and Ui(t) = 1,

0, if Ui(t) = 0 or Xi(t − 1) = 0,
(6.52)

where Yi is a random variable taking values in {0, ci} with P(Yi = ci) = qi.

The reward received at time t from a machine that is not connected is zero.

The performance criterion is given by (6.44)11. The objective is to determine a

scheduling/processor allocation policy to maximize the performance criterion.

11In [161], where the model of Case 2 is proposed, the performance criterion is given by a holding cost

instead of a reward. Using the transformation in [235] we can convert this performance criterion into (6.44).
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The model described above arises in single-hop mobile radio systems (see

[161] and references therein). The same model has also independent interest

as a specific problem in queueing theory.

Consider a machine i, i = 1, 2, . . . , k, which at time t is in state xi �= 0 and

is connected. The Gittins index νi(xi) of machine i is

νi(xi) = qici.

Define the Gittins index policy to be the allocation policy γGI that operates at

each time t the connected machines that are not in the zero state and have the

m highest Gittins indices. The following condition (C3) describes an instance

where the allocation policy γGI is optimal.

(C3) c1q1 > c2q2 > · · · > ckqk, and in addition

ciqi

[
1 − β

1 − (1 − qi)β

]
≥ cjqj

for all i, j, 1 ≤ i < j ≤ k.

The proof of optimality of the Gittins index policy γGI under (C3) can be found

in [161].

The essence of the results of [161] is the following: If we were guaranteed

that the system described above operated away from the 0 := (0, 0, . . . , 0) (k

times) state then it would be optimal to allocate the m processors to the con-

nected machines with the m highest Gittins indices. Near the state 0, processor

utilization becomes a critical issue in determining an optimal allocation policy.

The Gittins index policy may result in processor under-utilization; thus, it may

not be optimal in some neighborhood of the state 0. Therefore, if we require

optimality of the Gittins index policy for the problem under consideration, we

must identify conditions to ensure that the advantage gained by always allo-

cating the processors to the highest index machines overcompensates potential

losses resulting from processor under-utilization near the 0 state. Such a con-

dition is expressed by (C3) which requires that the indices associated with the

machines should be sufficiently separated from one another. Such a separa-

tion results in a priority ordering of the machines sufficient to guarantee the

optimality of the Gittins index policy.

Variations of the model of Case 2 were considered by Ehshan and Liu in [78,

79, 76, 77, 75]. In [78, 77] the authors investigate RBs with imperfect (de-

layed) observations and a single processor; they identify conditions sufficient

to guarantee the optimality of an index policy. In [76] the authors consider

identical machines and a linear symmetric holding cost criterion that can be
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converted into (6.44) (see footnote 11). For this model they prove the optimal-

ity of the index rule. In [75, 79] the model is similar to that of [76] but the

holding cost is convex. The authors identify conditions sufficient to guarantee

the optimality of an index policy.

3.6 Discussion

Several of the extensions of the MAB problem presented in this chapter are

related with one another. Specifically, the arm-acquiring bandit problem can

be converted into a superprocess [240] and the MAB problem with switching

cost can be converted into a RB problem [91].

Furthermore, there are other stochastic dynamic scheduling problems that

are equivalent to the classical MAB problem. Two such problems are the

tax problem [240, 253] and certain classes of Sensor Resource Management

(SRM) problems [245].

In the tax problem there are k machines, each evolving according to (6.2)

and (6.3). At each time instant exactly one machine is operated; the machines

that are not operated remain frozen. If machine i is not operated at t a tax

Ti

(
Xi(t)

)
, depending on the state Xi(t) of machine i at t, is charged. The ob-

jective is to determine a scheduling/processor allocation policy γ to minimize

E
γ

[
∞∑

t=0

βt

k∑

i=1

Ti

(
Xi(t), Ui(t)

)
∣∣∣∣∣Z(0)

]
,

where

Z(0) := [X1(0), X2(0), . . . , Xk(0)],

U(t) :=
(
U1(t), . . . , Uk(t)

)
, t = 0, 1, 2, . . . , is a random variable taking val-

ues in {e1, . . . , ek}, and

Ti

(
Xi(t), Ui(t)

)
=

{
Ti

(
Xi(Ni(t))

)
, if Ui(t) = 0,

0, if Ui(t) = 1.

Even though feature (F4) of the MAB problem is not present in the tax prob-

lem, the two problems are equivalent. For the details of transforming the tax

problem into a MAB problem, we refer the reader to [240]. An example of a

tax problem is Klimov’s problem in queueing networks [132, 133, 240, 31].

Sensor management problems that are equivalent to the MAB problem are

presented and discussed in Chapter 7.
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4. Example

In this section we present a simple search problem and show how it can be

viewed as a classical MAB problem. We also present briefly variations of the

problem which lead to different variants of the classical MAB problem. The

search model that we consider is not rich enough to lead to an arm-acquiring

bandit variation. We refer the reader to Chapter 7 for more realistic sensor

management scenarios.

We consider a search problem in which a stationary target is hidden in one

of k cells. The a priori probability that the target is in cell i is denoted by pi(0),
i = 1, 2, . . . , k. One sensor capable of operating in only one mode is available

to search the target; the sensor can search only one cell at every instant of time.

The sensor is imperfect in the sense that if the target is in cell i and the sensor

looks at cell i, it does not necessarily find the target, i.e.,

P(sensor finds target in cell i | target is in cell j) = δijqj , (6.53)

where δij is the Kronecker delta function. The search is completed when the

target is found. Successful completion of the search at time t gives a reward

βt, where 0 < β < 1. Such a reward captures the fact that the target must

be identified as quickly as possible. The objective is to determine a sequential

sensor allocation policy γ that maximizes the expected reward.

We show how the problem described above can be formulated as a clas-

sical MAB problem. Associate each cell with one machine/bandit process.

Let pi(t) be the posterior probability that the target is in location i at time t

given all previous search locations and the event that the target has not been

found. The probability pi(t) can be considered as the state of machine i at

time t; let p(t) :=
(
p1(t), p2(t), . . . , pk(t)

)
be the state of all machines. De-

note by U(t) :=
(
U1(t), U2(t), . . . , Uk(t)

)
the sensor allocation at t. U(t)

is a random variable taking values in {e1, e2, . . . , ek} (see Section 2.1). The

expected reward corresponding to any sequential sensor allocation policy γ is

E
γ [βτ

1(target is found at τ)], where 1(E) is the indicator function of event

E and τ is the time when the search process stops. For any arbitrary but fixed

sensor allocation policy γ this expected reward can be alternatively written as,

E
γ [βτ

1(target is found at τ )] =
∞∑

t=0

βt Pγ(τ = t)

=

∞∑

t=0

βt
[ k∑

i=1

Pγ(τ = t, U(t) = ei)
]
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=
∞∑

t=0

βt
[ k∑

i=1

pi(t)qi Pγ
(
U(t) = ei

)]

=
∞∑

t=0

βt
[ k∑

i=1

Ri

(
pi(t), ui(t)

)]
,

where

Ri

(
pi(t), ui(t)

)
=

{
pi(t)qi, if ui(t) = 1,

0, if ui(t) = 0,

and

u(t) =
(
u1(t), u2(t), . . . , uk(t)

)
= γt

(
p(t)

)
.

By a careful examination of the above search problem, we find that features

(F1), (F3), and (F4) of the MAB problem are present, but feature (F2) is not.

This is because if we search location i at time t and do not find the target, then

the state p(t) evolves as follows:

pi(t + 1) =
pi(t)(1 − qi)

c
, (6.54)

pj(t + 1) =
pj(t)

c
, j �= i, (6.55)

where c = 1− pi(t)qi. Thus a particular allocation at t changes the state of all

machines/cells.

The above problem can be converted into a classical MAB by considering an

unnormalized probability p̂i(t) as the state of machine i, i = 1, 2, . . . , k at time

t and an appropriately modified reward function R̂i

(
p̂i(t), ui(t)

)
. Specifically

the state p̂i(t) of machine i, i = 1, 2, . . . , k evolves as follows:

p̂i(0), = pi(0) ∀i, (6.56)

p̂i(t + 1) =

{
p̂i(t), if ui(t) = 0,

p̂i(t)(1 − qi), if ui(t) = 1,
(6.57)

and the modified reward function R̂i

(
p̂i(t), ui(t)

)
is given by

R̂i

(
p̂i(t), ui(t)

)
=

{
p̂i(t)qi, if ui(t) = 1,

0, if ui(t) = 0.
(6.58)

The objective is to determine a sensor scheduling policy γ to maximize

∞∑

t=0

βt

k∑

i=1

R̂i

(
p̂i(t), ui(t)

)
,
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where u(t) = γt

(
p̂(t)

)
. By using p̂i(t) as the state of machine12 i at time t, the

modified problem has features (F1)–(F4) and is thus a classical MAB.

Even though the modified problem has a different reward structure and dif-

ferent cell/machine dynamics from the original problem, any optimal policy

for one problem is also optimal for the other (for details, see [68, Sec 14.14]).

The Gittins index of every machine is always achieved at τ = 1 and is given

by

νXi

(
p̂i(t)

)
= p̂i(t)qi

(see [68]).

We call the above described model the basic model. Changes in the number

and types of sensors or the target dynamics result in problems that can be

transformed into one of the variants of the MAB problem, and are described

below.

When the sensor can operate in one of M modes and everything else is

the same as in the basic model, the resulting problem can be formulated as a

superprocess where the state of cell/machine i is the unnormalized probability

p̂i(t).

When there is a setup cost or setup delay for switching the sensor from

one location to another and everything else is the same as in the basic model,

the resulting problem can be formulated as a MAB problem with switching

penalties.

If there are m sensors (1 < m < k) and everything else is the same as in

the basic model, the resulting problem can be formulated as a MAB problem

with multiple plays.

Finally, if the target is moving, there are m sensors (1 < m < k), each with

one mode, and everything else is the same as in the basic model, the resulting

problem can be formulated as a restless bandit.

By considering various combinations of changes in target motion and the

number and types of available sensors, we can obtain generalizations of the

bandit problems. Some such generalizations appear in Chapter 7.

12p̂(t) is an information state for the modified problem (see Chapter 2).
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5. Chapter Summary

We have presented the formulation of the classical MAB problem, and dis-

cussed its key features and the ideas that lead to the Gittins index solution.

We also presented different variants of the classical MAB problem, explained

their key differences from Gittins’s original formulation, and highlighted con-

ditions under which a Gittins-type index rule is optimal. We emphasized the

qualitative features of MAB problem and gave an intuitive explanation of the

key results. The technical details are available in the literature we cite in this

chapter. We illustrated how different variants of a single search problem can

be transformed to the classical MAB problem and its variants. More realis-

tic sensor management problems and their relation to the MAB problem are

discussed in Chapter 7.
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1. Information Theory

Given the option of making one of several different types of measurements,

e.g., Y1, . . . , Ym, one would generally prefer making the measurement that

leads to maximal uncertainty reduction or, equivalently, maximal information

gain about a signal of interest S. This is one of the prime motivations be-

hind information theoretic sensor management since information theory pro-

vides a way to systematically quantify uncertainty and information. In this

appendix we present those elements of information theory pertinent to sensor

management. We will limit our coverage to Shannon’s definitions of entropy

and conditional entropy, the data processing theorem and mutual information,

and information divergence.

1.1 Entropy and Conditional Entropy

Let Y be a measurement and S be a quantity of interest, e.g. the position

of a target or the target id. We assume that Y and S are random variables or

random vectors with joint distribution pY,S(y, s) and marginal distributions pY

and pS , respectively. The entropy of S, denoted H(S), quantifies uncertainty

in the value of S before any measurement is made, called the prior uncertainty

in S. High values of H(S) imply high uncertainty about the value of S. The
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of a continuous random variable with density pS is defined as

H(S) = −

∫

pS(s) log pS(s)ds, (12.1)

where pS denotes the probability density of S. If S = S is a continuous

random vector the definition of is similar except that the expression on the

right involves a multidimensional integral over each component of the vector

valued s. For a discrete random variable the Shannon entropy is

H(S) = −
∑

s∈S

pS(s) log pS(s),

where pS is now a probability mass function and S is its support set, i.e., the

discrete set of values s for which pS(s) > 0.

Oftentimes one is interested in the entropy of a random variable S condi-

tioned on another random variable Y . For example, the amount by which an

observation of Y reduces the entropy of S indicates the value of this observa-

tion in predicting S. There are two possible ways of defining such an entropy

quantity: the entropy of the conditional distribution pS|Y of S given Y , which

is a function of Y , and the of S given Y .

The Shannon entropy of the conditional distribution of S given Y , also

called the point conditioned Shannon entropy, is denoted H(S|Y = y) and

is defined as follows. We assume for simplicity that, given Y = y, S is a

conditionally continuous random variable with conditional (posterior) density

pS|Y (s|y) and define the entropy of this conditional density as

H(S|Y = y)
def
= −

∫

pS|Y (s|y) log pS|Y (s|y)ds.

The point conditioned entropy is a function of y. It becomes a random variable

when y is replaced by the random variable Y .

The conditional Shannon entropy H(S|Y ) of S given Y is defined as the

Shannon entropy of the conditional distribution pS|Y . This conditional entropy

can be interpreted as the uncertainty in S after the measurement Y is made,

called the posterior uncertainty. When S and Y are continuous random vari-

ables with joint density pS,Y and conditional (posterior) density pS|Y

H(S|Y ) = −

∫

dy pY (y)

∫

ds pS|Y (s|y) log pS|Y (s|y).

The conditional entropies H(S|Y ) and H(S|Y = y) are related

H(S|Y ) =

∫

H(S|Y = y)pY (y)dy.
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When S and Y are discrete random variables an analogous expression holds

for H(S|Y ) with conditional and marginal densities replaced by conditional

and marginal probability mass functions and integrals replaced by summa-

tions. A special “mixed discrete-continuous” case that frequently arises in

target tracking problems is: S is a continuously evolving random vector, e.g., a

target state vector, while Y is a discrete random vector, e.g., the binary output

of the signal detector of a radar receiver. In this case the conditional entropy is

H(S|Y ) = −
∑

y∈Y

pY (y)

∫

pS|Y (s|y) log pS|Y (s|y)ds ,

where Y is a discrete set containing all possible measurement values, pY is the

probability mass function for Y , and pS|Y (s|y) is the (assumed continuous)

posterior density of S given Y .

There are subtle but important differences between entropy for discrete vs

continuous random variables. For discrete S the entropy is always non-negative,

while for continuous S the entropy can be negative. For discrete random vari-

ables the entropy is directly related to the maximal attainable compression-rate

without loss of information about S.

1.2 Information Divergence

Let p and q be two candidate probability densities of a real random variable

S. The Kullback-Liebler (KL) divergence between p and q is defined as [152]

KL(p‖q) =

∫

p(s) log
p(s)

q(s)
ds.

The KL divergence is not symmetric in p and q and is thus is not true measure

of distance between densities. However, it does behave like a similarity mea-

sure, sometimes called a pseudo-distance, in that it is concave(convex) in p (q),

it is non-negative, and it is equal to zero when p = q.

1.3 Shannon’s Data Processing Theorem

The average reduction in uncertainty about S due to observing Y can be

quantified by the difference:

∆H(S|Y ) = H(S) −H(S|Y ).

The data processing theorem asserts that this difference is always non-negative

regardless of whether S is continuous or discrete. This theorem is easily proven
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by invoking convexity of the log function and the Jensen inequality [64] and

mathematically captures the obvious: observations are never harmful in that

they can never increase uncertainty about a signal.

1.4 Shannon Mutual Information

The difference ∆H(S|Y ) is better known as the Shannon mutual informa-

tion , denoted I(S; Y ), between S and Y . The more reduction there is in

uncertainty the higher is the mutual information. An equivalent expression for

Shannon mutual information that applies to continuous random variables is

I(S; Y ) =

∫

dy

∫

ds pS,Y (s, y) log
pS,Y (s, y)

pS(s)pY (y)
.

An analogous expression applies to discrete random variables. Shannon’s mu-

tual information can be recognized as the Kullback-Liebler (KL) divergence

between pS,Y and pSpY and can be interpreted as a measure of closeness to

independence of the joint density of S and Y .

The obvious symmetry of the mutual information expression in the random

variables S and Y implies that

I(S; Y ) = H(S) −H(S|Y ) = H(Y ) −H(Y |S).

This relation is often used in the implementation of mutual information driven

strategies of sensor management since the quantities on the right hand side of

the equality are usually more easily computed than those on the left hand side.

1.5 Further Reading

Information theory is a mature subject and there are many good sources for

the beginner. One of the most popular textbooks used in introductory gradu-

ate courses on information theory is the textbook by Cover and Thomas [64]

that is accessible to electrical engineers. The book by MacKay [164] covers

the topic from the unique perspective of machine learning and contains many

interesting applications. The classic book by Kullback [152] is a treatment of

information theory that is firmly motivated by mathematical statistics. More

mathematically advanced treatments of the subject are the books by Csiszár

and Korner [67] and Yeung [257].
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2. Markov Processes

Our ability to make effective sensor-management decisions is based fun-

damentally on our access to models. In particular, nonmyopic decision mak-

ing relies on modeling the random processes that represent uncertainty in the

system, such as target motion in tracking problems. In this section, we re-

view a framework for uncertainty modeling based on Markov processes. The

material discussed here provides the necessary background for understanding

the methods discussed throughout this book, including Kalman filtering and

partially observable Markov decision processes (POMDPs). We also provide

some pointers to sources for further study.

2.1 Definition of Markov Process

A Markov process is a stochastic process satisfying a particular property

called the Markov property, which we will define precisely below. Here, we

consider only discrete-time Markov processes, and use k = 0, 1, . . . as the time

index. (So a stochastic process here is no different from a sequence of random

variables.)

We use X to denote the state space of the process, which is the set of values

that the process can take at each time step. We also assume that associated

with X is a collection of subsets F forming a σ-algebra. In the case where X
is countable (discrete), we take F to be the power set of X . If X is a Euclidean

space, we take F to be the Borel σ-algebra. Throughout this appendix, we will

refer to these two special cases simply by the terms discrete and continuous.

A stochastic process X0, X1, . . . is a Markov process (also called a Markov

chain) if for each k = 1, 2, . . . and E ∈ F ,

P(Xk+1 ∈ E|Xk, . . . , X0) = P(Xk+1 ∈ E|Xk).

We call Xk the state of the Markov process at time k.

The condition above is called the Markov property, which boils down to

this: the conditional distribution of Xk+1 given the entire history up to time

k depends only on Xk. In other words, the future of the process is condition-

ally independent of the past, given the present. To put it a different way, the

“memory” in the process lasts only one time step.

The Markov property is in fact not as stringent a requirement as it may first

appear to be. Indeed, suppose we are given a stochastic process that fails to

satisfy the Markov property, but instead satisfies, for each k = 1, 2, . . . and
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E ∈ F ,

P(Xk+1 ∈ E|Xk, . . . , X0) = P(Xk+1 ∈ E|Xk, Xk−1);

in other words, the memory in the process is two instead of one. Then, it is

easy to see that this process gives rise to a Markov process {Yk} by defining

Yk = (Xk, Xk−1). Indeed, using this construction, any stochastic process

with memory lasting only a bounded time into the past gives rise to a Markov

process. It turns out that many scenarios in practice can be modeled as Markov

processes provided we define the state spaces appropriately.

2.2 State-transition Probability

In the discrete case, the Markov property can be expressed more simply as

follows: for each k = 1, 2, . . . and i, j, i0, . . . , ik−1 ∈ X ,

P(Xk+1 = j|Xk = i, . . . , X0 = i0) = P(Xk+1 = j|Xk = i).

It is clear that for a Markov process, once we specify P(X0 = i) and P(Xk+1 =
j|Xk = i) for each k = 0, 1, . . . and i, j ∈ X , the probability law of the pro-

cess is completely specified. In many problems of interest, the conditional

probabilities P(Xk+1 = j|Xk = i) do not depend on k. In this case, we say

that the Markov process is time-homogeneous (or simply homogeneous).

For a homogeneous Markov process with discrete state space, write pij =
P(Xk+1 = j|Xk = i), i, j ∈ X . We call this set of probabilities the state-

transition law (or simply the transition law) of the Markov process. Each pij

is called a state-transition probability (or simply a transition probability). It

is often convenient to represent the transition law using a graph, where the

nodes are the states and the arcs are labeled with transition probabilities. In

the case where X is finite (whence we can write, without loss of generality,

X = {1, 2, . . . , N}), the transition law can also be represented by a square

matrix [pij ], called the state-transition matrix (or transition matrix). Note that

any transition matrix has the property that each entry is nonnegative and each

row sums to one. Any matrix satisfying this property is called a stochastic

matrix, and is in fact the transition matrix of some Markov chain.

In the continuous case, we assume that the state-transition law can be writ-

ten in terms of conditional densities pXk+1|Xk
(xk+1|xk), xk, xk+1 ∈ X . (The

reader may assume for simplicity that X is the real line or a subset of it;

the case of multidimensional Euclidean spaces involves treating all densities

as multivariable functions.) We also assume that X0 has a density pX0
. If

pXk+1|Xk
does not depend on k, then we say that the Markov process is time-

homogeneous. In the remainder of this discussion, we consider only time-
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homogeneous Markov processes. Also, for simplicity, we will drop the sub-

scripts in the notation for the conditional densities.

2.3 Chapman-Kolmogorov Equation

Consider a discrete-state Markov process. Given n = 0, 1, . . . , we define

the n-step transition law by p
(n)
ij = P(Xn = j|X0 = i), i, j ∈ X . The n-step

transition law satisfies the Chapman-Kolmogorov equation:

p
(n+m)
ij =

∑

k∈X

p
(n)
ik p

(m)
kj , i, j ∈ X .

In the case of a finite state space, the Chapman-Kolmogorov equation has a

natural interpretation in terms of the transition matrix: the n-step transition

law is given by the nth power of the transition matrix.

In the continuous case, we can similarly define the n-step transition law in

terms of the conditional density f (n)(xn|x0), xn, x0 ∈ X . The Chapman-

Kolmogorov equation then takes the form

f (n+m)(xn+m|x0) =

∫

X
f (n)(xn|x0)f

(m)(xn+m|xn) dxn, xn+m, x0 ∈ X .

2.4 Markov reward processes

Given a Markov process, suppose we associate with each state x ∈ X a real

number R(x), called a reward. A Markov process so endowed with a reward

function is called a Markov reward process. We define the mean total reward

over a horizon H as

E

[

H−1
∑

k=0

R(Xk)

]

.

Many problems in practice can be modeled as Markov reward processes—in

such a model, the mean total reward represents some quantity of interest (such

as the value of a performance metric).

It is often the case that the horizon H is very large. In such cases, for techni-

cal reasons relevant to the analysis of Markov processes, the objective function

is often expressed as a limit (i.e., with an infinite horizon). A sensible limiting

objective function is the infinite horizon (or long-term) average reward:

lim
H→∞

E

[

1

H

H−1
∑

k=0

R(Xk)

]

.
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Another common limiting objective function is the infinite horizon discounted

reward:

lim
H→∞

E

[

H−1
∑

k=0

βkR(Xk)

]

,

where β is a number between 0 and 1 called the discount factor. .

2.5 Partially Observable Markov Processes

Given a Markov process and a set Y (with a σ-algebra F of subsets of

Y), suppose we associate with each state x ∈ X a conditional distribution

P(Y ∈ E|x), E ∈ F . We call Y the observation space, and the conditional

distribution P(Y ∈ E|x), E ∈ F , the observation law. A Markov process

so endowed with an observation law is called a partially observable Markov

processes or a hidden Markov model.

The reason we use the terms “partially observable” and “hidden” is that we

think of Y as the set of observations we have of the “underlying” Markov pro-

cess, but we cannot directly observe the underlying process. If X0, X1, . . .

represents the underlying Markov process, then all we can observe is the ran-

dom sequence Y0, Y1, . . . , where each Yk has conditional distribution given

Xk specified by the observation law. The sequence Y0, Y1, . . . is assumed to be

conditionally independent given X0, X1, . . . . Many practical processes, espe-

cially in sensing applications, are well modeled by hidden Markov models. For

example, Xk may represent the location of a target at time k, and Yk may be a

radar measurement of that location. The transition law in this case represents

the motion of the target, and the observation law represents the relationship

between the target location and the radar measurement.

Even though we cannot directly access Xk, the observations provide us

with some information on Xk. In fact, at each k, we can compute the a

posteriori (or posterior) distribution of Xk given the history of observations

Ik = {Y0, . . . , Yk−1}. We call this posterior distribution the belief state or

information state at time k, and here it is denoted πk. The sequence of belief

states satisfies the Markov property, and is therefore a legitimate Markov pro-

cess, albeit with a rather unwieldy state space—the set of all distributions on

X . It turns out that given the belief state at time k and the observation Yk, we

can calculate the belief state at time k + 1 using a simple update procedure, as

we will show below.

For the case of a discrete Markov process with discrete observation space,

suppose the transition law is given by pij , i, j ∈ X . Suppose y0, y1, . . . are the

observations. Let πk represent the belief state at time k, which is a conditional
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probability mass function:

πk(i) = P(Xk = i|Y0 = y0, . . . , Yk−1 = yk−1), i ∈ X .

Also define the “updated belief state” taking into account the observation yk:

π̂k(i) = P(Xk = i|Y0 = y0, . . . , Yk = yk), i ∈ X .

Then πk+1 can be derived from πk and Yk using the following two-step

procedure:

1. Calculate the “updated belief state” π̂k (taking into account the observa-

tion yk) using Bayes’ rule:

π̂k(j) =
P(Yk = yk|Xk = j)πk(j)

∑

ℓ∈X P(Yk = yk|Xk = ℓ)πk(ℓ)
, j ∈ X .

2. Calculate the belief state πk+1 based on π̂k and the transition law:

πk+1(j) =
∑

i∈X

π̂k(i)pij , j ∈ X .

By reversing the order of 1. and 2. one obtains an equivalent algorithm for

updating π̂k to π̂k+1.

For the case of a continuous Markov process with continuous observation

space (real numbers), suppose the transition law is given by the conditional

density p(xk+1|xk), and the observation law is given by the conditional density

q(yk|xk). The belief state at time k is then represented by a density function

πk. The two-step update procedure to calculate πk+1 based on πk and yk is

given analogously as follows:

1. Calculate the “updated belief state” taking into account the observation

yk, using Bayes’ rule:

π̂k(xk) =
q(yk|xk)πk(xk)

∫

X q(yk|x)πk(x) dx
, xk ∈ X .

2. Calculate the belief state πk+1 based on π̂k and the transition law:

πk+1(xk+1) =

∫

X
π̂k(xk)p(xk+1|xk) dxk, xk+1 ∈ X .

If the transition and observation laws both arise from linear equations, and the

initial density pX0
is Gaussian, then the belief states remain Gaussian over
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time. In this case, the above update procedure can be reduced to a procedure to

update just the mean and variance (or covariance in the multidimensional case)

of the belief state. This procedure is called the Kalman filter.

If we augment the definition of a partially observable Markov process with

control actions, then we obtain a partially observable Markov decision process

(POMDP), as defined in Chapter 2. The two-step update procedure for belief

states remains valid provided we include the action into the observation and

transition laws.

2.6 Further Reading

Our discussion here assumes a basic understanding of probability and sto-

chastic processes. An excellent recent book that provides this background

and that also includes a chapter on Markov chains is by Gubner [97]. Many

books focusing on Markov processes exist. A small but useful book by Ross

[197] remains an accessible classic. The book by Çinlar [53] provides an ex-

cellent in-depth treatment of discrete state space Markov processes. Meyn

and Tweedie [170] treat continuous (and other even more general) state space

Markov processes—their treatment necessarily involves heavy mathematical

machinery.

3. Stopping Times

We briefly present the concept of stopping time which plays an important

role in the solution of the MAB problem discussed in Chapter 6. We proceed

as follows: We first present all relevant definitions in Section 3.1. We give

an example of a stopping time in Section 3.2. Finally, we characterize the

stopping times that achieve the Gittins index in the classical MAB problem in

Section 3.3 and suggest some further reading material for the advanced reader

in Section 3.4.

3.1 Definitions

Definition 12.1 (Probability Space) A probability space (Ω,F , P )
consists of a sample space Ω, a σ-field (σ-algebra) F of the subsets of Ω,

and a probability measure P on the elements of F .

Definition 12.2 (σ-field generated by a random variable) Let

X : (Ω,F , P ) → (R,B(R), P̂ ) be a random variable. Denote by σ(X) the
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smallest σ-field with respect to which X is measurable. Then

σ(X) = {A ∈ F : ∃B ∈ B(R), X−1(B) = A}.

The σ-field σ(X) represents the “information” obtained about the experiment

described by (Ω,F , P ) after observing X . This can be explained as follows.

First consider a probability space (Ω,F , P ) which represents a random exper-

iment. An event E ∈ F can be thought of as a “yes-no question” that can be

answered after we observe the outcome of the experiment. Then σ(X) is the

collection of all “yes-no questions” that can be answered after observing X .

Definition 12.3 (increasing family of σ-fields) A family {F ,Ft;
t = 0, 1, 2, . . . } of σ-fields is called increasing if Ft ⊂ Ft+1 ⊂ F for all

t = 0, 1, 2, . . . .

Ft represents the information about the evolution of a system that is available

to an observer/decision-maker at time t, t = 0, 1, 2, . . . . When the observer has

perfect recall, (that is, it remembers everything that it has seen and everything

that it has done in the past) then Ft ⊂ Ft+1, ∀t and {F ,Ft; t = 0, 1, 2, . . . } is

an increasing family of σ-fields.

Definition 12.4 (Stopping Time) Let N̄ := {0, 1, 2, . . . ,+∞}. A ran-

dom variable τ : (Ω,F , P ) → (N̄ , 2N̄ , P̂ ) is a stopping time with respect to

the increasing family of σ-fields {F ,Ft; t = 0, 1, 2, . . . } if the event {τ =
t} := {ω : τ(ω) = t} ∈ Ft for all t = 0, 1, 2, . . . .

Any constant random variable equal to a non-negative integer or +∞ is a stop-

ping time. A stopping time can be thought of as the time when a given random

event E happens, with the convention that it takes the value +∞ if E never

happens. Alternatively, τ can be thought of as the time when a gambler playing

a game decides to quit. Whether or not he quits at time t depends only on the

information up to and including time t; so {τ = t} ∈ Ft.

3.2 Example

Let {Xt; t = 0, 1, 2, . . . } be a time-homogeneous finite-state Markov chain

defined on (Ω,F , P ) with state space S, and matrix of transition probabili-

ties {Qij ; i, j ∈ S}. Assume that the evolution of the Markov chain is per-

fectly observed by an observer that has perfect recall. The observer has per-

fect recall, its information Ft at time t is given by σ(X0, X1, . . . , Xt), since

σ(X0, X1, . . . , Xt) represents all the “yes-no questions” about events in F
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that the observer can answer after observing X0, X1, . . . , Xt. Furthermore,

{F ,Ft; t = 0, 1, 2, . . . } is an increasing family of σ-fields. Consider a non-

empty subset A of the state of space, that is, A ⊂ S, A �= ∅. Define for all

ω ∈ Ω,

τA(ω) := min{t : Xt(ω) ∈ A}.

The random variable τA defines the first instant of time the Markov chain enters

set A, and is called the hitting time of A. It is a stopping time with respect to

the family of σ-fields {F ,Ft; t = 0, 1, 2, . . . }.

3.3 Stopping Times for Multi-armed Bandit
Problems

Consider the classical MAB problem of Chapter 6 with finite-state Marko-

vian machines. The Gittins index of machine i, i = 1, . . . , k in this case is

given by Eq (6.13). The stopping time that maximizes the RHS of (6.13) is the

hitting time of an appropriate subset of the state space {1, 2, . . . ,∆i} of ma-

chine i. This set is the stopping set Si

(

xi(Ni(τl))
)

determined in Section 2.4.

In the case of non-Markovian machines the Gittins index of machine i, i =
1, . . . , k is given the (6.8). The stopping time that maximizes the RHS of (6.8)

can be described as follows: Let x
τl

i :=
(

xi(0), . . . , xi(Ni(τl))
)

. Define an

appropriate family S(τl) as {S
Ni(τl)+r
i ; r = 1, 2, 3, . . . } where,

S
Ni(τl+r)
i (xτl

i ) ⊂ R
Ni(τl)+r, r = 1, 2, . . .

Let

τ̂l+1(S(τl)) = min{t > τl : xt
i ∈ S

Ni(t)
i ; Ni(t) = Ni(τl) + t − τl + 1}

Define S∗(τl) by

S∗(τl) = arg max
S(τl)

E

⎡

⎣

τ̂l+1

(

S(τ1
)

−1
∑

t=τl(ω)

βtRi

(

Xi

(

Ni(τl) + t − τl(ω)
))

|xτl

i

⎤

⎦

E

⎡

⎣

τ̂l+1

(

S(τ1
)

−1
∑

t=τl(ω)

βt|xτl

i

⎤

⎦

.

(12.2)

Then τl+1 = τ̂l+1(S
∗(τl)). In general, for non-Markovian machines, maxi-

mizing RHS of (12.2) over all choices of S(τl) is difficult, and computing the

index is non-trivial.
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3.4 Further Reading

Even though the notion of stopping times is intuitively simple, its formal

treatment tends to be at an advanced level. Most graduate-level textbooks on

probability theory contain a treatment of stopping times. See, for example,

Billingsley [32], Shireyaev [210], and Jacod and Protter [117]. Stopping times

is a fundamental concept in martingale theory and in optimal stopping prob-

lems. Reference books on these topics contain a more exhaustive treatment of

stopping times. We refer the reader to Dellacherie and Meyer [69] for a treat-

ment of stopping times in the context of martingales, and to Chow, Robins, and

Siegmund [59], and Shireyaev [209] for a treatment of stopping times in the

context of optimal stopping problems.
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[26] D. P. Bertsekas and D. A. Castañón. Rollout algorithms for stochastic

scheduling. Heuristics, 5:89–108, 1999.

[27] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal Control: The Dis-

crete Time Case, volume 1. Academic Press, 1978.

[28] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.

Athena Scientific, Belmont, MA, 1996.

[29] D. Bertsimas and J. Niño-Mora. Conservation laws, extended polyma-

troids and multiarmed bandit problems; a polyhedral approach to index-

able systems. Mathematics of Operations Research, 21:257–306, 1996.

[30] D. Bertsimas and J. Niño-Mora. Restless bandits, linear programming

relaxations, and a primal-dual index heuristic. Operations Research,

48:80–90, 2000.

[31] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. Branching bandits

and Klimov’s problem: achievable region and side constraints. IEEE

Transactions on Automatic Control, 40:2063–2075, 1995.

[32] P. Billingsley. Probability and Measure. John Wiley and Sons, New

York, NY, 1995.

[33] S. S. Blackman. Multiple-Target Tracking with Radar Applications.

Artech House, Boston, MA, 1986.

[34] D. Blackwell. Discrete dynamic programming. Annals of Mathematical

Statistics, 33:719–726, 1962.

[35] D. Blackwell. Discounted dynamic programming. Annals of Mathemat-

ical Statistics, 36:226–235, 1965.

[36] W. D. Blair and M. Brandt-Pearce. Unresolved Rayleigh target detection

using monopulse measurements. IEEE Transactions on Aerospace and

Electronic Systems, 34:543–552, 1998.

[37] G. Blanchard and D. Geman. Hierarchical testing designs for pattern

recognition. Annals of Statistics, 33(3):1155–1202, 2005.

[38] D. Blatt and A. O. Hero. From weighted classification to policy search.

In Neural Information Processing Symposium, volume 18, pages 139–

146, 2005.



286 FOUNDATIONS AND APPLICATIONS OF SENSOR MANAGEMENT

[39] D. Blatt and A. O. Hero. Optimal sensor scheduling via classification

reduction of policy search (CROPS). In International Conference on

Automated Planning and Scheduling, 2006.

[40] H. A. P. Blom and E. A. Bloem. Joint IMMPDA particle filter. In

International Conference on Information Fusion, 2003.

[41] A. G. B. S. J. Bradtke and S. P. Singh. Learning to act using real-time

dynamic programming. Artificial Intelligence, 72:81–138, 1995.

[42] L. Breiman, J. Friedman, R. Olshen, and C. J. Stone. Classification and

Regression Trees. Wadsworth, Belmont, CA, 1983.

[43] M. V. Burnashev and K. S. Zigangirov. An interval estimation prob-

lem for controlled observations. Problems in Information Transmission,

10:223–231, 1974. Translated from Problemy Peredachi Informatsii,

10(3):51–61, July-September, 1974.

[44] L. Carin, H. Yu, Y. Dalichaouch, A. R. Perry, P. V. Czipott, and C. E.

Baum. On the wideband EMI response of a rotationally symmetric per-

meable and conducting target. IEEE Transactions on Geoscience and

Remote Sensing, 39:1206–1213, June 2001.

[45] A. R. Cassandra. Exact and Approximate Algorithms for Partially Ob-

servable Markov Decision Processes. PhD thesis, Department of Com-

puter Science, Brown University, 1998.

[46] A. R. Cassandra, M. L. Littman, and L. P. Kaelbling. Incremental prun-

ing: A simple, fast, exact method for partially observable Markov deci-

sion processes. In Uncertainty in Artificial Intelligence, 1997.
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[48] D. A. Castañón. A lower bound on adaptive sensor management perfor-

mance for classification. In IEEE Conference on Decision and Control.

IEEE, 2005.
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