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24.1 Introduction 

Multi-armed bandit is a colorful term that 

refers to the di lemma faced by a gambler 

playing in a casino with multiple slot ma-

chines (which were colloquially called one-

armed bandits). W h a t strategy should a 

gambler use to pick the machine to play 

next? It is the one for which the poste-

rior mean of winning is the highest and 

thereby maximizes current expected re-

ward, or the one for which the posterior 

variance of winning is the highest, and has 

the potential to maximize the future ex-

pected reward. S imi lar exploration vs ex-

ploitation trade-offs arise in various appli -

cation domains including cl inical tr ials [5], 

stochastic scheduling [25], sensor manage-

ment [33], and economics [4]. 

C l i n i c a l tr ials fit natural ly into the 

framework of mult i -armed bandits and 

have been a motivation for their study 

since the early work of Thompson [31]. 

Broadly speaking, there are two ap-

proaches to mult i -armed bandits. T h e 

first, following Bel lman [2], aims to maxi -

mize the expected total discounted reward 

over an infinite horizon. T h e second, fol-

lowing Robbins [27], aims to minimize the 

rate of regret for the expected total reward 

over a finite horizon. I n some of the litera-

ture, the first setup is called geometric dis-

counting while the second is called uniform 

discounting. For a large time, the mult i -

armed bandit problem, in both formula-

tions, was considered unsolvable unti l the 

pioneering work of G i t t ins and Jones [13] 

for the discounted setup and that of L a i 

and Robbins [22] for the regret setup char-

acterized the nature of the optimal strat-

egy. 

I n this chapter, we restrict our atten-

tion to the discounted setup; we refer the 

reader to a recent survey by Bubeck and 

Cesa-Bianchi [9] and references therein for 

the regret setup and to Kuleshov and Pre-

cup [20], who discuss the regret setup in 

the context of cl inical trials. 

24.2 Mathematical 
Formulation of 
Multi-Armed Bandits 

Mult i -armed bandit ( M A B ) is a sequential 

decision problem in which, at each time, 
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a player must play one among n available 

bandit process. In the simplest setup, a 

bandit process is a controlled Markov pro-

cess. The player has two controls: ei-

ther play the process or not. If the player 

chooses to play the bandit process 2, i = 

1 , . . . , n, the state of the bandit process i 

evolves in a Markovian manner while the 

state of all other processes remains frozen 

(i.e., it does not change). Such a ban-

dit process is called a Markovian bandit 

process. More sophisticated setups assume 

that when a bandit processes is played, 

its state evolves according to an arbitrary 

stochastic process. To focus on the key 

conceptual ideas, we restrict our attention 

to Markovian bandit processes. For more 

general bandit processes, the description of 

the solution concept and its computation 

are more involved. 

Formally, let { X l } ^ denote the bandit 

process. The state X\ of the bandit pro-

cess i , i = l , . . . , n , takes values in an arbi-

trary space X%
. For simplicity, we assume 

in most of the discussion in this chapter 

that X
% is finite or countable. 

Let Ut = ( u l , . . . , u t ) denote the deci-

sion made by the player at time The 

component u\ is binary valued and denotes 

whether the player chooses to play the ban-

dit process i (u\ = 1) or not {u\ = 0). Since 

the player may only choose to play one 

bandit process at each time, u t must have 

only one nonzero component, or equiva-

lent^ 
n 

= vt. 
i=1 

Let U £ {0, l } n denote all vectors with 

this property. The collection { K t = 

{ X l , . . . , X t
n ) } £ 0 evolves as follows: Vz = 

1, ..., n 

4 = ( f ( x i w ; ) J if<4 = 1, 

t + 1 \XL if u\ — 0, 

where {W? i = 1 , . . . ,n, are mutually 

independent i.i.d. processes. Thus, when 

u\ = 1, X\ evolves in a Markovian manner; 

otherwise it remains frozen. 

When bandit process i is played, it 

yields a reward r l ( X l ) and all other pro-

cesses yield no reward. The objective of 

a player is to choose a decision strategy 

9 = {9t}%Lo> where gt : [JlLi x i so as 

to maximize the expected total discounted 

reward 

oo n 

t—0 i=l 

where xo = ( x j , . . . , Xq ) is the initial start-

ing state of all bandit processes and (3 € 

(0,1) is the discount factor. 

24.2-1 An Example 

Consider an adaptive clinical trial with n 

treatment options. When the tth patient 

comes for treatment, she may be prescribed 

any one of the n available options based on 

the results of the previous trials. The se-

quence of success and failure of each treat-

ment is an Bernoulli process with an un-

known success probability s*, i = 1, ..., 

n. The objective is to design an adaptive 

strategy that maximizes the expected total 

discounted successful treatments. 

The above adaptive clinical trial may 

be viewed as a M A B problem as follows. 

Suppose the prior distribution of sl has 

a beta distribution that is independent 

across treatments. Then the posterior dis-

tribution of 5% which is calculated using 

Bayes' rule, is also a beta distribution, 

say Beta(pJ,gJ) at time t. Therefore, each 

treatment may be modeled as a Marko-

vian bandit process where the state X\ is 

(pbQt)i the state update function / cor-

responds to Bayes update of the poste-

rior distribution, and the reward function 

rl
(X}) = Pt/(Pt + Qt) captures the proba-

bility of success. 
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24.2.2 Solution Concept and lows: 

the Gittins Index 

One possible solution concept for the M A B 

problem is to set it up as a Markov deci-

sion process (MDP) and use Markov de-

cision theory [26] to solve it. However, 

such an approach does not scale well with 

the number of bandit processes because of 

the curse of dimensionality. To see this, 

assume that the state space X
1 of each 

bandit process is a finite set with ra el-

ements. Then the state space of the re-

sultant MDP, which is the space of real-

izations of Xt , has size m n . The solu-

tion complexity of solving a M D P is pro-

portional to the size of the state space. 

Hence the complexity of solving M A B us-

ing Markov decision theory increases expo-

nentially with the number of bandit pro-

cesses. A key breakthrough for the M A B 

problem was provided by Gittins and Jones 

[13] and Gittins [15], who showed that in-

stead of solving the n-dimensional M D P 

with state-space n l L i > a n optimal solu-

tion is obtained by solving n 1-dimensional 

optimization problems: for each bandit i, 

i = 1, . . . , n, and for each state x
l
 € X

1
, 

compute 

E 

v
l
(x

l
) — max -

v ' T> o 

£ P r W ) L
t=0 

Xio = xi 

E 
t = 0 

XK 

(!) 
where r is a {cr(X[,...,X\)}

<
£Ll measur-

able stopping time. The function v
l
(x

l
) 

is called Gittins index of bandit process i 

at state x
l
. The optimal r in (1), which 

is called the optimal stopping time at x\ 

is given by the hitting time T(S(x
1
)) of 

a stopping set S(x
l
) C X\ t!hat is, the 

first time the bandit process enters the set 

S(x
l
). Algorithms to compute the Gittins 

index of a bandit process are presented in 

Section 24.3. 

Gittins and Jones [13] and Gittins [15] 

characterized the optimal strategy as fol-

� At each time, play the arm with the 

highest Gittins index. 

Thus, to implement the optimal strat-

egy, compute and store the Gittins index 

v
l
(x

%
) of all states x

l
 € X

1 of all bandit 

processes i, i = 1, ..., n. Off-line algo-

rithms that compute the Gittins index of 

all states of a bandit process are presented 

in Section 24.3. 

An equivalent interpretation of the Git-

tins index strategy is the following: 

� Pick the arm with the highest Gittins 

index and play it until its optimal stop-

ping time (or equivalently, until it en-

ters the corresponding stopping set) 

and repeat. 

Thus, an alternative way to implement 

the optimal strategy is to compute the Git-

tins index v
l
(x\) and the corresponding 

stopping time [or equivalently, the corre-

sponding stopping set S(x
1
)] for the cur-

rent state x\ of all bandit processes i, i = 1, 

..., n. On-line algorithms that compute 

the Gittins index and the corresponding 

stopping set for an arbitrary state of a ban-

dit process are presented in Section 24.4. 

Off-line implementation is simpler and 

more convenient for bandit processes with 

finite and moderately sized state space. 

On-line implementation becomes more 

convenient for bandit processes with large 

or infinite state space. 

24.2.3 Salient Features of the 

Model 

As explained by Gittins [15], M A B prob-

lems admit a simpler solution than gen-

eral multistage decision problems because 

they can be optimally solved with forward 

induction. In general, forward induction 

is not optimal and one needs to resort 

to backward induction to find the optimal 

strategy. Forward induction is optimal for 
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M A B setup because it has the following 

features: 

1. The player plays only one bandit pro-

cess, and that process evolves in an 

uncontrolled manner. 

2. The processes that are not played are 

frozen. 

3. The current reward depends only on 

the current state of the process that 

is played and is not influenced by the 

state of the remaining processes and 

the history of previous plays. 

Because the above features, decisions 

made at each stage are not irrevocable and 

hence forward induction is optimal. On 

the basis of the above insight, Gittins [15] 

proved the optimality of the index strat-

egy, using an interchange argument. Since 

then, various other proofs of the Gittins in-

dex strategy have been proposed (see [14] 

for a detailed summary). 

Several variations of M A B problems 

have been considered in the literature. 

These variations remove some of the above 

features, and, as such, index strategies are 

not necessarily optimal for these variations. 

We refer the reader to the survey by Ma-

hajan and Teneketzis [23] and references 

therein for details on the variations of the 

M A B problem. 

24.3 Off-Line Algorithms for 
Computing Gittins Index 

Since the Gittins index of a bandit process 

depends just on that process, we drop the 

label i and denote the bandit process by 

o-

Off-line algorithms use the following 

property of the Gittins index. The Gittins 

index v : X —» E induces a total order >z 

on X that is given by 

Using this total order, for any state a e X) 

the state space X may be split into two sets 

C(a) = {b € X : b y a}, 

5(a) = {b e X : a y b}. 

These sets are, respectively, called the con-

tinuation set and the stopping set. The 

rationale behind the terminology is that if 

we start playing a bandit process in state a, 

then it is optimal to continue playing the 

bandit process in all states C(a) because 

for any b € C(a), u(b) > v(a). Thus, the 

stopping time that corresponds to starting 

the bandit process in state a is the hitting 

time T(5(a)) of set 5(a), that is, the first 

time the bandit process enters set 5(a). 

Using this characterization, the expression 

for Gittins index (1) simplifies to 

E 

u(a) = max -
S(a)CX 

r T(S(a)) 

£ Pr(Xt) 
t=o 

Xq = a 

Va, b <E X , ahb v(a) > v(b). 

rT(S(a)) 

E jr P Xo = a 
L t—0 

(2) 
where T(5(a)) = inf{* > 0 : Xt G 5(a)} 

is the hitting time of set 5(a). The off-line 

algorithms use this simplified expression to 

compute the Gittins index. 

For ease of exposition, assume that 

Xt takes values in a finite space X = 

{ 1 , . . . , ra}. Most of the algorithms extend 

to countable state spaces under appropri-

ate conditions. Denote the m x m tran-

sition probability matrix corresponding to 

the Markovian update of the bandit pro-

cess by P = [Pa,b] and represent the re-

ward function using a ra x 1 vector r, i.e. 

r a = r (a) . Furthermore, let 1 be the ra x 1 

vector of ones, 0 m x i be the ra x 1 vector 

of zeros, I be the m x m identity matrix, 

and 0 mxm be the mxm matrix of zeros. 



420 Multi-Armed Bandits, Gittins Index, and Its Calculation J^ll 

24.3.1 Largest-Remaining-

Index Algorithm 

(Varaiya, Walrand, and 

Buyukkoc) 

Varaiya, Walrand, and Buyukkoc [32] pre-

sented an algorithm to compute the Git-

tins index, which we refer to as the largest-

remaining-index algorithm. The key idea 

behind this algorithm is to identify the 

states in X according to the decreasing or-

der 

where (ai , . . . , a m ) is a permutation of 

(1, . . . , ra). 

The algorithm proceeds as follows: 

Ini t ia l izat ion: The first step of the al-

gorithm is to identify the state a\ with the 

highest Gittins index. Since a\ has the 

highest Gittins index, S(a i ) = X. Sub-

stituting this in (2), we get that v(a\) = 

r(a i ) = r Q l . Then, choose 

a\ = arg max ra 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

v{qli) = rai. 

Recursion step: After the states ai, 
. . . , ah-1 have been identified, the next 

step is to identify the state a k with 

the kth largest Gittins index. Even 

though ak is not known, we know that 

C(ak) = {otu � � �, afe-i} and S(ak) = X \ 

{ a i , . . . , a k - i } . Substituting this in (2), 

we can compute v(ak) as follows. Define 

the ra x ra matrix by Va, b G X, 

qW = f p a,6 , if 6 € C(afc), 

a '6 [0, otherwise; 

and define the ra x 1 vectors: 

d(*> = [I — 

(3) 

(4) 

Then, choose 

a k = arg max 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

d(*) 
b w 

Computational complexity: The per-
formance bottleneck of this algorithm is 

the two systems of the linear equations (4) 

that need to be solved at each step. At step 

fc, each system effectively has k variables, 

so solving each requires (2/3)fc3 + 0(k
2
) 

arithmetic operations. Thus, overall this 

algorithm requires 

m 

2j2[lk
3
 + 0(k

2
)] ^ i r a

4
 + 0 ( m

3
) 

k=l 

arithmetic operations. This algorithm has 

the worst computational complexity of all 

the algorithms presented. 

E x a m p l e 24 .3 .1 Consider a bandit pro-

cess with state space X = {1 ,2,3,4}, re-

ward vector r = [16 19 30 4]T, and 

probability transition matrix 

0.1 0 0 .8 0.1 

0.5 0 0 .1 0.4 

0.2 0.6 0 0.2 

0 0.8 0 0.2 

Let the discount factor be f3 = 0.75. 

Using the largest-remaining-index algo-

rithm, the Gittins index for this bandit 

process is calculated as follows: 

Init ia l izat ion: Start by identifying the 

state with the highest Gittins index: 

ai = arg max ra = 3; 
adzX 

v{ol\) = r3 = 30. 
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R e c u r s i o n s t e p : 

1. S t e p k = 2: Although ct2 is not 

known, we know that C(a2) = {3} 

and S(a2) = { 1 ,2 ,4} . Using (3) and 

(4) we get 

o(2) 
0 0 0 . 8 0 
0 0 0.10 
00 0 0 
00 0 0 

"34 " �1.6
 _ 

21.25 
30 
4 

, b<
2
> = 1.075 

1 
1 

Hence, 

3. 

d ( 2 ) 

a 2 = arg max = 1; 

v(ol2) = 
d ( 2 ) 

"a2 

: 21.25. 

2. S t e p k = 3: Although <23 is not 

known, we know that C(a3) = { 1 , 3 } 

and S ( a 3 ) = {2,4}. Using (3) and (4) 

we get 

o
( 3 )

 -

0 . 1 0 0 . 8 0 1 
0.5 0 0.10 
0.20 0 0 
0 0 0 0 

d<
3
> = 

Hence, 

"40.719" "1.916" 
36.977 , b<

3
> = 1.815 

36.108 , b<
3
> = 1.288 

4 1 

is(a3) = 

d(
a

3) 

arg max - j r r 
a€{2,4} b ( 3 ) 

i(3) 
d«3_ 

kp) 
20.372. 

S t e p fc = 4: As before, although c*4 

is not known, we know that C(a4) = 

{ 1 , 2 , 3 } and S(a4) = {4}. As in the 

previous steps, using (3) and (4) we 

get 

o(4) 
0.1 0 0.80 
0.5 0 0.10 
0.2 0.6 0 0 

0 0.8 0 0 

Since S(a4) = 

ment, we have 

"54.929" " 2.613" 
43.95 , b<

4
> = 2.157 

58.017 , b<
4
> = 2.363 

.30.371. 2.295 

{4} has only one ele-

04 = 4, and v(a±) 
d ( 4 ) 

Hi) 
Wa4 

13.236. 

Thus, the vector of the Gittins index of this 

bandit process is 

v = 

21.25 
20.372 
30 
13.236 

24.3.2 State-Elimination 
Algorithm (Sonin) 

Sonin [30] presented an algorithm to com-

pute the Gittins index, which we refer to 

as the state-elimination algorithm. As with 

the largest-remaining-index algorithm, the 

main idea behind the state-elimination al-

gorithm is to iteratively solve (2) in the 

decreasing order of K The computations 

are based on a relation of (2) with optimal 

stopping problems [29]. 

A simplified version of the state-elimina-

tion algorithm is presented below. See [30] 

for a more efficient version that also works 

when the discount factor (3 depends on the 

state. 

Ini t ia l izat ion: The initialization step is 

identical to that of the largest-remaining-

index algorithm: Identify the state a i with 

highest Gittins index, which is given by 

Oil arg m a x r a 

where ties are broken arbitrarily. The cor-
responding Gittins index is 

V(ol{) L
 c*l � 

Step k of the recursion uses a mxm 

matrix and rax 1 vectors a w and 

b (*> , where ra = |5(a /e)| = ra-fc-f 1 . These 

are initialized as Q^1) = P , d^1) = r, and 

b(!) = ( 1 - / 3 ) 1 . 
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Recursion step: After the states ai, 
. . . , a/e-i have been identified, the next 

step is to identify the state a k with 

the kth largest Gittins index. Even 

though ak is not known, we know that 

C(ak) = { a i , . . . , ajb-i} and S{ak) = X \ 

{ a i , . . . , a k - i } . Let the model in the step 

k- 1 be Q ^ " 1 ) , d ^ " 1 ) and b ^ " 1 ) . Define 

A/c-i = 
0 

1 _ tfQ^-
1
) ajb-i 

Let fa = |5(afe)|- Define rax fa matrix by 

Va,b£S(ak): 

o
( f c )

 - Q i V ^ - i Q ^ Q 
(fe-i) 
atk-i,b' 

(5) 
and define rax 1 vectors by Va E S(ak) 

(6 ) 

Note that the entries of Q<-
k
K d<

fc
> and 

are labeled according to the set S(ak). For 

example, if X — {1 ,2,3}, a i = 2 then 

S ( a i ) = {1 ,3} and 

d ( 2 ) 

Q<2> = 

r a < 2 > ! 

a
2
> 

0 ( 2 > q ( 2 ) 
1 Wi 3 

Qft Q& 

and b<
2
> 

bS
2) 

2 arithmetic operations [since we can pre-

COmpute Xk-lQaHakhi f° r a € S(otk) 

before updating Q(&)]. Thus, overall this 

algorithm requires 

m 

] T [2(ra-fc-f l)
2
 -f O(fc)] = | m 3 + 0 ( m 2 ) 

k=l 

arithmetic operations. Our calculations 

differ from the ra
3 -f 0(ra

2
) calculations 

reported in [24] because [24] assumes that 

the update of each element of Q ^ takes 

3 arithmetic operations, but, as we argued 

above, this update can be done in 2 op-

erations if we pre-multiply row a k - i of 

with Afc-i. Furthermore, in the 

implementation presented in [24], b^) is 

computed from requiring additional 

0(ra
2
) arithmetic operations. The above 

implementation avoids those by keeping 

track of b^k\ 

Example 24.3.2 Reconsider the bandit 

process of Example 24.3.1. Using the state-

elimination algorithm, the Gittins index 

for this bandit process is calculated as fol-

lows. 

Ini t ia l izat ion: Start by identifying the 

state with the highest Gittins index: 

After calculating and 

choose 

d
{
a
k) 

a k = arg max - ^ r 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

u ( a k ) = ( ! - / ? ) 

d(k) q
afc 

b w 

a\ — arg max r a 

u{a i) = r 3 = 30. 

Initialize: 

Q(« 

d ( i ) 

3; 

0.1 0 0 . 8 0 . 1 

0.5 0 0.1 0.4 
0.2 0.6 0 0 .2 

0 0.8 0 0.2 

-16" "0.25" 
19 
30 , = 0.25 

0.25 
4 0.25 

Computational complexity: The per-
formance bottleneck of this algorithm is 

the update of matrix Q ^ at each step. In 

step fc, the matrix Q W has (ra—fc+1)2 ele-

ments and update of each element requires 

Recursion step: 

1. Step k = 2: Although a 2 is not 
known, we know that C(a2) is {3}, 
S(a2) = {1,2,4}, and Ax - 0/(1 -
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(3qW ) = 0.75. Using (5) and (6) we 

get 

Q® 

1 2 4 

0.22 0.36 0.22 

0.515 0.045 0.415 

0 0.8 0.2 . 

Since 5(04) = {4} has only one ele-

ment, we have 

Q4 = 4, and 

d(4) 

i/(a4) = ( l - 0 ) ^ = 13.236. 

34 , v
 1 " 0.4 " 

21.25 , b<
2
> = 2 0.269 24.3.3 

4 4 . 0.25 . 

Hence, 

di
2) 

a 2 = arg max - ^ r = 1; 

j 

V(Q2) = ( 1 - / 3 ) 5 ^ 
(2) 
o 

bl2 

21.25. 

2. Step ft = 3: Although 0:3 is not 
known, we know that C(a3) = {1 ,3} , 

5 ( o 3 ) = {2,4}, and A2 = 0/(1 -

0 Q $ ) = 0.898. Using (5) and (6) we 

get 

q ( 3 ) = 2 

4 

2 4 

0.21 0.52 

0.8 0.2 

d<
3
> =

 2 36.98 , b<
3
> =

 2 0.45 

4 4 ' 4 0.25_ 

Hence, 

d(3) 
O-a 

a 3 = arg max = 2; 

d(3) 

i/(a3) = = 20.372. 
ba3 

3. Step k = 4: Although 04 is 
not known, we know that C(a4) = 

{1,2,3}, 5(0:4) = {4}, and A3 = 
(3/(1 - 0 Q ^ ) = 0.882. As in the pre-

vious steps, using (5) and (6) we get 

4 

4 [ 0.5691 

d ^ = 4 [30.37], b<
4
>= 4 [0.574]. 

Triangularization Algo-
rithm (Denardo, Park, 
and Rothblum) 

Denardo, Park, and Rothblum [12], inde-

pendently of Sonin, presented an algorithm 

that is similar to the state-elimination al-

gorithm. We refer to this algorithm as 

the triangularization algorithm. Although 

the main motivation for this algorithm was 

to compute the performance of any index 

strategy, it can be used to compute the Git-

tins index as well. 

A slightly modified version of the trian-

gularization algorithm is presented below. 

See [12] for the original version. 

In i t i a l i za t ion : The initialization step is 

identical to the previous two algorithms: 

Identify the state a\ with the highest Git-

tins index, which is given by 

a\ = arg max r a 
a£X 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

V(oli) =rftl. 

The recursion step uses a ra x (ra 4- 2) 

tableau 

= [Q<
fc
>|d<

fe
>|b<

fe
>] 

where Q ^ is a ra x ra square matrix and 

d W and b ^ are ra x 1 vectors. Initialize 

these as Q W = I - 0 P , d ^ = r, and 

b W = ( 1 - / 3 ) 1 . 
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Recursion step: After the states 
. . . , a k - i have been identified, the next 

step is to identify the state a k with the 

fcth largest Gittins index. As before, even 

though a k is not known, we know that 

C(otk) = { a i , . . . , a/c-i} and S(ak) = X \ 

{ a i , . . . , a k ~ 1}. Suppose the tableau in 

step A; — 1 is 

M ( / c - 1 ) - [ q C * - 1 * I d ^ - 1 ) I b ^ - 1 ) ] . 

Update this tableau using the following el-

ementary row operations 

1. Let A/c-i = 1 /QofcZi^afc-i� Scale 

row a k ~ i of tableau M ^ - 1 ) by A^-i 

[i.e., rescale row a k - i such that the 

(ak-i,ak-i) entry of M ^ " 1 ) is 1]. 

2. For each state a G S(ak), subtract row 

ak-i times the constant Q^afe_i from 

row a [these operations set Q ^ to 0 

for b G C(ak)]. The updated tableau 

is M<*). 

After updating the tableau, choose 

d
(
a
k) 

a k = arg max - j r r 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

Ak) 

Computational complexity: The per-
formance bottleneck of this algorithm is 

the elementary row operations performed 

at each step to update the tableau. In 

step fc, this algorithm performs (ra — fc + 2) 

row operations and each row operation 

requires 2(ra — fc -f- 1) arithmetic opera-

tions [This is because columns correspond-

ing to C(ak-1) need not be updated be-

cause Q^afe-i is 0]. Thus, overall the algo-

rithm requires 

m 

] T [2(ra - fc -f l)(ra - fc + 2) + 0(fc
2
)] 

k—1 

= |ra
3
 + 0(ra

2
) 

arithmetic operations. 

Example 24.3.3 Reconsider the bandit 

process of Example 24.3.1. Using the tri-

angularization algorithm, the Gittins index 

for this bandit process is calculated as fol-

lows: 

Init ia l izat ion: As in the other two algo-

rithms, the state with the highest Gittins 

index is 

a i — arg max ra = 3; 
a€X 

v(ai) = 30. 

Initialize the tableau M ^ as 

� 0.925 0 - 0 . 6 - 0 . 0 7 5 16 0.25" 
- 0 . 3 7 5 1 - 0 . 0 7 5 - 0 . 3 19 0.25 
- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25 

0 - 0 . 6 0 0.85 4 0.25 

Recursion step: 

1. Step k = 2: Since a\ = 3, set 

Ai = I/Q33 = 1. Using the elemen-

tary row operations, the tableau M^2) 

is updated to 

" 0.835 - 0 . 2 7 0 - 0 . 1 6 5 34 0.4 " 

- 0 . 3 8 6 0.966 0 - 0 . 3 1 1 21.25 0.269 
- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25 

0 - 0 . 6 0 0.85 4 0.25 

Hence, 

di
2) 

a 2 = arg max = 1; 
a€{l,2,4} bi

2) 

d ( 2 ) 

i/(a2) = ( l - / ? ) - ^ = 21.25. 

2. Step k = 3: Since a2 = 1, set 
A2 = 1/Qi^i = 1.198. Using the el-

ementary row operations, the tableau 

M^3) is updated to 

� 1 - 0 . 3 2 3 0 - 0 . 1 9 8 40.719 0.479" 
0 0.841 0 - 0 . 3 8 8 36.978 0.454 

- 0 . 1 5 - 0 . 4 5 1 - 0 . 1 5 30 0.25 

0 - 0 . 6 0 0.85 4 0.25 
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Hence, 

d ( 2 ) 

a 2 = arg max -£rr = 2; 
«e{2.4} bi

2) 

v(a3) = (1 - 0) 

d(3) 

k ( . 3 ) 

20.362. 

3. Step ft = 4: Since as = 2, set 
A3 = 1 / Q ^ = 1.189. Using the el-

ementary row operations, the tableau 

M ( 4 ) is updated to 

� 1 -0 .323 0 -0 .198 40.72 0.479" 
0 1 0 -0 .461 43.95 0.539 

-0 .15 -0 .45 1 - 0 . 1 5 30 0.25 
0 0 0 0.574 30.37 0.574 

Since S(a4) = {4} has only one ele-

ment, we have 

c*4 = 4 and 

d(4) 

i/(a4) = ( 1 - / ? ) - ^ - 13.236. 

24.3.4 Fast-Pivoting 
Algorithm 
(Nino-Mora) 

Nino-Mora [24] presented an algorithm to 

compute the Gittins index that refines a 

previous algorithm proposed by Kallen-

berg [16]. We refer to this algorithm as the 

fast-pivoting algorithm. As with the other 

algorithms, the main idea behind the fast-

pivoting algorithm is to iteratively solve (2) 

in the decreasing order of K The compu-

tations are based on a relation of (3) with 

marginal productivity rate [24]. 

A modified version of the algorithm is 

presented below. See [24] for the original 

version. 

In i t i a l i za t ion : The initialization step is 

identical to the previous three algorithms: 

identify the state ot\ with the highest Git-

tins index, which is given by 

a\ = arg m a x r 0 

where ties are broken arbitrarily. The cor-

responding Gittins index is 

i/(a 1) L
 ai � 

The recursion step uses a m x m matrix 

and rax 1 vectors b ^ and S k \ where 

ra == |£(a/c)| = m — k -f 1. Initialize these 

as Q « = 0 m x m , b*
1
) = 1, dW = r. 

Recursion step: After the states 
have been identified, the 

next step is to identify the state ak 

with the fcth largest Gittins index. 

Even though ak is not known, we 

know that C(ak) = { a i , . . and 

S(ak) = X \ { a i , . . . , a f c - i } . Let the 

model in the step k — 1 be Q ^ - 1 ) , b ^ " 1 ) 

and d ^ " 1 ) and let ra = \S(ak)\. 

Define the (ra 4- 1) x 1 vector by Va e 

S(ak-1), 

Let 

a,ak-1 

A k-

- £ 

b€C(ak) 

P 

l - M t ^ ' 

(*"l)Pl 

(7) 

Define the m x m matrix by Va G S(ak) 

tmdb e X\{ak-i}, 

= -Afe-ihi*-
1
). (8) 

and the ra x 1 vectors by Va € S(ak) 

b W ^ b ^ + A f c - x h i ^ b ^ . ' 0 ) 

d(fe) _ d ( f e - i ) _ 
u

a
 u

afc_ 1 

u(fc-1) 

"a 

u
c*fc_i ^a 

(10) 

After the model has been updated, choose 

OLk arg max d ^ 
a€S(afc)

 a 

and the corresponding Gittins index is 

given by 

«/(«*) = d&>. 
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Computational complexity: The per-
formance bottleneck of this algorithm is 

the calculation of h ^ " 1 ) and the update of 

Q(k\ each of which requires 2(m — k + 2)k 

additions and multiplications [for the up-

date of Q ^ , we know that for b € S(otk), 

Q i s 0, hence we do not need to calcu-

late those using (8)]. Thus, overall the al-

gorithm requires 

Hence, 

1 

= 2 

1.6 
1.075 , d<2> 

1 

= 2 

* 21.25 " 

19.767 

4 1 4 4 

a2
 : 

= arg ; max 
o€{ l ,2 ,4} 

d(2) 
= i; 

/(a2) = = 21.25. 

[fe(4(m-ife)+l)+0(Jfe)] = |m
3
+0(m

2
) 

l 

arithmetic operations. 

E x a m p l e 24.3 .4 Reconsider the bandit 

process of Example 24.3.1. Using the fast-

pivoting algorithm, the Gittins index of 

this bandit process is computed as follows: 

Init ial ization: As in the other two algo-

rithms, the state with the highest Gittins 

index is 

a \ — arg max ra = 3; 

u(a i) = 30. 

Initialize: 

Q ( i ) 

0 000 
0000 
0000 
0000 

- 1 - " 16" 
1 
1 , d « = 

19 
30 

. 1 . 4 

b<l) 

Recursion step: 

1. S t e p k = 2: Since a\ = 3, using (7) 

we get 

h(D 
ro.s 

0 .1 

0 
0 

and Ai =/?/(l 

(8)-(10) we get 

0.75. Using 

Q (2) 
0 0 -0 .6 0 

0 0 -0.075 0 

0 0 0 0 

2. S t e p k = 3: Since a 2 = using (7) 

we get 

h < 2 > = 2 

4 

0.22 

0.515 

0 

and A2 = /?/(l—/?h^2)) = 0.898. Using 

(8)—(10) we get 

Q (3) -0.463 0 -0.353 0 

0 0 0 0 

b ( 3 ) = 2 1.815 

C
M

 II 
co TJ 20.372 

4 1 4 4 

Hence, 

as = arg max d̂ 3̂  = 2; 
a£S(a 3) 

u(as) = di
3)

 = 20.372. 

3. S t e p k == 4: Since as = 2, using (7) 

we get 

v,(3) _ 2 [0.212 
1 1

 4 0.8 

and A3 = /?/(l-/?h£3)) = 0.891. Using 
(8)-(10), we get 

Q
( 4 )

 = 4 [0 -0.713 0 0], 

t /
4

) = 4 [2.294], d ^ = 4 [ 13.236]-

Since 5(0:4) = {4} has only one ele-

ment, we have 

a4 = 4, and i/(a4) = = 13.236. 
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24.3.5 An Efficient Method to 
Compute Gittins Index 
of Multiple Processes 

Consider a MAB problem in which all 

processes have a finite state space X
1
 — 

{ l , . . . , ra*} . Let al
mi be the state with 

the smallest Gittins index in process i, 

i = 1 , . . . ,n. Let 

i* = argmaxz/^^i) 
i 

be the process whose smallest Gittins in-

dex is the largest among all alternatives. 

Then, a Gittins index strategy will eventu-

ally settle on process i* and play it forever. 

Based on the above insight, Denardo, 

Feinberg, and Rothblum [11] proposed the 

following method to efficiently compute the 

Gittins index of multiple processes in par-

allel. 

Init ial ization: Identify the state a\ 

with the highest Gittins index for all 

processes and calculate its Gittins index 

v
%

{ol\) (using any of the methods described 

above). 

Recursion step: Suppose we have com-
puted the Gittins index of the k

%th highest 

state of process i, i — 1 , . . . , n. Let 

three bandit processes, each with state 

space X — {1,2,3,4}, transition matrix 

0.1 0 0 .80 .1 
0.5 0 0.10.4 
0.2 0.6 0 0.2 
0 0.8 0 0.2 

and reward vectors 

_
16" -40- "20" 
19 

r
2
 -

10 
r 3 _ 15 

30 8 5
 1

 — 22 
4 15 25 

Let the discount factor be /? = 0.75. Note 

that the first bandit process is identical to 

that which we have considered in the pre-

vious examples. Using the above method, 

we proceed as follows: 

Init ial ization: Compute the state with 

the highest Gittins index for each of the 

processes to get: 

= 3 , 

4, 

v \ a \ ) = 30; 

u \ a l ) = 40; 

a? u6{a\) = 25. 

Recursion step: 

j = a x g m a x i / ' ( < 4 « ) - (11) 

1. Step (fc\fc
2
, ft

3
) = (1 ,1 ,1) . Us-

ing (11) gives that j = 2. So, find the 

next highest Gittins index of bandit 

process 2, which gives 

a\ = 2, v2[a\) = 18.654. 

If y < raJ , then identify the state with 

the next highest Gittins index in process j 

(using any one of the methods described 

above), compute the Gittins index of that 

state, set fcJ = + 1, and repeat. Other-

wise, if fcJ = mJ, then j = i* and we don't 

need to compute the Gittins index of the 

remaining states as the Gittins index strat-

egy will never play a process in those states 

(and instead prefers to play process i*). 

E x a m p l e 24.3 .5 To illustrate the above 

method, consider a MAB problem with 

2. Step ( fc
1
,*

2
,*

8
) = (1 ,2 , 1) . Us-

ing (11) gives that j = 1. So, find the 

next highest Gittins index of bandit 

process 1, which gives 

a\ 1, vl(a\) — 21.25. 

3. Step (fc^fe
2
,*

8
) = (2 ,2 , 1) . Us-

ing (11) gives that j = 3. So, find the 

next highest Gittins index of bandit 

process 3, which gives 

a) = 3, v
3
(al) = 22.45. 
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4. Step (fc\fc
2
,fc

8
) = (2,2 ,2). Us-

ing (11) gives that j = 3. So, find the 

next highest Gittins index of bandit 

process 3, which gives 

<4 
1, i/3(al) = 21.209. 

5. Step (fc
1
, fc

2
, A;

3
) = (2 ,2 ,3) . Us-

ing (11) gives that j = 1. So, find the 

next highest Gittins index of bandit 

process 1, which gives 

2, v
l
(a\) = 20.372. 

6. Step (fc\fc
2
,fc

3
) = (3 ,2 ,3) . Us-

ing (11) gives that j = 3. So, find the 

next highest Gittins index of bandit 

process 3, which gives 

al = 2, v
3
(a

3
4) = 19.113. 

7. Step (fc
1
, fc

2
, fc

3
) == (3 ,2 ,4) . Since 

k
s = 4, stop the algorithm. Note that, 

although we have not calculated the 

Gittins index of state 4 of process 1 

and of states {3,4} of process 2, we 

know that Gittins index of these states 

is less than 19.113, the smallest Git-

tins index of process 3. So, the Git-

tins index strategy will never play pro-

cess 1 in state 4 or process 2 in states 

{3,4}. 

24.4 On-Line Algorithms for 
Computing Gittins Index 

As in the case of off-line algorithms, we 

consider a single bandit process and drop 

the label i of the bandit processes. For ease 

of exposition, assume that Xt takes value 

in a finite space X — { 1 , . . . , m). These 

algorithms are based on dynamic program-

ming and linear programming and extend 

to countable state spaces based on stan-

dard extensions of dynamic and linear pro-

gramming to countable state spaces. As 

before, denote the ra x ra transition prob-

ability matrix by P = [Pa,b] and represent 

the reward function using a ra x 1 vector r. 

Furthermore, let 1 denote the ra x 1 vector 

of ones and 0 m x i denote the rax 1 vector 

of zeros. 

On-line algorithms for Gittins index are 

based on bandit processes with the retire-

ment option introduced by Whittle [34]. In 

such a bandit process, a player has the op-

tion to either play a regular bandit process 

and receive a reward according to the re-

ward function r or choose to retire and re-

ceive a one-time retirement reward of M . 

Thus, the player is faced with an optimal 

stopping problem of maximizing 

r - l 

t—0 

X0 = xq 

over all { c r ( X i , . . . , Xt)}^L0 measurable 

stopping times r . 

For a fixed value of retirement reward, 

an optimal solution is given by the solution 

of the following dynamic program. Let the 

ra x 1 vector be the unique fixed point 

of 

r(M) max{r- f /?Pv
( M )

,Ml} (12) 

where the max is element-wise maximum 

of two vectors. Standard results in Markov 

decision theory [26] show that the above 

equation has a unique point. 

Fix a state a € X and let Ma denote 

the smallest retirement reward such that 

a player is indifferent between playing the 

bandit process starting at a or retiring, 

that is, 

Mr Q. = min | M W = M 

r a + p J 2 v « A
M )

} . (13) 
X 

Whittle [34] showed that 

i/(a) = (1 -p)Ma. (14) 

The on-line algorithms use this interpre-

tation to compute the Gittins index of a 

particular state a. 
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24.4.1 Restart Formulation 
(Katehakis and 
Veinott) 

Katehakis and Veinott [18] related Whit-

tle's retirement option to a restart problem 

and then solved it using dynamic program-

ming. The intuition behind their approach 

is the following. Fix a state a € X. When 

the retirement reward is Ma, the player is 

indifferent between playing the bandit pro-

cess starting in state a or retiring. There-

fore the option of retirement reward of Ma 

is equivalent to the option of restarting in 

state a . 

On the basis of the above equivalence, 

consider the following restart problem. At 

each time, the player has an option to 

play the bandit process or instantaneously 

restart in state a . To describe a solution 

of this restart problem, define = r a l 

and Q(°) as 

QS!l = Pa,v, V x , P 6 X 

to be the instantaneous reward and transi-

tion probability matrix for the restart op-

tion and r^
1
) = r and Q ^ = P to be the 

instantaneous reward and transition ma-

trix for the continuation option. Then a 

solution to the restart problem is given by 

the following dynamic program. Let the 

rax 1 vector v be the unique fixed point of 

v = max {r<°> + /?Q
(0)

v, r ^ + /3Q<
1
>v} 

(15) 

where max is the element-wise maximum 

of two vectors. Then the Gittins index of 

state a is 

v{a) = (1 - /?)vtt 

and the corresponding stopping set is 

S(a) = {xeX\ r<°> + /?Q
(0)

v 

>rW + /3Q
(1)

v}. 

The fixed point equation (15) depends on 

the state a [because r̂ 0̂  and Q(°) depend 

on a]. This equation may be solved us-

ing standard tools for solving dynamic pro-

grams such as value iteration, policy it-

eration, or dynamic programming. Beale 

(in the discussion of [15]) proposes an on-

line algorithm that can be viewed as a spe-

cial form of policy iteration to solve (15). 

See [26] for details on numerically solving 

fixed point equations for the form (15). 

Example 24.4.1 Reconsider the bandit 

process of Example 24.3.1. To compute the 

Gittins index of state 2 (which is the state 

with the third largest index), proceed as 

follows: 

Define 

and 

"19" "0.500.1 0.4" 

p(°) = 19 
19 
19 

, Q ( 0 ) = 
0.5 0 0.1 0.4 
0.5 0 0.10.4 
0.5 0 0.10.4 

"16" "0.1 0 0.80.1" 
19 

, Q ( 1 ) = 
0.5 0 0.1 0.4 

30 , Q ( 1 ) = 0.2 0.6 0 0.2 
4 0 0.8 0 0.2 

r ( i ) = 

The dynamic program for the restart for-

mulation is given by (15). 

As mentioned above, there are various 

algorithms such as value iteration, policy 

iteration, linear programming, etc. to solve 

the above dynamic program. Using any 

one of these algorithms gives that 

83.170 
81.488 
91.368 
81.488 

is the unique fixed point of (15). Hence 

i/(2) = (1 - P)v2 = 20.372 

and 

5(2) = {2,4}. 

24.4.2 Linear Programming 
Formulation (Chen and 
Katehakis) 

Chen and Katehakis [10] showed that Ma 

given by (13) may be computed using a 



430 Multi-Armed Bandits, Gittins I n d e x , and Its Calculation J^ll 

linear program. A modified version of this 

linear program is presented below. 

Define h = 1 — e a , where e a is the ra x 1 

unit vector with 1 at the ath position. Let 

diag(h) denote the ra x ra diagonal matrix 

with h as its diagonal. Let the (m + 1) x 1 

vector z = [ y
T
 | z]

T
, where y is a ra x 1 

vector and z is a scalar, be the solutions of 

the following linear program. 

minimize [ ( 1 - / ? ) ( 1 ) t | m] 

(16) 

subject to 

[diag(h) — /3P | l ] z > r, 

y > o mxX , 

z unrestricted. 

Then the Gittins index of state a is 

u(a) = z 

and the corresponding stopping set is 

S{a) = {xeX |y* = 0}. 

The linear program (16) depends on the 

state a (because h depends on a). This 

linear program may be solved using stan-

dard tools. See [6] for details. 

E x a m p l e 2 4 . 4 . 2 Reconsider the bandit 

process of Example 24.3.1. To compute the 

Gittins index of state 2 (which is the state 

with the third largest index), proceed as 

follows: 

Define h - [l 1 0 l ] T . Let z = 

[ y T | zJ T be the solution to the following 

linear program: 

minimize [0.25 0.25 0.25 0.25 4] z 

(17) 

subject to 

0.925 0 - 0 . 6 - 0 . 0 7 5 1" " 16' 
- 0 . 3 7 5 1 - 0 . 0 7 5 - 0 . 3 1 

z > 
19 

- 0 . 1 5 - 0 . 4 5 0 - 0 . 1 5 1 z > 30 
0 - 0 . 6 0 0.85 1 . 4 

As mentioned above, there are various al-

gorithms to solve linear programs. Using 

any of these algorithms gives that 

1.68 

0 
9.88 
0 

20.372 

y > o 4x i , 

z unrestricted. 

is the unique optimal solution of (17). 

Hence, 

i/(2) = z = 20.372 

and 

S( 2) = { x e X \ y x = 0}={2A}-

24.5 Computing Gittins Index 
for the Bernoulli 
Sampling Process 

In clinical trials, it is common for treat-

ments to be modeled as a Bernoulli pro-

cess o with unknown success proba-

bility s
l
, i = 1 , . . . , n. Such a M A B setup 

is called a Bernoulli sampling process be-

cause the player must sample from one of 

the n available Bernoulli processes at each 

time. Assume that s
l has a Beta(po? <7o) 

distribution1 where p
l
0 and qfa are non-

negative integers. Suppose at time t, sam-

pling process i has resulted in k successes 

and I failures. Then, the posterior distri-

bution of s
l is Beta(pJ, q\) where 

Pt=Po +
 k

> Qt =Qo+Z-

Therefore, X\ = (pliQt)
 ma

y
 use

d
 as an 

information state (or a sufficient statistic) 

for the bandit process i. This state evolves 

in a Markovian manner. In particular if 

X} = (p lq i ) then 

x
If a random variable s has Beta(pyq) distribu-

tion, then its PDF (probability density function) 

f(s) is proportional to s
p
( l — s)

q
. See [36] for 

methods to elicit Beta priors based on expert opin-

ions in clinical trials. 
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= J(Pt + i><??), w.p. pj/(pj + ®J); 
+ w.p. 

where w.p. is an abbreviation for "with 

probability." The average reward on 

playing process i is the mean value of 

B e t a ( p \ , q \ ) , that is, 

Pt 

Pt + Qt 

In this section, we describe the various al-

gorithms to compute the Gittins index of 

such a Bernoulli sampling process. As be-

fore, since the computation of the index 

depends only on that process, we drop the 

label i and denote the sampling process 

by {(Pt,Qt)}frLo a n ( l *ts Gittins index by 

u(p, q). 

The main difficulty in computing the 

Gittins index i/(p, q) is that the state space 

X = is countably infinite. Hence, an 

exact computation of the index is not pos-

sible. In this section we present algorithms 

that compute the Gittins index with arbi-

trary precision by restricting to a truncated 

state space Xl = {(p, q) \ p + q < L} for 

sufficiently large value of L. The results 

based on these calculations are tabulated 

in [14]. Different approximations to z/(p, q) 

have also been proposed in the literature, 

and we describe a few of these in this sec-

tion as well. 

24.5.1 Dynamic Programming 
Formulation (Gittins) 

Gittins [14] used the dynamic program-

ming formulation of Whittle's retirement 

option [34], which was presented in Sec-

tion 24.4, to compute the Gittins index 

z/(p, q). In the case of a Bernoulli sampling 

process, the dynamic program (12) simpli-

fies to 

+ + 1). 

Let Mp q̂ be defined as in (13). Then, 

the Gittins index is given by 

PiQ' 

Gittins [14] presents an approximate so-

lution of (18) by restricting to Xl = 

{(P>q) I P + Q < discretizing M , and 

using value-iteration. On the basis of these 

calculations, the values of v(p,q) accurate 

up to four decimal places are tabulated 

in [14, Tables 8.4-8.8] for different values 

of (3 e [0.5,0.99]. M A T L A B code for the 

above calculations is also available in [14]. 

Gittins [14] also observed that for large 

p 4- q the Gittins index v(p, q) is well ap-

proximated as follows: Let n = p + q and 

p, = p/n, then 

v(p, V M 1 - aO 
A + Bn + 

where A, B , and C depend on (3 and p. 

The fitted values of A, B , and C as a func-

tion of /3 and p are tabulated in [14, Ta-

bles 8.9-8.11] for p £ [0.025,0.975] and 

/? € [0.5,0.99]. 

24.5.2 Restart Formulation 

(Katehakis and 

Derman) 

Katehakis and Derman [17] used the 

restart formulation of Katehakis and 

Veinott [18], which was presented in Sec-

tion 24.4.1, to compute the Gittins index 

i'(p,q). In the case of the Bernoulli sam-

pling process, the dynamic program (15) 

for computing the Gittins index of a state 

(Po, Qo) simplifies to 

v W = m a x { w W M } (18) 
( M ) 

¥

P,q 
m a x { w P 0 , g 0 , w P j J (19) 

where where 
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+ £i0v(p,q+ 1) 

and wP0)g0 is defined similarly. Kate-

hakis and Derman presented an approx-

imate solution of (19) by restricting to 

= {(P,q) I P + Q < L}. T h e y also 

showed that for any £ > 0, there exists a 

sufficiently large L = L(e) such that L it-

erations of value-iteration on the truncated 

state space Xl gives a value function that 

is within e of the true value function (Ben-

Israel and F l a m [3] had derived similar sim-

ilar bounds on value iteration for comput-

ing the G i t t i n s index to a specific preci-

sion). Thus, this method may be used to 

calculate the G i t t ins index to an arbitrary 

precision. 

24.5.3 Closed-Form 
Approximations 

For large values of /?, q) of a Bernoull i 

process m a y be approximated using dif-

fusion approximation and using the G i t -

tins index for a Weiner process. T w o such 

closed-form approximations are presented 

below. 

A n important result in the context of 

these approximation is by Katehakis and 

Veinott [18], who showed that if we fol-

low an index strategy where the index is 

within e of the G i t t i n s index, then the per-

formance of the index strategy is within e 

of the optimal performance. 

Whittle's approximation: W h i t -

tle [35] showed that for large p + q and /?, 

the G i t t i n s index of a Bernoull i sampling 

process may be approximated as 

v(p, q) « /i-f-
p( l - p ) 

index of a Bernoull i sampling process may 

be approximated as 

1/(p, q) « jJL  + crip 
p

2 In/?
-

where \ i and <r2 are the mean and variance 

of Beta(p, q) distribution, that is, 

P a
2

 = 
pq 

(P + Q)' (p + q)
2
(p + q +1)' 

(20) 
p2 is the variance of Bernoulli(/z) distribu-

tion, that is, 

P
2 = - p) 

pq 

(p + q)2' 

and ip(s) is a nondecreasing, piecewise non-

linear function given by 

f y / J / 2 , if 5 < 0 . 2 ; 

0.49 — 0 . 1 1 s " 1 / 2 , if 0.2 < s < 1 ; 

0 . 6 3 - 0 . 2 6 5 " 1 / 2 , if 1 < s < 5; 

0.77 — 0 . 5 8 s - 1 / 2 , if 5 < s < 15; 

{ 2 I n s — In I n s 

— In 167I"}1/2, if s > 15. 

Using the notation n = p+q, p = p/n, and 

c = In (3~
1 the above expression simplifies 

to 

n^J(2c + n~
1
)p(l - p) + p - \ 

where n = p + p — pjn, and c = In f3~
1
. 

Brezzi and Lai's approximation: 

Brezzi and L a i [8] showed that the G i t t i n s 

n + 1 \(n + l)c 

T h i s closed-form expression provides a 

good approximation for (3 > 0.8 and 

min(p, q) > 4. 

24.5.4 Qualitative Properties 
of Gittins Index 

K e l l y [19] showed that the G i t t i n s index is 

nondecreasing with the discount factor 0. 

Brezzi and L a i [7] showed that 

P 

•(3 
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where p and a
2 are the mean and variance 

of Beta(p, q) distribution as given by (20). 

Bellman [2] showed that 

i/(p, q+ 1) < i/(p, g) < u(p + 1, q). 

Thus, the optimal strategy has the stay-

on-the-winner property defined by Rob-

bins [27]. 

As p + q —> oo, Kelly [19] showed that 

where s is the true success probability of 

the Bernoulli process. The rate of conver-

gence slows down as (3 —> 1. 

Kelly [19] showed that for any k > 0, 

there exists a sufficiently large (3* such that 

for (3 > (3* 

y(p + M + l ) < 

Therefore, as (3 —� 1, the optimal strategy 

tends to the least failure strategy: Sample 

the process with the least number of fail-

ures and in case of ties select the process 

with the largest number of successes. 

Brezzi and Lai [7] (and also Roth-

schild [28], Kumar and Varaiya [21], and 

Banks and Sundaram [1] in slightly differ-

ent setups) have shown that the Gittins 

index strategy eventually chooses one pro-

cess that it samples for ever, and there is 

a positive probability that the chosen pro-

cess does not have the maximum s\ Thus, 

there is incomplete learning when following 

the Gittins index strategy. 

24.6 Conclusion 

In this chapter, we have summarized vari-

ous algorithms to compute the Gittins in-

dex. We began by considering general 

Markovian bandit processes and described 

off-line and on-line algorithms to compute 

the Gittins index. We then considered the 

Bernoulli sampling process, described al-

gorithms that approximately compute the 

Gittins index, and presented closed-form 

approximations and qualitative properties 

of the Gittins index. 
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