
Multi-Armed Bandits for Efficient Lifetime

Estimation in MPSoC design
Calvin Ma, Aditya Mahajan, and Brett H. Meyer

Department of Electrical and Computer Engineering, McGill University

Montréal, Québec, Canada

calvin.ma@mail.mcgill.ca, {aditya.mahajan, brett.meyer}@mcgill.ca

Abstract—Reliability in integrated circuits is becoming a criti-
cal issue with the miniaturization of electronics. Smaller process
technologies have led to higher power densities, resulting in
higher temperatures and earlier device wear-out. One way to
mitigate failure is by over-provisioning resources and remapping
tasks from failed components to components with spare capacity,
or slack. Since the slack allocation design space is large, finding
the optimal is difficult, as brute-force approaches are impractical.
During design space exploration, device lifetimes are typically
evaluated using Monte-Carlo Simulation (MCS) by sampling each
design equally; this method is inefficient since poor designs are
evaluated as accurately as good designs. A better method will
focus sampling time on the designs that are difficult to distinguish,
reducing the time required to evaluate a set of designs; this can
be accomplished using Multi-armed Bandit (MAB) Algorithms.
This work demonstrates that MAB achieve the same level of
accuracy as MCS in 1.45 to 5.26 times fewer samples.

I. INTRODUCTION

In tightly integrated systems, such as Multi-Processor Sys-

tem on Chips (MPSoC), process innovations and miniaturiza-

tion have resulted in faster device degradation and earlier wear-

out related failures [1]–[3]. In one study, it was observed that

scaling from 180nm to 65nm reduced the lifetime by 3× [3].

A common way to ensure reliability and extend the lifetime

of a system is by adding redundant resources. Such redundancy

can be provided by either adding spare components or adding

extra capacity in the form of slack to existing components.

Redundancy through the use of spare components has been

widely studied, and although effective, it is more costly [4].

For cost-sensitive applications, allocating slack is a better

alternative. Slack refers to over-provisioning by choosing

components such that they are normally under-utilized; failed

tasks can then be mapped onto these devices since it has

additional computational capacity. Finding the optimal slack

allocation is, however, a difficult problem [5].

The process of slack allocation involves selecting a com-

ponent and then swapping it with one of higher capacity. In

a typical MPSoC, a system has multiple components each

with a number of upgrade options. For example, a base

processor can be swapped with one having higher MIPS;

memories can also be upgraded to have higher capacity. Since

MPSoC have multiple processors and memories, the number

of design permutations grow exponentially with the number

of components and upgrade options.

It is not possible to evaluate the lifetime of all the designs

due to the time requirements and the size of the design

space. The current state-of-the-art optimization techniques,

such as ant colony optimization [1], simulated annealing [2],

evolutionary algorithms [6], and greedy algorithms [5], select

the best design in an iterative manner. In particular, a subset

of designs are selected, their performance is evaluated using

Monte-Carlo simulation (MCS), the top few designs are se-

lected, and a new set of designs are strategically selected. Such

iterative procedures are tuned to converge to the best design.

At each step of these optimization techniques, the algo-

rithms select the top few designs from a given subset using

Monte-Carlo simulation. Traditionally, all designs lifetimes are

evaluated with the same accuracy. For example, if 500 samples

are available to evaluate four designs, then each design is

evaluated using 125 samples.

For the aforementioned meta-heuristic algorithms, accurate

lifetime estimation may not be necessary; instead, partially

ordering designs by their quality is often sufficient. Since only

the top few designs are of interest, ideally one should spend

more samples evaluating the good designs than poor designs.

Since it is not known a priori which designs are good and

which are poor, the designs have to be sampled to determine

their quality. This predicament is referred to as the exploration-

exploitation trade-off. One of the most popular approaches to

address exploration-exploitation trade-offs is the multi-armed

bandits (MAB) framework [7]. MAB have been successfully

used in various application domains including clinical trials,

online advertising, sensor networks and economics. In this

0 50 100 150 200 250 300
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MAB(UCB1) on designs with survival
 probabilities {0.3, 0.5, 0.7, 0.8}

Number of samples (n)

S
a

m
p

le
 m

e
a

n

0.8

0.7

0.5

0.3

Fig. 1. The sample mean versus number of samples for UCB1 algorithm in
a toy problem of identifying the design with the highest survival probability.

paper, we evaluate the effectiveness of the MAB framework

for slack allocation in lifetime-aware design of MPSoC.

To illustrate why MAB framework may be useful for

lifetime-aware design, consider the following toy problem.

Fig. 1 shows a problem with four designs, each with inde-

pendent survival probabilities; the objective is maximize the

survival probability. Instead of distributing the sampling bud-

get equally between all the designs, suppose we sample them

sequentially using UCB1 (a simple MAB algorithm). In partic-

ular, suppose the survival probabilities are {0.3, 0.4, 0.7, 0.8}
and a total of 500 samples are available. The plot shows the

sample mean versus the number of samples. Note that the good

designs (those with survival rate 0.7 and 0.8) are sampled more

often than the bad designs (those with survival rate 0.3 and

0.5). Such a balance between exploration and exploitation is

a characteristic feature of MAB.

Our main contribution is to evaluate the effectiveness of

the MAB framework in identifying top designs for slack

allocations (out of a given set of designs) that maximize

expected lifetimes in MPSoCs. To the best of our knowledge,

this is the first attempt to use the MAB framework for lifetime-

aware design. We evaluate two specific MAB algorithms—

Successive Accept Reject (SAR) [8] and Gap based Explo-

ration with Variance (GapE-V) [9]—on four benchmarks and

find that the MAB framework requires 1.49–5.26× fewer

samples to achieve the same level of accuracy as MCS.

II. RELATED WORK

The earliest works in lifetime-aware design for MPSoCs

were [4], [10], [11], which modeled each failure mechanism

as a random variable and a corresponding distribution. Each of

the failure distributions were fitted with the mean lifetime pro-

vided by the empirical estimates given by the Joint Electronic

Device Engineering Council (JEDEC) [12].

In [10], exponential distributions were used but they did not

provide a good estimate for wear-out failures since they are

memoryless. In an extended work [4], log-normal distributions

were used instead. This work showed that when resources were

duplicated, lifetime could be improved 3.17× but with an area

increase of 2.254×. The alternative is to operate circuits in a

degraded state; the system continues to operate at a lower

performance until requirements can no longer be met. This

method showed that lifetime could be extended by 1.42× with

a loss of performance of about 5%.

Other enhancements to lifetime modeling were made

by [11], [13]. [11] corrected for temperature as workloads

changed due to component failure. [13] explored using a com-

bination of log-normal and Weibull distributions, and found

that Weibull distributions were more accurate for systems with

many components and log-normal distributions were more

accurate for systems with fewer. In general, in a system with

500 components, the error for both log-normal and Weibull

distribution cross over at 10% error when identifying the time

where 1% of all devices fail [13].

One low-cost strategy for ensuring MPSoC can operate in

the presence of device failure is to allocate slack. Finding

the optimal slack (balancing increases in cost and lifetime)

is the basis of the slack allocation problem. An exhaustive

search of all the slack combinations can be avoided by

skipping allocations which would not meet the requirements

to survive certain types of failures. Using a greedy search of

this restricted space, [5] is able to find designs near the Pareto-

optimal front by only evaluating 1.4% of the designs.

The general approach to solving lifetime-aware problems

has been to use MCS to estimate the true lifetime [1], [2], [5].

Since designers are interested in identifying the best designs,

MCS is an inefficient evaluation method since the sampling

time is spent uniformly on the bad as well as good designs;

instead MAB algorithms are a better alternative.

III. MULTI-ARMED BANDITS

The basic multi-armed bandit (MAB) formulation is as

follows [14], [15]. There are D alternatives (often called arms

or bandits in the MAB literature). For ease of notation, we

use D = {1, . . . , D} to denote the set of all alternatives. At

each time instant, a decision maker picks one alternative, say

i ∈ D, and obtains a random reward Ri. Let µi = E[Ri]
denote the average reward of alternative i. For example, in

slack allocation for lifetime-aware design, D corresponds to

the set of designs that have to be evaluated, Ri corresponds to

the time to system failure when we simulate the design, and

µi therefore corresponds to the mean time to failure (MTTF).

If {µi}i∈D were known, it would be straightforward to pick

the best or the top-m designs. However, in practice, {µi}i∈D

are not known. Multi-armed bandits refers to algorithms that

sequentially determine which alternatives to sample. These

algorithms may be broadly classified into two categories

depending on the type of performance guarantees that they

provide. These are:

1) Regret minimization, where the objective is to minimize

the rate of regret (i.e., how far is the average observed

reward from the selected alternative from the reward of

the best alternative), either asymptotically or over a finite

interval of time. The motivation for looking at rate of

regret comes from clinical trials where it is not desirable

to give a bad treatment option to a patient just to get a

better estimate of how the treatment works.

2) Budgeted samples, where the objective is to select the

best alternative at the end of an exploration phase. In

such models, we do not care about the performance of

the alternatives selected during the exploration phase.

The problem at hand—slack allocation for lifetime-aware

design—fits in the second category. Formally, the problem may

be stated as: given a set of D designs and a sampling budget

of n samples, identify the top m designs. We shortlisted two

MAB algorithms: Successive Accept Reject (SAR) and Gap

based Exploration with Variance (GapE-V).

A. Successive Accept Reject

SAR [8] is presented in Algorithm 1. First, the algorithm

divides the sample budget into D − 1 phases. The algorithm

maintains a list of active designs A. Initially all designs are

active, i.e., A = D. During each phase, the algorithm samples

all active designs an equal number of times. At the end of each

phase, the algorithm either accepts the arm (or, in our case,

Algorithm 1 SAR [8]

Notation: D = total number of designs
m = desired number of top designs
n = sample budget

Let log(D) = 1
2
+

D
∑

i=2

1
i

Define n0 = 0 and nk =
⌈

1

log(D)

n−D
D+1−k

⌉

for k ≥ 1.

Input: Vector D of designs to evaluate

Initialize: Set of active designs A = D
Set of selected designs S = ∅
Set m◦ = m

1: for each phase k ∈ {1, ..., D − 1} do
2: for each active design i ∈ A do
3: Get nk − nk−1 samples of design i
4: Update the empirical mean µ̂i of design i
5: end for

6: Sort designs in A according to their empirical mean.
7: Let i∗ be the arm with the m◦-th best empirical mean
8: Let i∗ be the arm with the (m◦ + 1)-th best empirical mean.

9: for each active design i ∈ A do
10: if design i is among the top m◦ designs then
11: Gap ∆i = µ̂i − µ̂i∗

12: else
13: Gap ∆i = µ̂i∗ − µ̂i

14: end if
15: end for

16: Let j be the active design with the highest gap
17: if j was the best design in A then
18: Include j in the set of selected arms, i.e., S ← S ∪ {j}
19: m◦ ← m◦ − 1
20: end if
21: Remove j from the set of active arms, i.e., A ← A \ {j}
22: end for

Output: The set S of selected designs

design) with the highest empirical mean or rejects the arm with

the lowest empirical mean. In both cases the corresponding

arm is deactivated.

The critical part is to determine whether to accept or reject at

the end of each phase. Suppose that the algorithm has already

accepted m − m◦ designs, so there are m◦ designs left to

find. To do so, the algorithm sorts the set of active designs

according to their empirical mean. Let i∗ denote the arm with

the m◦-th best empirical mean µ̂i∗ and i∗ denote the arm with

the (m◦ +1)-th best empirical mean µ̂i∗ . Next, the algorithm

computes the gap ∆i for all active designs. For active designs

that are among the top m◦ empirically best designs, the gap

∆i = µ̂i − µ̂i∗ . For active designs that are not among the top

m◦ designs, the gap ∆i = µ̂i∗ − µ̂i.

Once these gaps have been computed, SAR deactivates

the arm with the highest gap. If the deactivated arm is the

empirically best arm, then it is added to the set S of selected

arms and m◦ is set to m◦ − 1.

It is shown in [8] that the probability that the set S selected

by the SAR algorithm is not the set of top-m designs is

upper bounded by 2D2 exp

(
− n−K

8log(D)H
(m)
2

)
, where H

(m)
2

is a measure of the hardness of the problem that depends

on the true means {µi}i∈D of the designs. Thus, when the

number of samples n is O
(
H

(m)
2

)
, the probability that the

Algorithm 2 GapE-V [9]

Notation: D = total number of designs
m = desired number of top designs
n = sample budget

Input: Vector D of designs to evaluate

Initialize: Sample each design once
Set the empirical mean µ̂i as the observed value
Set empirical variance σ̂i = 0 for all designs
Set Ti = 1 for all designs

1: for each sample t = D + 1, . . . , n do
2: Sort designs D according to their empirical mean
3: Let i∗ be the arm with the m-th best empirical mean
4: Let i∗ be the arm with the (m+ 1)-th best empirical mean.

5: for each design i ∈ D do
6: if design i is among the top m designs then
7: Gap ∆i = µ̂i − µ̂i∗

8: else
9: Gap ∆i = µ̂i∗ − µ̂i

10: end if

11: Compute indexi = −∆i +
√

2aσ̂i

Ti

+ 7ab
3(Ti−1)

12: end for

13: Let j be the design with the highest index. Sample design j
14: Update the empirical mean µ̂j and empirical variance σ̂i.
15: Update Tj ← Tj + 1
16: end for

Output: Return the designs with the top-m empirical means

SAR algorithm chooses a wrong set is small. We refer the

reader to [8] for an exact expression of H
(m)
2 .

B. GapE-V (Gap-based Exploration with Variance)

GapE-V [9] is presented in Algorithm 2. In contrast to

SAR, GapE-V does not permanently remove any design from

consideration. Designs are sampled sequentially. Let Ti denote

the number of times design i has been sampled so far and µ̂i

and σ̂i denote the empirical mean and variance of design i.

The designs are sorted according to their empirical mean. For

each design, the gap ∆i is calculated in similar fashion to

how it was computed in the SAR algorithm. In particular, let

i∗ denote the m-th best arm and i∗ denote the m+ 1-th best

arm. For designs in the top-m empirically best designs, the

gap ∆i = µi − µi∗ . For designs that are not in the top-m

designs, the gap ∆i = µi∗ − µi.

Using the gap for each arm, GapE-V assigns an index

−∆i +

√
2aσ̂i

Ti
+

7ab

3(Ti − 1)
,

where a and b are tunable parameters. b is selected to match the

maximum value of the observed rewards. In our experiments,

we set it to 15 years. GapE-V then samples the design with

the highest index, reflecting a trade-off in exploitation (∆i)

and exploration (the other terms). At the end of n samples,

the designs with the top-m empirical means are selected.

For m = 1 and a < 8
9
n−2D
Hσ (where Hσ is a measure of

the complexity of the GapE-V algorithm), it is shown in [9]

that the probability that the set of designs selected by GapE-V

algorithm is not the set of top-m designs is upper bounded by

6nD exp
(
− 9a

64×64

)
. When a = 8

9
n−2D
Hσ , this bound equals

M3
In

ARM11
NR

1MB
Mem1

M3
HS

1MB
Mem2

ARM11
Jug1

M3
VS

M3
SE

1MB
Mem3

M3
Blend

M3
HVS

ARM9
Jug2

1

2 3

Processor

Memory

Switch

(a) MWD3S architecture

M3
In

ARM11
NR

1MB
Mem1

M3
HS

1MB
Mem2

ARM11
Jug1

M3
VS

M3
SE

1MB
Mem3

M3
Blend

M3
HVS

ARM9
Jug2

2

4 3

1

(b) MWD4S architecture

ARM9
BSP-
VLD

64KB

VBV/

VCV1
ARM11
S/M/T

M3
Rcns

64KB
VCV2

M3
Pad2

96KB
VCV3

M3
Pad1

256KB
VMVM3

Dblk

ARM11
Drng

1 2 3 4

(c) MPEG4S architecture

ARM9
BSP-
VLD

64KB

VBV/

VCV1

ARM11
S/M/T64KB

VCV2

M3
Rcns

96KB
VCV3

256KB
VMVM3

Dblk

ARM11
Drng

1 2

35 4

M3
Pad1

M3
Pad2

(d) MPEG5S architecture

Fig. 2. The task mapping and architectures for the various benchmarks. The squares represent the processing elements and the rounded squares the memory
elements [5]; circles are switches. The text inside squares and rounded squares indicate tasks mapped to those elements.

6nD exp
(
− 1

8×64
n−2D
Hσ

)
, which has is similar to the bound

on the error probability of SAR algorithms. Ideally, we want to

set a close to 8
9
n−2D
Hσ , but Hσ , like H

(m)
2 above, depends on

the complexity of the distribution and hardness of the problem.

[9] proposed an adaptive algorithm to iteratively estimate Hσ

and tune a based on that estimate accordingly. We refer the

reader to [9] for details.

C. Discussion

Both SAR and GapE-V algorithms may erroneously select

a design that is not in top-m. The most likely designs to be

misclassified are those whose means are closer to the mean

of the m-th best design. Let’s call this set C. To avoid such

a misclassification, both algorithms spend more samples for

designs in C but they do so using different mechanisms.

In SAR, sampling time is split into phases. In each phase

we spend an equal number of samples to improve the estimate

of all active designs. At the end of the phase, the design with

the largest gap relative to the m-th design is discarded. It

is unlikely that the discarded design belongs to C. Thus, the

designs in C are sampled more because they are active for a

larger number of phases. In contrast, in GapE-V the gap ∆i

for designs in C is close to zero, while the gap ∆i for designs

not in C is large. Since the gap ∆i contributes negatively to

the index, the designs in C will typically have a higher index

than those not in C and will, therefore, be sampled more often.

IV. METHODOLOGY

We assume that when performing design space exploration

for slack allocation, a number of designs are being evaluated

concurrently; in this case, the objective is to identify the top

designs in the population under consideration. This is the basic

strategy of a number of meta-heuristics, including genetic

algorithms, and ant colony optimization, which maintain a

population of designs. These approaches have been previously

employed to estimate lifetime [1], [6]. A greedy heuristic in

the literature also identifies batches of designs to consider [5].

A. Lifetime Estimation

The lifetime of an MPSoC system depends on the failure

time of its components and whether or not the failure is

survivable. To determine component failure time, we model

four dominant failure mechanisms, each as a separate random

variable: electromigration (EM), time dependent dielectric

breakdown (TDDB), stress migration (SM), and thermal cy-

cling (TC) [4]. Each of these failure mechanisms are assumed

to follow a log-normal distribution and can be parameterized

with µ and σ. From a study in collaboration with IBM, it

was determined that σ = 0.5 provides a good fit [4]; µ can

be solved from the relationship m = eµ+σ2/2 where m is the

mean. The mean lifetime can estimated from empirical models

from JEDEC [12]. Since the mean lifetime will vary between

process technologies, a normalization constant is used. Each

mechanism is initialized to have a failure time of 30 years at

a temperature of 345K, consistent with [4].

System lifetime is estimated by simulating the following for

a large number of samples as determined by the algorithm:

1) For each component, sample from the failure mechanism

distributions and find the minimum failure time among

the working components

2) Remap the tasks from the failed component to the

nearest working component with slack

3) Find the new operating temperature

4) Adjust time to failure

5) Repeat steps 2-4 until tasks cannot be remapped

Temperature is determined using HotSpot [16], based on data

sheet power values and floorplans generated by Parquet [17].

When a component fails, the system will continue to operate

if the component workload can be remapped to one or more

components with slack without violating workload and band-

width requirements. If the component failure is not survivable

then system failure has occurred, indicating the lifetime of that

instance of the device. The mean time to failure (MTTF) is

the average of all such failure times.

B. Workloads

The workloads we simulate for the slack allocation problem

are multi-window display (MWD) and a MPEG decoder.

MWD is an application which composites multiple video se-

quences into a single display [18]. MPEG is an implementation

for the MPEG4 encoding standard [19]. For each of these

workloads a number of processing components as well as

memory components are allocated.

Each workload is configured on two possible system ar-

chitectures. The MWD3S and MPEG4S (Figures 2a, 2c)

10 12 14 16
0

500

1000

1500

MWD3S lifetime (µ=11.38 σ=0.4705)

Lifetime (years)

F
re

q
u

e
n

c
y
 (

c
o

u
n

t)

(a) MWD3S

10 12 14 16
0

500

1000

1500

MWD4S lifetime (µ=11.88 σ=0.5982)

Lifetime (years)

F
re

q
u

e
n

c
y
 (

c
o

u
n

t)

(b) MWD4S

10 12 14 16
0

2000

4000

6000

8000

10000

12000

MPEG4S lifetime (µ=12.76 σ=0.9293)

Lifetime (years)

F
re

q
u

e
n

c
y
 (

c
o

u
n

t)

(c) MPEG4S

10 12 14 16
0

2000

4000

6000

8000

10000

12000

MPEG5S lifetime (µ=13.34 σ=1.308)

Lifetime (years)

F
re

q
u

e
n

c
y
 (

c
o

u
n

t)

(d) MPEG5S

100 200 300 400 500
10

−2

10
−1

10
0

Samples

C
o

n
fi
d

e
n

c
e

 p
a

ra
m

e
te

r
δ

MWD3S, m=50

MCS
SAR
GAPE

(e) MWD3S

100 200 300 400 500
10

−2

10
−1

10
0

Samples

C
o

n
fi
d

e
n

c
e

 p
a

ra
m

e
te

r
δ

MWD4S, m=50

MCS
SAR
GAPE

(f) MWD4S

100 200 300 400 500
10

−2

10
−1

10
0

Samples

C
o

n
fi
d

e
n

c
e

 p
a

ra
m

e
te

r
δ

MPEG4S, m=50

MCS
SAR
GAPE

(g) MPEG4S

100 200 300 400 500
10

−2

10
−1

10
0

Samples

C
o

n
fi
d

e
n

c
e

 p
a

ra
m

e
te

r
δ

MPEG5S, m=50

MCS
SAR
GAPE

(h) MPEG5S

Fig. 3. The lifetime distribution of all benchmark and slack allocations are shown in (a)-(d). The red line indicates the mean, the green line, the median.
(e)-(h) compare MAB with MCS choosing the best 50 out of 100 designs. The confidence parameter δ represents the probability of misclasification.

consist of the minimum number of switches to connect all

the components together; in this case a switch failure is not

survivable. In MWD4S and MPEG5S (Figures 2b, 2d) the

switches are configured in a ring architecture so that one

switch failure may be survivable [5].

The MWD system has six processors and three memories,

and the MPEG system has seven processors and four mem-

ories. There are three types of processors and nine types of

memories. The components can only be swapped with ones of

higher capacity. In total there are 11,664 MWD configurations

and 142,884 MPEG configurations. The size of this problem

makes identifying the optimal design a challenge.

C. Algorithm Comparison Metric

For the purposes of testing MAB on each of the design

spaces, 100 random designs were selected and the algorithms

were used to identify the top set of designs. The true lifetimes

were estimated by collecting 1 million samples, achieving a

95% confidence interval within 0.005 years. The true lifetime

distributions of each benchmark are shown in Figures 3a-3d.

We compare the sum of the lifetimes differences of the selected

top m designs and the optimal set:

Pr

[m∑

i=1

µ∗
i −EµJ(i) > ǫ

]
≤ δ.

If the difference of the aggregated average lifetimes of the

optimal set µ∗
1..m and the expected lifetime of the chosen

set µJ(i) using a policy J(i) is greater than ǫ, then an

identification error is said to have occurred. For this work,

we use ǫ = 1, which assumes an error tolerance of 1 year.

Using this metric, results are collected 100 times per set of

100 designs over 100 different sets of designs. The confidence

parameter δ is the number of failures observed in the collected

results, i.e., the probability of misidentification.

V. RESULTS

The results for each of the four benchmarks are shown

in Figures 3e-3h. As the number of samples increase, the

confidence in identifying the top set of m = 50 designs out

of 100 designs increases; m = 50 is chosen since identifying

the top half of the designs is likely to be the most versatile

result for use in other design space exploration algorithms

(e.g. genetic algorithms). It is clear that both MAB algorithms

outperform the baseline approach of uniform sampling (MCS):

both algorithms reach a higher level of confidence compared

to MCS for a given number of samples. The sensitivity of ǫ

was tested over a range of [0, 2] and MAB continued to reach

higher confidence with fewer samples.

In Table I, the average savings obtained when reaching the

same level of confidence as MCS at 500 samples per design

is shown for selecting the top 20, 30, 40, and 50 designs out

of 100. The obtained confidence parameter δ is also shown

for an error of ǫ = 1. In the worst case, when selecting the

top 50 designs (m = 50), SAR requires 1.49-3.57× fewer

samples and GapE-V 1.45-2.86× fewer. In the best case,

when a smaller set of 20 designs is selected (m = 20), the

improvements are more pronounced. SAR is able to achieve

a reduction of 1.92-5.26× and GapE-V 1.72-3.57×.

There is a larger reduction in required samples when a

smaller m is used; m = 50 is a more difficult problem

than m = 20 for MAB algorithms. This is attributed to how

the samples are distributed. When m = 50, roughly half of

the samples would be spent on the top half and bottom half

(assuming a symmetric distribution in the average case). When

m = 20, the amount of samples near the boundary does not

change significantly. Since there are fewer designs in the top

set, the samples are redistributed toward bad designs, reducing

variance and minimizing the probability of error.

It is worth noting that the δ that is achieved at 500 samples

TABLE I
SAMPLE SAVINGS FROM MAB ALGORITHMS FOR CONFIDENCE EQUIVALENT TO MCS WITH 500 SAMPLES.

m=20 m=30 m=40 m=50

Benchmark δ SAR GapE-V δ SAR GapE-V δ SAR GapE-V δ SAR GapE-V

MWD3S 0.002 1.92× 1.72× 0.003 1.72× 1.71× 0.009 1.79× 1.67× 0.021 1.49× 1.45×
MWD4S 0.071 3.33× 2.13× 0.112 2.96× 2.07× 0.180 2.54× 2.01× 0.148 2.44× 1.92×
MPEG4S 0.120 3.57× 2.70× 0.101 3.52× 2.48× 0.202 3.60× 2.43× 0.115 3.33× 2.27×
MPEG5S 0.052 5.26× 3.57× 0.083 4.07× 3.05× 0.292 3.70× 3.07× 0.162 3.57× 2.86×

is in general smaller for smaller m than larger m. One of

the factors worth considering is that the chosen metric uses

the sum of errors in the top m arms so when there are more

arms, the compounded errors will be larger. There are a few

exceptions in our results which break this trend, such as m ∈
{20, 40}, for the MPEG4S benchmark. This is likely attributed

to the effects of the underlying design space distribution, since

it will inherently affect the difficulty of the problem. Exploring

the effects of different design spaces on MAB performance is

subject of future work.

A. Discussion

Although SAR consistently outperforms GapE-V as an

MAB algorithm for lifetime distributions, the choice of algo-

rithm depends on the application. Recall that SAR discards

designs from sampling so it cannot recover from earlier

misidentification errors. Furthermore, SAR does not keep track

of sample variance whereas GapE-V does; as such, SAR is not

equipped to handle problems where new arms are introduced,

e.g., in genetic algorithms.

The stated improvements are presented under the assump-

tion that sample evaluation dominates the overhead of the

MAB algorithms. However, this assumption may not be true if

the number of arms to choose from increases. For this study, it

was determined that the a set size of 100 was a fair comparison

point where the overhead was no more than 20% for SAR and

25% for GapE-V.

The complexity of sampling for all the algorithms is ND×
Tsample where N is the number of samples per design, D is

the number of designs, and Tsample is the time required for

sample evaluation. For MCS, there is no selection overhead.

The overhead of SAR is Tsort(D) + Tsort(D − 1) + ... +
Tsort(m) < D × Tsort(D) where Tsort(x) is the time to

sort x designs and make a decision what to sample next. The

overhead of GapE-V is ND × Tsort(D) since each sample

requires a decision involving a sort on D designs. In general,

the MAB algorithms are O(D2) due to the selection process.

Ultimately, the number of designs and samples to use will

depend on the problem and will require a profiling of the

exact implementation.

From this analysis, it is apparent that MAB does not scale

well for a large number of designs; however, design space

exploration techniques tend not to simultaneously evaluate

a large numbers of designs. Further, GapE-V is not recom-

mended when there are a large number of samples N since

the decision process is made per sample.

VI. CONCLUSION

We have demonstrated an application of MAB to the slack

allocation design space exploration problem. In the best case,

when selecting the top 10 out of 100 designs on the MPEG5S

benchmark, a 5.26× reduction in MCS samples was observed

using SAR. In the worst case, when selecting the top 50 out

of 100 designs using GapE-V on the MWD3S benchmark, a

reduction of 1.45× is observed. Similar results are expected

whenever sample evaluation time is much larger than the time

to select the next design to sample. Overall, MAB show a

consistent improvement over a uniform sampling strategy.

ACKNOWLEDGMENT

This research was supported by the McGill University Fac-

ulty of Engineering Chwang-Seto Faculty Scholar Research

Award. Computing resources were provided by the Canada

Foundation for Innovation and Calcul Québec.

REFERENCES

[1] A. S. Hartman et al., “A case for lifetime-aware task mapping in
embedded chip multiprocessors,” CODES+ISSS, 2010.

[2] L. Huang et al., “Lifetime reliability-aware task allocation and schedul-
ing for MPSoC platforms,” DATE, 2009.

[3] J. Srinivasan et al., “Lifetime reliability: Toward an architectural solu-
tion,” IEEE Micro, vol. 25, no. 3, 2005.

[4] J. Srinivasan et al., “Exploiting structural duplication for lifetime relia-
bility enhancement,” ISCA, 2005.

[5] B. H. Meyer et al., “Cost-effective lifetime and yield optimization for
noc-based mpsocs,” ACM Trans. Des. Autom. Electron. Syst., vol. 19,
no. 2, pp. 1–33, Mar. 2014.

[6] A. Das et al., “Combined DVFS and mapping exploration for lifetime
and soft-error susceptibility improvement in MPSoCs,” DATE, 2014.

[7] S. Bubeck et al., “Regret analysis of stochastic and nonstochastic multi-
armed bandit problems,” Foundations and Trends in Machine Learning,
vol. 5, no. 1, pp. 1–122, 2012.

[8] S. Bubeck et al., “Multiple identifications in multi-armed bandits,”
ICML, vol. 28, 2013.

[9] V. Gabillon et al., “Multi-Bandit Best Arm Identification,” in Advances
in Neural Information Processing Systems 24, 2011.

[10] J. Srinivasan et al., “The case for lifetime reliability-aware micropro-
cessors,” ISCA, 2004.

[11] Z. Gu et al., “Application-specific MPSoC reliability optimization,”
VLSI Systems, vol. 16, no. 5, 2008.

[12] Jedec Solid State Technology, “Failure mechanisms and models for
semiconductor devices,” JEDEC Publication JEP122-B, 2003.

[13] Y. Xiang et al., “System-level reliability modeling for MPSoCs,” in
CODES+ISSS, 2010.

[14] T. L. Lai et al., “Asymptotically Efficient Adaptive Allocation Rules,”
Adv. Appl. Math., vol. 6, 1985.

[15] P. Auer et al., “Finite-time Analysis of the Multiarmed Bandit Problem,”
Machine Learning, vol. 47, no. 2/3, 2002.

[16] K. Skadron et al., “Temperature-aware microarchitecture,” ISCA, 2003.
[17] S. Adya et al., “Fixed-outline floorplanning: Enabling hierarchical

design,” VLSI Systems, 2003.
[18] E. G. T. Jaspers et al., “Chip-set for video display of multimedia

information,” IEEE Transactions on Consumer Electronics, no. 3, 1999.
[19] J. K. Reissmann et al., “The MPEG-4 video coding standard-a VLSI

point of view,” in SIPS, 1998.

