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Abstract— Motivated by applications in machine repair,
queueing, surveillance, and clinic care, we consider a scheduling
problem where a decision maker can reset m out of n
Markov processes at each time. Processes that are reset, restart
according to a known probability distribution and processes
that are not reset, evolve in a Markovian manner. Due to the
high complexity of finding an optimal policy, such scheduling
problems are often modeled as restless bandits. We show that
the model satisfies a technical condition known as indexability.
For indexable restless bandits, the Whittle index policy, which
computes a function known as Whittle index for each process
and resets the m processes with the lowest index, is known
to be a good heuristic. The Whittle index is computed by
solving an auxiliary Markov decision problem for each arm.
When the optimal policy for this auxiliary problem is threshold
based, we use ideas from renewal theory to derive closed form
expression for the Whittle index. We present detailed numerical
experiments which suggest that Whittle index policy performs
close to the optimal policy and performs significantly better
than myopic policy, which is a commonly used heuristic.

I. INTRODUCTION

A. Motivation

In this paper, we investigate scheduling problems where
a decision maker can reset m out of n Markov processes
at each time. Processes that are reset, restart according to
a known probability distribution and processes that are not
reset, evolve in a Markovian manner. Such problems arise in a
variety of applications such as queueing [1], surveillance [2],
smart grid [3], machine maintenance [4], [5] and clinical
care [6]. Such scheduling problems are Markov decision
processes where the state space is exponential in the number
of alternatives. So, computing an exact solution is often
intractable and one has to resort to heuristics to identify a
good solution. Such scheduling problems of interest belong
to a class of models known as restless bandits [7] which are
generalization of multi-armed bandits [8]–[10].

Multi-armed bandits [8]–[10] are sequential decision mak-
ing problems where a decision maker has to activate m
out of n alternatives at each time. The alternatives that are
activated evolve in a Markovian manner. Those that are not
activated (i.e., are passive) either remain frozen or evolve in
a Markovian manner (different from the active ones). Each
process generates a reward or incurs a cost that depends on
its state and the active or passive action.

When m = 1 and passive arms remain frozen, the model
is known as the classical multi-armed bandits. For this model,
Gittins [8] showed that the optimal policy has a simple
structure: at each time, compute an index (known as Gittins
index) for each arm and play the arm with the highest index.

The general case when the passive action arms also evolve
is known as restless bandits [7]. Gittins index policy not
optimal for such models, but it was argued by Whittle that if
the model satisfies a technical condition known as indexability,
then a modification of the Gittins index known as Whittle
index is still a reasonable heuristic. Whittle index policy
is a popular approach for restless bandits because: (i) its
complexity is linear in the number of alternatives and (ii) it
often performs close to optimal in practice [5], [11], [12].

Two steps need to be carried out for using the Whittle
index policy: (i) check whether the model is Whittle indexable,
and if so, (ii) find a low-complexity method to compute the
Whittle index for each alternative. Although some results are
available for specific models [4], [5], [13], [14], there is no
general framework for checking Whittle indexability or for
computing the Whittle index. These steps are often carried
out on a case-by-case basis by exploiting the specific features
of the model.

Motivated by the models in [1]–[6], we propose a model
for what we call restless bandits with controlled restarts.
We show that irrespective of the choice of the model
parameters, the problem of restless bandits with controlled
restarts is always indexable. For indexable models, the Whittle
index ix computed by solving an auxiliary Markov decision
problem. When the optimal policy for this auxiliary problem
is threshold based, we use ideas from renewal theory to derive
closed form expression for the Whittle index.

B. Notation

Uppercase letters (X , Y , etc.) denote random variables,
the corresponding lowercase letters (x, y, etc.) denote their
realization, and the corresponding script letters (X , Y , etc.)
denote their state spaces. Subscripts denote time: so, Xt

denotes a system variable at time t and X1:t is a short-
hand for the system variables (X1, . . . , Xt). P(·) denotes the
probability of an event and E[·] denotes the expectation of a
random variable.

Z, R, and R≥0 denote the sets of integers, real numbers,
and positive real numbers, respectively. I denotes the indicator
function, Given a matrix P , Pi,j denotes its (i, j)-th element.

Given ordered sets X and Y , a function f : X × Y → R
is called submodular1 if for any x1, x2 ∈ X and y1, y2 ∈ Y
such that x2 ≥ x1 and y2 ≥ y1, we have

f(x1, y2)− f(x1, y1) ≥ f(x2, y2)− f(x2, y1).

1 Submodular functions satisfy the following useful property [15]. Given
ordered sets X and Y and a submodular function f : X × Y → R, the
function g(x) = miny∈Y f(x, y) is (weakly) increasing in x provided the
argmin exists.
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II. MODEL AND PROBLEM FORMULATION

Consider a discrete time system with n arms and let
N = {1, . . . , n} denote the set of arms. Each arm i, i ∈ N ,
is a controlled Markov process with state space X i and
action space {0, 1}. For ease of exposition, we assume that
X i is a finite set. Let Xi

t ∈ X i denote the state of arm i
and Ait ∈ {0, 1} denote the action applied to arm i at time
t. Furthermore, let Xt denote (X1

t , . . . , X
n
t ), At denote

(A1
t , . . . , A

n
t ), and X denote X 1 × . . . × Xn. We assume

that the arms evolve in a Markovian manner independently
from each other, i.e., for any xt =

(
x1
t , . . . , x

n
t

)
and at :=(

a1
t , . . . , a

n
t

)
, we have

P (Xt+1 = xt+1|X1:t = x1:t,A1:t = a1:t)

=

n∏
i=1

P
(
Xi
t+1 = xit+1|Xi

t = xit, A
i
t = ait

)
.

When ait = 0, we say that arm i is passive at time t; when
ait = 1, we say that arm i is active at time t. Arm i ∈ N
evolves as follows: for any x, y ∈ X i and a ∈ {0, 1} we
have

P(Xi
t+1 = y|Xi

t = x,Ait = a) =

{
P ixy, if a = 0

Qiy, if a = 1

Thus, when arm i is passive, it evolves in a Markov manner
according to transition probabilities P i; when arm i is active,
the state of arm i resets according to probability mass
function Qi, which we call it as reset pmf.

When arm i in state x is passive it incurs a cost ci(x, 0);
when it is active, it incurs a cost ci(x, 1). When the system
is in state xt and action at is taken, the system incurs a
per-step cost given by

n∑
i=1

ci(xit, a
i
t).

At each time, a decision-maker observes the state of all
the arms and can reset m of them where m < n. Let A(m)
be a subset of actions where m arms are active, i.e.:

A(m) =

{
a = (a1, . . . , an) ∈ {0, 1}n :

n∑
i=1

ai = m

}
.

The decision-maker uses a time-homogeneous and determin-
istic Markov policy g : X → A(m) to choose its actions,
i.e.,

At = g(Xt).

The family of all such policies is denoted by G. The
performance of any policy g ∈ G is quantified by the expected
discounted cost given by

J(g) := (1− β)E

[ ∞∑
t=0

βt
∑
i∈N

ci(Xi
t , A

i
t)

]
, (1)

where β ∈ (0, 1) is the discount factor and the expectation
is taken with respect to the joint distribution induced on all
system variables when At = g(Xt).

We are interested in the following problem.

Problem 1: Given the discount factor β, the total number n
of arms, the number m of active arms, the state space X , the
transition matrices {P i}i∈N , the reset pmfs {Qi}i∈N , and the
cost functions {ci(·, ·)}i∈N , choose a policy g : X → A(m)
that minimizes J(g) given by (1).

A. Specific instances of the model

There are several models that have been investigated in
the literature that may be viewed as a restless bandits with
controlled restarts.

1) Machine maintenance models where a repairman is
responsible for maintaining several machines. Each
machine has a state that stochastically deteriorates over
time. The repairman sees the state of all machines and
may repair a subset of those. There is a state-dependent
cost associated with running and repairing the machine.
Such models are considered in [4], [5].

2) Machine maintenance models as before but where the
state of the machine is not observed. Such models have
been considered in the context of sensor networks [2]
and smart grids [3].

3) Scheduling multiple data queues over a shared com-
munication channels, where there is a cost associated
with holding packets in a queue and a cost associated
with transmitting [1].

III. INDEXABILITY

A. Restless Bandits with activation cost

Problem 1 is a Markov decision process and can be solved
using dynamic programming [15]. However, the dynamic
programming solution suffers from the curse of dimensionality
because sizes of the state space X and action space A(m)
are exponential in the number of arms n.

In the special case, when only one arm can be activated
at a time, (i.e., m = 1) and passive arms remain frozen
(i.e., P i is identity for all arms) Gittins [8] showed that the
above n-dimensional problem can be solved by solving n
one-dimensional problem. Whittle [7] showed that Gittins
index solution is a good heuristic for the general restless
case (i.e., P i is not identity for all arms) when a technical
condition known as indexability is satisfied.

Indexability is the property of individual arms. Given any
i ∈ N , consider arm i with the same dynamics as before but
per-step cost given by

cλ(xit, a
i
t) := ci(xi, ait) +

λ

1− β
ait,

where λ ∈ R is a penalty2 for activating the arm. Then,
consider the following auxiliary optimization problem.

Problem 2: Given an arm i ∈ N , discount factor β, the
state space X i, the transition probability matrix P i, the reset
probability mass function Qi, the cost function ci(·, ·) and

2In the standard restless bandit problem, one considers maximizing the
discounted reward and modifies the per-step reward to include a subsidy for
passive actions. In contrast, we consider minimizing the discounted cost, so
we modify the per-step cost to include a penalty for active action.
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the penalty λ ∈ R, choose a policy gi : X i → {0, 1} to
minimize

J i(gi) := (1− β)E

[ ∞∑
t=0

βtciλ(Xi
t , A

i
t)

]
. (2)

Problem 2 is also a Markov decision process and the
optimal solution is given by the solution to the following
dynamic program. Let V iλ : X i → R be the unique fixed
point of the following:

V iλ(x) = min
{
Hi
λ(x, 0), Hi

λ(x, 1)
}
, ∀x ∈ X i. (3)

where

Hi
λ(x, 0) = (1− β)ci(x, 0) + β

∑
y∈X i

P ixyV
i
λ(y), (4)

Hi
λ(x, 1) = (1− β)ci(x, 1) + λ+ β

∑
y∈X i

QiyV
i
λ(y). (5)

Let giλ(x) denote the minimizer of the right hand side of
(3) where we set giλ(x) = 1 if Hi

λ(x, 0) = Hi
λ(x, 1). Then,

from Markov decision theory [15], we know that the time-
homogeneous policy giλ is optimal for (2).

Let
Πi
λ :=

{
xi ∈ X i : giλ(x) = 0

}
(6)

denote the set of states where taking the passive action is
optimal when the activation penalty is λ. This set is called
the passive set. Arm i is said to be indexable if Πi

λ is weakly
increasing in λ, i.e., for any λ1, λ2 ∈ R,

λ1 < λ2 =⇒ Πi
λ1
⊆ Πi

λ2
.

When arm i is indexable, the Whittle index wi(xi) at state
xi is defined as the smallest value of λi for which xi belongs
to the passive set Πi

λ, i.e.,

wi(xi) := inf
{
λ ∈ R : xi ∈ Πi

λ

}
. (7)

Equivalently, the Whittle index wi(xi) at state xi is the
smallest value of λi for which the optimal policy is indifferent
between the active and the passive actions at state xi.

A restless bandit problem is said to be indexable if all
arms are indexable. For indexable problems, the whittle index
heuristic is as follows: at each time, compute the Whittle
index of all arms and play the arms with the m smallest
Whittle indices.

As mentioned earlier, Whittle index policy is a popular
approach for restless bandits because: (i) its complexity is
linear in the number of alternatives and (ii) it often performs
close to optimal in practice [5], [11], [12].

B. Indexability

In this section, we show that Problem 2 is Whittle indexable
and derive an expression for the Whittle index.

Given an arm i ∈ N , let Σi denote the family of all
stopping times with respect to the natural filtration associated
with {Xi

t}t≥0. For any stopping time τ ∈ Σi and an initial
state x ∈ X i, define

Li(x, τ) := E

[ τ−1∑
t=0

βtc(Xi
t , 0) + βτ c(Xi

τ , 1)
∣∣∣ Xi

0 = x

]
,

Bi(x, τ) := E[βτ |Xi
0 = x].

Theorem 1: Problem 1 is Whittle indexable and for any
arm i, i ∈ N , the Whittle index is given by

wi(x) = inf
{
λ ∈ R : Gi(x) < W i

λ

}
where

Gi(x) := (1− β) inf
τ∈Σi

Li(x, τ)− ci(x, 1)

1−Bi(x, τ)
, (8)

W i
λ := λ+ β

∑
y∈X i

QyV
i
λ(y). (9)

To show that Problem 1 is indexable, we show that each arm
is indexable. For that matter, we consider Problem 2 for each
arm. For ease of notation, we drop the superscript i from all
variables.

Lemma 1: The following statements hold:
1) Vλ(x) is strictly increasing in λ for any x ∈ X .
2) Wλ is strictly increasing in λ.

Proof: These properties follow from the fact that cλ(x, a)
is strictly increasing in λ.

Given any stopping time τ , let hτ denote a policy that
takes the passive action up to and including time τ − 1, takes
the active action at time τ , and follows the optimal policy
from time τ + 1 onwards. The performance of policy hτ is
denoted by

Cλ(x, τ) = (1− β)Ehτ
[ ∞∑
t=0

βtcλ(Xt, At)
∣∣∣ X0 = x

]
= (1− β)L(x, τ) + E[βτWλ|X0 = x]

= (1− β)L(x, τ) +B(x, τ)Wλ. (10)

Setting τ = 0, we have

Cλ(x, 0) = (1− β)c(x, 1) +Wλ. (11)

Lemma 2: The following characterizations of the passive
sets are equivalent to (6).

1) {x ∈ X : Hλ(x, 0) < Hλ(x, 1)}.
2) {x ∈ X : ∃σ ∈ Σ such that Cλ(x, σ) < Cλ(x, 0)}.
3) {x ∈ X : G(x) < Wλ}.

Proof: Characterization 1) follows from the dynamic
program (3). Characterization 2) follows from the fact that
Cλ(x, 0) = Hλ(x, 1) and for x ∈ Πλ, Cλ(x, σ) = Hλ(x, 0),
where σ is the hitting time of the set X \Πλ. Characteriza-
tion 3) follows from characterization 2) and rearranging the
terms using (10) and (11).
Now consider the characterization 3) in Lemma 2. G(x) does
not depend on λ while Lemma 1 shows that Wλ is strictly
increasing in λ. Hence, Πλ is increasing in λ. Thus arm i
is indexable. The expression for the Whittle index in the
Theorem 1 follows immediately from (7).

IV. COMPUTATION OF WHITTLE INDEX FOR
THRESHOLD-BASED POLICIES

In this section, we provide a closed form expression for
the Whittle index when the state space is an ordered set and
the model satisfies the following property.

7296



(P) The optimal policy for Problem 2 is a threshold-based
policy, i.e., for each i ∈ N , there exists a threshold ki ∈
X i such that

giλ(x) :=

{
0, if x < ki

1, otherwise.

In the sequel, we omit superscript i for ease of notation.
We assume that the state space is given by X = {1, . . . ,Ω}
and for any k ∈ X , use the notation

X<k = {x ∈ X : x < k} and X≥k = {x ∈ X : x ≥ k}.

A. Sufficient conditions for optimality of threshold-based
policies

We start by characterizing the sufficient conditions under
which the optimal policy in Problem 2 is a threshold policy.

Proposition 1: Consider the following conditions.
(C1) P is stochastically monotone, i.e., for any x, y ∈ X

such that x < y, we have∑
w∈X≥z

Px,w ≤
∑

w∈X≥z

Py,w, ∀z ∈ X .

(C2) For any a ∈ {0, 1}, c(x, a) is (weakly) increasing in
x.

(C3) c(x, a) is submodular.
Under (C1)–(C3), there exists a threshold k ∈ X ∪ {Ω + 1}
such that the optimal policy in Problem 2 is of the form

g(x) =

{
0, if x ∈ X<k
1, otherwise.

Proof: The Conditions (C1)–(C3) are the same as
Properties (P1)–(P4) of [15, Theorem 4.7.4]. We can show
that the model satisfies Property (P4) of [15, Theorem 4.7.].
See [16] for a complete proof.

B. Performance evaluation of threshold-based policies

Let g(k) be the threshold policy with threshold k, i.e.,

g(k)(x) =

{
0, if x ∈ X<k
1, otherwise.

Let C(k)
λ be the total discounted cost incurred under pol-

icy g(k) and penalty λ where the initial state is distributed
according to Q, i.e.,

C
(k)
λ := (1− β)E

[ ∞∑
t=0

βtcλ(Xt, g
(k)(Xt))

∣∣∣ X0 ∼ Q
]

= (1− β)E

[ ∞∑
t=0

βt
(
c(Xt, g

(k)(Xt)) + λg(k)(Xt)
) ∣∣∣ X0 ∼ Q

]
= D(k) + λN (k), (12)

where

D(k) := (1− β)E

[ ∞∑
t=0

βtc(Xt, g
(k)(Xt))

∣∣∣ X0 ∼ Q
]
,

N (k) := (1− β)E

[ ∞∑
t=0

βtg(k)(Xt)
∣∣∣ X0 ∼ Q

]
.

To compute the performance C(k)
λ , we need to obtain D(k)

and N (k) which can be computed as follows. Let τk denote
the hitting time of the set X≥k. Define L(k) and M (k) as
the expected discounted cost and the expected discounted
time until we hit X≥k starting from an initial state distributed
according to Q, i.e.,

L(k) := E

[ τk∑
t=0

βtc(Xt, g
(k)(Xt))

∣∣∣ X0 ∼ Q
]

M (k) := E

[ τk∑
t=0

βt
∣∣∣ X0 ∼ Q

]
=

1− E[βτk+1|X0 ∼ Q]

1− β
.

Theorem 2: For all k ∈ X ∪ {Ω + 1},

D(k) =
L(k)

M (k)
and N (k) =

1

βM (k)
− 1− β

β
.

Proof: The proof follows from standard ideas in renewal
theory and it is omitted due to lack of space. See [16] for a
complete proof.
Thus, computing L(k) and M (k) is sufficient for calculating
D(k) and N (k) and, consequently, C(k)

λ . In turn, L(k) and
M (k) can be computed using standard formulas for truncated
Markov chains. For that matter, let ca denote the column
vector of costs c(·, a), a ∈ {0, 1} and Q the row vector of the
restart pmf. For vector α ∈ {c0, c1, Q}, let α(k) denote the
first (k−1) elements and α̃(k) the remaining (Ω−k) elements
of α. Let Pk be a (k − 1)× (k − 1) dimensional upper-left
submatrix of P and P̃ (k) be the (k − 1) × (Ω − k + 1)-
dimensional upper-right submatrix of P .

Proposition 2: For all k ∈ X ,

L(k) = Q(k)Z(k)(c
(k)
0 + βP̃ (k)1Θ−k) + Q̃(k)c̃

(k)
1 ,

M (k) = Q(k)Z(k)(1k−1 + βP̃ (k)c̃
(k)
1 ) + Q̃(k)1Ω−k+1,

where Z(k) = (Ik−1 − βP (k))−1.
Proof: The proof follows from the balance equations

of the truncated Markov chains and is omitted due to lack of
space.

C. Computation of the index

Next, we derive structural properties of C(k)
λ .

Lemma 3: The following statements hold:
1) M (k) is strictly increasing in k.
2) C

(k)
λ is sub-modular in (k, λ).

3) Let kλ := arg mink∈X C
(k)
λ , i.e., the optimal threshold

corresponding to penalty λ. Then, kλ is increasing in
λ.

4) C∗λ = C
(kλ)
λ = mink∈X C

(k)
λ is continuous in λ.

Proof: The monotonicity of M (k) follows from def-
inition and together with Theorem 2 implies that N (k) is
strictly decreasing in k. This, together with (12), implies that
C

(k)
λ is submodular in (k, λ). By the property of submodular

functions mentioned in footnote 1, kλ is increasing in λ. The
continuity of C∗λ follows from the fact that C(k)

λ is continuous
in λ for each k.

Since kλ is increasing and takes integer values, it is
staircase function in λ, as illustrated in Fig. 1. This property
allows us to compute the Whittle index for Problem 2.
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λ

kλ

Λ(k)

w(k) w(k + 1)

k

k + 1

Fig. 1: kλ as a function of λ.

Theorem 3: For Problem 2, under Property (P), the Whittle
index at state k ∈ X is

w(k) =
D(k+1) −D(k)

N (k) −N (k+1)
. (13)

Proof: Recall that the Whittle index is the smallest value
of λ for which the optimal policy is indifferent between the
active and the passive actions. Let Λ(k) = {λ ∈ R : kλ = k}.
See Fig 1 for an illustration. By definition, for any λ ∈
Λ(k) we have C∗λ = C

(k)
λ , and for any λ ∈ Λk+1 we have

C∗λ = C
(k+1)
λ . From Lemma 3, part 4), C∗λ is continuous

in λ. Therefore,

C
(k)
w(k) = lim

λ↑w(k)
C∗λ = lim

λ↓w(k)
C∗λ = C

(k+1)
w(k) .

Thus, C(k)
w(k) = C

(k+1)
w(k) and

D(k) + w(k)N (k) = D(k+1) + w(k)N (k+1)

which implies (13).
Remark 1: Theorem 2 and Lemma 3, part 1), imply that

N (k) is strictly decreasing in k. Hence, N (k) 6= N (k+1) and
the expression for Whittle index given in (13) is well-defined.

V. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments on
models which satisfy (C1)–(C3) of Proposition 1 and evaluate
how well the Whittle index policy (WIP) performs compared
to the optimal policy (OPT) as well as to a baseline policy
known as the myopic policy (MYP) which is shown in Alg 1.
The code of the results are available in [17].

Algorithm 1 Myopic Heuristic
1: t = 1.
2: while t ≥ 1 do
3: Set k = 1. M = ∅. K = N .
4: Let i∗k = arg mini∈K

∑
j∈K\{i} c

j(Xj
t , 0)+ci(Xi

t , 1).

5: Set M = M ∪ {i∗k}, K = K \ {i∗k}.
6: If k = m activate arms in M and stop. Else set k =

k + 1 and go to Line 4.
7: t = t+ 1.
8: end while

A. Experimental Setup

The model has 3 components: the transition matrix P ,
the reset pmf Q and the cost function c. We choose these
components as follows:

TABLE I: Relative performance of WIP vs. OPT for Experi-
ment 1.

(a) m = 1

` αOPT

1 99.967
2 99.902
3 99.917
4 99.649

(b) m = 2

` αOPT

1 100.00
2 99.997
3 99.999
4 99.972

1) The choice of transition matrix: We have two setups
for choosing the transition matrix. The first setup is a family
of 4 types of structured stochastic monotone matrices, which
we denote by P`(p), ` ∈ {1, . . . , 4}, where p ∈ [0, 1] is a
parameter of the model. The second setup is a randomly
generated stochastic monotone matrices which we denote by
R(d), where d ∈ [0, 1] is a parameter of the model. The
details of these models are presented in Appendix A.

2) The choice of reset pmf: In all our experiments, we
use Q = [1, 0, . . . , 0], i.e., choosing the restart action
deterministically resets to the clear state.

3) The choice of the cost function: For all our experiments
we choose c(x, 0) = (x − 1)2 and c(x, 1) = 0.5(Ω − 1)2

where Ω = |X |.

B. Experimental details and result

We conduct different experiments to compare the perfor-
mance of Whittle index with both the optimal policy and the
myopic policy for different setups (described in Section V-A)
and for different values of the size Ω of the state space, the
number n of the arms, and the number m of active arms. For
all experiments we choose the discount factor β = 0.9.

The performance of a policy is evaluated by Monte Carlo
simulations over S trajectories is truncated at length T . In
all our experiments, we choose S = 5000 and T = 250.

Experiment 1) Comparison of Whittle index with the
optimal policy for structured models: The optimal policy
is computed by solving the MDP for Problem 1. The state for
this MDP is Ωn. So, we can obtain the optimal policy only
for small values of Ω and n. We choose Ω = 5 and n = 5
and compare the two policies for model P`(·), ` ∈ {1, . . . , 4}
and m ∈ {1, 2}.

For a given value of n and `, we generate the models
for n arms as follows. Let (p1, . . . , pn) denote n equispaced
points in the interval [0.35, 1]. Then we choose P`(pi) as the
transition matrix of arm i. Let

αOPT =
J(OPT)

J(WIP)
× 100

denote the relative performance (in percentage) of WIP
compared to OPT.

The values of αOPT for different values of ` and m are
shown in Table I. The results for several simple models given
in Table I show that WIP can be as good as OPT when m = 2
and slightly worse when m = 1.
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Experiment 2) Comparison of Whittle index with the
optimal policy for randomly sampled models: As before,
we pick Ω = 5 and n = 5 so that it is feasible to calculate
the optimal policy. For each arm, we sample the transition
matrix from R(5/Ω). We repeat the experiment 100 times.
The histogram of αOPT over experiments for m ∈ {1, 2} is
plotted in Fig 4. Similar to the result of Experiment 1, WIP
has a reasonable relative performance with respect to OPT.
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Fig. 4: Histogram of the relative performance αOPT of WIP
versus OPT for Experiment 2.

Experiment 3) Comparison of Whittle index with the
myopic policy for structured models: We generate the
structured models as in Experiment 1 but for Ω = 25,
n ∈ {25, 50, 75}, and m ∈ {1, 2, 5}. In this case, let

εMYP =

(
J(MYP)− J(WIP)

J(MYP)

)
× 100.

denote the relative improvement of WIP compared to MYP.
The results of εMYP for different choice of the parameters are
shown in Fig 2.

In Fig 2, we observe that WIP performs considerably
better than MYP. In addition to that, performance of WIP
is better with respect to MYP when ` = 4 which is more
complicated than models where ` ∈ {1, 2, 3}. However,
increasing m doesn’t necessarily contribute to better εMYP as
overlap between the choices of the two policies may increase.
Note that as P4(·) is very different from the rest of the
models, the trend of bars in Fig 2d with respect to n varies
differently from the rest of the models.

Experiment 4) Comparison of Whittle index with the
myopic policy for randomly sampled models: We generate 100
random models as described in Experiment 2 but for Ω = 25
and larger values of n. For each case, εMYP is computed. The
histogram of εMYP for different choices of the parameters are
shown in Fig 3.

The result shows that on average, WIP performs consider-
ably better than MYP and this improvement is guaranteed as
the concentration of data for the sampled models is mostly
on positive values of εMYP.

VI. CONCLUSION

In this paper, we present a model for restless bandit with
controlled restarts. We show that the model is indexable.
When the auxiliary problem to compute the Whittle index
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Fig. 2: Relative improvement εMYP of WIP vs. MYP for Ω = 25 when ` ∈ {1, . . . , 4}, n ∈ {25, 50, 75}, and m ∈ {1, 2, 5}.
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Fig. 3: Histogram of relative improvement εMYP of WIP vs. MYP for Ω = 25 when n ∈ {25, 50, 75}, and m ∈ {1, 2, 5}.
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has a threshold-based optimal strategy, we derive a closed
form expression to compute the Whittle index. For the case
when the Markov chain matrix under the passive action is
stochastic monotone and the per-step cost is monotonically
increasing and submodular, we present detailed numerical
experiments which suggest that the Whittle index policy
performs very close to the optimal policy and considerably
better than other heuristics such as a myopic policy.

APPENDIX

A. Stochastic Monotone Matrix Generation

1) Structured models: Consider a Markov chain with n
states. We consider four different class of stochastic monotone
transition probability matrices, which we call P`(p), ` =
{1, . . . , 4}, where p is a model parameter.

Matrix P1(p): Let q1 = 1− p and q2 = 0. Then,

P1(p) =


q2 + q1 + p q1 q2 0 0 0 0 . . . 0
q2 + q1 p q1 q2 0 0 0 . . . 0
q2 q1 p q1 q2 0 0 . . . 0
0 q2 q1 p q1 q2 0 . . . 0
...

...
...

...
...

...
...

...
...


P1(p) is stochastic monotone if p ∈ [1/3, 1].

Matrix P2(p): Similar to P1(p) with q1 = (1− p)/2 and
q2 = (1− p)/2. P2(p) is stochastic monotone if p ∈ [1/4, 1].

Matrix P3(p): Similar to P1(p) with q1 = (1− p)/3 and
q2 = (1− p)/6. P3(p) is stochastic monotone if p ∈ [1/5, 1].

Matrix P4(p): Let q = (1− p)/(n− 1). Then,

P4(p) =


p q q . . . q q
q p q . . . q q
...

...
...

...
...

...
q q q . . . p q
q q q . . . q p


P4(p) is stochastic monotone if p ∈ [1/n, 1].

2) Randomly generated model: Consider a Markov chain
with n states and the transition probability matrix

P =


P11 P12 P13 . . . P1n

P21 P22 P23 . . . P2n

...
...

...
. . .

...
Pn1 Pn2 Pn3 . . . Pnn

 .
Let Fij =

∑n
y=j Piy. The necessary condition for P to be

stochastic monotone is that for any 1 ≤ i ≤ l ≤ n and any
1 ≤ j ≤ n, Fij ≤ Flj .

Initially, we generate P11 uniformly random between
[1− d, 1] where d ∈ [0, 1]. Variable d prevents the kernel to
behave badly when the number of states increases. Then,
we generate P12, P13, . . . , P1n sequentially from P12 to
P1n where each mass is selected uniformly random from
[0, Bi] where Bi = 1 −

∑i−1
l=1 P1l. As Fin = Pin for

any i, we select Pin sequentially for rows from 2 to n
where each element is generated uniformly random from
[P(i−1)n,min{1, P(i−1)n + d}]. Then, for any row from 2 to
n, we repeat the following procedure backwardly for columns

from n−1 to 1. Consider row i and column j. We generate a
uniformly random number from [LBij ,UBij ] where LBij =
F(i−1)j−Fi(j+1) and UBij = min{LB+d, 1−Fi(j+1)} and
set the generated number as Pij . The lower bound is due to
stochastic monotonicity property and the upper bound is due
to definition of a probability mass function and variable d.
Note that for the elements in the first column, the mentioned
interval shrinks to [1− Fi2, 1− Fi2] for row i which results
in Pi1 = 1− Fi2.
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“Whittle’s index policy for a multi-class queueing system with convex
holding costs,” Mathematical Methods of Operations Research, vol.
57, no. 1, pp. 21–39, 2003.

[12] KD Glazebrook and HM Mitchell, “An index policy for a stochastic
scheduling model with improving/deteriorating jobs,” Naval Research
Logistics (NRL), vol. 49, no. 7, pp. 706–721, 2002.

[13] KD Glazebrook, DJ Hodge, and Christopher Kirkbride, “Monotone
policies and indexability for bidirectional restless bandits,” Advances
in Applied Probability, vol. 45, no. 1, pp. 51–85, 2013.

[14] Richard R Weber and Gideon Weiss, “On an index policy for restless
bandits,” Journal of Applied Probability, vol. 27, no. 3, pp. 637–648,
1990.

[15] Martin L. Puterman, Markov decision processes: discrete stochastic
dynamic programming, John Wiley & Sons, 2014.

[16] Nima Akbarzadeh and Aditya Mahajan, “Restless bandits with
controlled restarts: Indexability and computation of whittle index,”
(extended version). http://www.cim.mcgill.ca/˜adityam/
projects/bandits/conference/2019-cdc-extended.
pdf.

[17] Nima Akbarzadeh and Aditya Mahajan, “Restless bandits
with controlled restarts,” https://codeocean.com/capsule/
4279155/tree/v1.

7300


