
Dynamic spectrum access under partial
observations: A restless bandit approach

Nima Akbarzadeh
Electrical and Computer Engineering

McGill University
Montreal, Canada

nima.akbarzadeh@mail.mcgill.ca

Aditya Mahajan
Electrical and Computer Engineering

McGill University
Montreal, Canada

aditya.mahajan@mcgill.ca

Abstract—We consider a communication system where mul-
tiple unknown channels are available for transmission. Each
channel is a channel with state which evolves in a Markov
manner. The transmitter has to select L channels to use and also
decide the resources (e.g., power, rate, etc.) to use for each of
the selected channels. It observes the state of the channels it uses
and receives no feedback on the state of the other channels. We
model this problem as a partially observable Markov decision
process and obtain a simplified belief state. We show that the
optimal resource allocation policy can be identified in closed form.
Once the optimal resource allocation policy is fixed, choosing the
channel scheduling policy may be viewed as a restless bandit. We
present an efficient algorithm to check indexability and compute
the Whittle index for each channel. When the model is indexable,
the Whittle index policy, which transmits over the L channels
with the smallest Whittle indices, is an attractive heuristic policy.

Index Terms—Channel scheduling, resource allocation, restless
bandits.

I. INTRODUCTION

Dynamic spectrum access is a key component of various
applications including cognitive radio networks, resource
constraint jamming and opportunistic over fading channels [1].
In such models, a transmitter has to transmit data over a set
of time-varying channels. The transmitter does not know the
current state of the channels based on past observations and
the channel statistics.

When the transmitter knows the state of the channels, the
system can be modeled as a Markov decision process (MDP).
However, in many applications, the state of the channel is not
known and is observed only sporadically. Such system can be
modeled as a partially obvservable Markov decision process
(POMDP). However, using MDP or POMDP models to obtain
optimal scheduling and resource allocation policies suffers
from the curse of dimensionality: the number of joint states
for the channels is exponential in the number of channels; in
case of POMDPs, the state space is also exponential in the
number of states of the channel. Therefore, most of the results
in the literature have analyzed such problems under simplifying
modeling assumptions.

The problem of transmitting over a two-state Gilbert-Elliot
channel under rate or power constraints has been investigated
in [2], [3]. For a two-state channel, the posterior belief on the
state of the channel is characterized by a real number. Under

different modelling assumptions [2], [3] show that the optimal
strategy is characterized by a threshold on the posterior belief.

Opportunistic scheduling over multiple two-state Gilbert-
Elliot channels has been investigated in [4], [5]. When the
channels are identical, the myopic policy is opitmal [5]. Similar
results were obtained for multi-state channels in [6].

More general models of dynamic spectrum access have
been investigated in [7]–[15]. Many of these results rely on
modelling the scheduling problem as a restless bandit [16] and
using the Whittle index heuristic. However, these papers either
consider a fully-observable channel state [9]–[12] or restrict
to two-state channels in case of partially observable channel
state [13]–[15].

In this paper we present a restless bandit approach for
dynamic spectrum access under partial observations. Unlike the
previous papers in the literature we do not restrict to two-state
channels. Therefore, the belief state in our model lies in a
multi-dimensional simplex. Our main idea is to exploit the
structure of the reachable set of belief states to identify an
alternative information state which lies in a countable set. We
then use results from countable state MDPs to approximate
the countable information state by a finite information state.
Using this approximation, we develop efficient algorithms to
check for indexability and to compute Whittle index. When
the problem is indexable, the set of channels to transmit may
be chosen according to the Whittle index policy.

II. MODEL AND PROBLEM FORMULATION

A. The communication channels

Consider a communication system consisting of n inde-
pendent channels indexed by the set N := {1, . . . , n}. Each
channel i ∈ N is a channel with state; the state process
{Sit}t≥0, Sit ∈ Si, is a time-homogeneous Markov chain with
initial distribution πi0 and transition probability matrix P i.
The state processes {Sit}t≥0, i ∈ N , are independent across
channels. We assume that Si is an ordered finite set. We use
S to denote

∏
i∈N Si and St = (S1

t , . . . S
n
t ) ∈ S to denote

the state of all channels.
Let R = {∅, r1, . . . , rk} denote a set of allocable resources

(e.g., rate, power, bandwidth, etc.), where ∅ indicates that no
resources are allocated. If we transmit over channel i ∈ N
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using resource r ∈ R when its state is s ∈ Si, then we receive
a reward ρi(s, r), where ρi(s, ∅) = 0 for all s ∈ Si.

Example 1 (Model of [2]) Suppose channel i ∈ N is a two-
state Gilbert-Elliot channel with a good and bad state, denoted
by Si = {sBAD, sGOOD}. The transmitter has the option of
transmitting conservatively at a low rate (denoted by rLOW)
or transmitting aggressively at a high rate (denoted by rHIGH).
When transmitting conservatively, the transmission is always
successful and rLOW bits are communicated. When transmitting
aggressively, the transmission is successful if the channel is in
a good state, in which case rHIGH bits are communicated; if the
channel is a bad state, then the communication is unsuccessful
and no data is communicated. The reward function may be
written as

ρi(s, r) =


rLOW, if r = rLOW

rHIGH, if r = rHIGH and s = sGOOD

0, otherwise.
2

Example 2 (Model of [3]) Analogous to Example 1, suppose
channel i ∈ N is a two-state Gilbert-Elliot channel with a good
and bad state, denoted by Si = {sBAD, sGOOD}. The transmitter
has the option of either transmitting at high power (denoted
by pHIGH), or transmitting at low power (denoted by pLOW) or
not transmitting (denoted by ∅). When the channel is in a bad
state, no transmission is successful. When the channel is in a
good state, transmitting at high power achieves a bit-rate of
rHIGH while transmitting at low power achieves a bit-rate of
rLOW. Thus, the reward function may be written as

ρi(s, r) =


rLOW, if r = pLOW and s = sGOOD

rHIGH, if r = PHIGH and s = sGOOD

0, otherwise.
2

Example 3 (Model of [5]) Analogous to the previous exam-
ples, suppose channel i ∈ N is a two-state Gilbert-Elliot chan-
nel with a good and bad state, denoted by Si = {sBAD, sGOOD}.
The transmitter has the option of either transmitting (denoted
by r = 1) or not (denoted by r = ∅). When the transmitter
transmits and the channel is in sGOOD, the transmission is
successful, otherwise the transmission is not successful. Thus,
the reward can be written as

ρi(s, r) =

{
1, if r = 1 and s = sGOOD

0, otherwise.
2

Example 4 (Model of [6]) In contrast to the previous exam-
ples, suppose channel i ∈ N is a multi-state channel with an
ordered state space Si. The transmitter has the option of either
transmitting (denoted by r = 1) or not (denoted by r = ∅).
The probability of success depends on the state of the channel
and it is denoted by ps. Thus, the reward function is

ρi(s, r) =

{
ps, if r = 1

0, otherwise.
2

B. The transmitter

A transmitter wants to communicate over the communication
system described above. At time t, it makes two decisions: it
selects L channels indexed by Lt ⊂ N and chooses resources
{Rit}i∈Lt , Rit ∈ R for those channels. For ease of notation,
we denote these decisions by At = (A1

t , . . . , A
n
t ) and Rt =

(R1
t , . . . , R

n
t ), where Ait = 1 if i ∈ Lt and (Ait, R

i
t) = (0, ∅)

for i 6∈ Lt.
When the system is in state St and the transmitter chooses

to transmit over At channels using Rt resources, we receive
a reward

ρ(St,Rt,At) =
∑
i∈N

ρi(Sit , R
i
t)A

i
t. (1)

After transmitting, the transmitter completely observes the
states S`t for all ` ∈ Lt; it receives no new information
about other channels. We denote this observation by Yt :=
(Y 1
t , . . . , Y

n
t ), where

Y it =

{
Sit , if Ait = 1

E, if Ait = 0,
(2)

where E denotes the event “no observation”.
The decisions At and Rt are chosen based on the history

of observations and decisions up to time t by the following
decision policies:

At = ft(Y0:t−1,R0:t−1,A0:t−1), (3)
Rt = gt(Y0:t−1,R0:t−1,A0:t), (4)

where Y0:t−1 is a short-hand notation for (Y0, . . . ,Yt−1) and
similar interpretations hold for A0:t−1 and R0:t−1. The collec-
tion of decision rules f = (f0, f1, . . . ) and g = (g0, g1, . . . )
are called the channel-selection strategy and the resource
allocation strategy, respectively. We refer to (f , g) as the
communication strategy.

We consider the infinite horizon discounted reward per-
formance metric. Given a discount factor β ∈ (0, 1), the
performance of a communication strategy (f , g) is given by

J(f , g) := E

[ ∞∑
t=0

βtρ(St,Rt,At)

]
. (5)

C. The optimization problem

We are interested in the following optimization problem.

Problem 1 Given a discount factor β ∈ (0, 1), a set of
resources R, and the state space, transition probability, and
reward function (Si, P i, ρi)i∈N for all channels, choose a
communication strategy (f , g) to maximize J(f , g) given
by (5), where the maximum is taken over all history dependent
strategies of the form (3) and (4).

The problem formulated above is a multi-stage optimization
problem where the decision maker has only partial observations
of the state of the channels. Therefore, the system is a partially
observable Markov decision process (POMDP) [17].
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(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Fig. 1. Belief state dynamics for a 3-state channel i in the simplex ∆({1, 2, 3}).
Dashed arrows show a sample realizations of the belief state evolution under
Ai

t = 0 for three time steps and the solid arrow shows a sample realization
of the belief state evolution under Ai

t = 1.

III. SIMPLIFICATION OF THE OPTIMIZATION PROBLEM

A. A simplified belief state for Problem 1

As argued above, Problem 1 is a POMDP. Following standard
results in POMDPs, we define the belief state Θt ∈ ∆(S) of
the system as follows: for any s ∈ S,

Θt(s) = P(St = s |Y0:t−1,R0:t−1,A0:t−1).

Note that Θt is a random variable that takes values in ∆(S).
Using standard results in POMDPs [17], we have the following.

Proposition 1 In Problem 1, Θt is a sufficient statistic for
(Y0:t−1,R0:t−1,A0:t−1). Therefore, the is no loss of optimality
in restricting attention to communication strategies of the form
At = f̃t(Θt) and Rt = g̃t(Θt,At). 2

Note that it is also possible to write a dynamic program using
Θt, but for reasons that will become apparent, we are not
presenting the dynamic program in detail.

We first present a simplified information state. For that matter,
for every i ∈ N , define the belief Πi

t ∈ ∆(Si) as follows: for
any si ∈ Si,

Πi
t(s

i) = P(Sit = si |Y i0:t−1, Ri0:t−1, Ai0:t−1).

Similar to Θt, Πi
t, i ∈ N , are also distribution-valued random

variables. The time evolution of these individual beliefs can
be written as follows. For any t,

Πi
t+1 =

{
Πi
t · P i, if Ait = 0,

δSi
t
, if Ait = 1.

(6)

An example of such dynamics is depicted in Fig. 1.
Our first simplification for the structure of optimal commu-

nication policies is the following.

Proposition 2 For any s ∈ S, we have

Θt(s) =
∏
i∈N

Πi
t(s

i), a.s.. (7)

Let Πt denote (Π1
t , . . . ,Π

n
t ). Then, there is no loss of optimal-

ity in restricting attention to communication strategies of the
form At = f̂t(Πt) and Rt = ĝt(Πt,At). 2

PROOF Eq. (7) follows from the conditional independence
of channels, and the nature of the observation function. The

structure of the optimal policies then follow immediately from
Proposition 1. �

B. The optimal resource allocation strategy

In this section, we show that the optimal rate allocation
strategy can be computed offline. In particular, we have the
following.

Proposition 3 Define ĝi,∗ : ∆(Si)× {0, 1} → R as follows

ĝi,∗(πi, 0) = ∅,

ĝi,∗(πi, 1) = arg max
ri∈R

∑
si∈Si

πi(si)ρi(si, ri).

Let ĝ∗(π) = (ĝ1,∗(π1, 1), . . . , ĝn,∗(πn, 1)). Then, for
any choice of the channel-selection strategy f , the time-
homogeneous strategy (ĝ∗, ĝ∗, . . . ) is an optimal resource
allocation strategy. 2

PROOF We define the expected instantaneous reward as

ρ(Πt,Rt,At) = E[ρ(St,Rt,At)|Πt]

=
∑
i∈N

∑
si∈Si

Πi
t(s

i)ρi(si, Rit)A
i
t. (8)

By (5) and (8), we have

J(f , g) = Ef ,g

[ ∞∑
t=0

βt
∑
i∈N

f(Πi
t)

∑
si∈Si

Πi(si)ρi
(
si, g

(
Πi
t, f(Πi

t)
)) ]

.

Let J∗ := maxf maxg J(f , g) be the optimal performance
measure. The key idea is that the evolution of the belief state
Πt depends only on At and not on Rt as shown in (6). Then,
we have

J∗ = max
f

max
g
Ef ,g

[ ∞∑
t=0

βt
∑
i∈N

f(Πi
t)

∑
si∈Si

Πi
t(s

i)ρi(si, g(Πi
t, f(Πi

t)))

]

= max
f

max
g
Ef

[
Eg

[ ∞∑
t=0

βt
∑
i∈N

f(Πi
t)

∑
si∈Si

Πi
t(s

i)ρi(si, g(Πi
t, f(Πi

t)))

∣∣∣∣Πi
t

]]

= max
f
Ef

[ ∞∑
t=0

βt
∑
i∈N

f(Πi
t)

max
g
Eg

[ ∑
si∈Si

Πi
t(s

i)ρi(si, g(Πi
t, f(Πi

t)))

∣∣∣∣Πi
t

]]

= max
f
Ef

[ ∞∑
t=0

βt
∑
i∈N

f(Πi
t)

max
g

∑
si∈Si

Πi
t(s

i)ρi(si, g(Πi
t, f(Πi

t)))

]
.
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Therefore, there is no loss of optimality to define ĝi,∗ as given
the proposition statement. �

Thus, Rt can be optimized in an open-loop manner. The
strategy given in Proposition 3, denoted by ĝ∗, maximizes
the per-step expected reward.

The timeline of the sequence of events for channel i is shown
below.

. . .→ Πi
t → Ait → Rit → Y it → ρit︸ ︷︷ ︸

time t

→ Πi
t+1 → . . .

At time t, first, the transmitter forms a belief over the true
state of the channel. Then, based on the belief state, it selects
L channels. Then, based on the belief state and the channel-
selection strategy, it specifies the resource allocated to the
channels. Next, it transmits using these resources, and observes
the state of the selected channels and receives a pay-off
accordingly. The process then repeats at time t+ 1.

IV. RESTLESS BANDITS, INDEXABILITY, AND THE
COMPUTATION OF WHITTLE INDEX

Fix the resource allocation strategy as specified in Propo-
sition 3. Then, the problem of choosing the optimal channel-
selection strategy may be viewed as a restless bandit. In
particular, we may think of {Πi

t}t≥0, i ∈ N , as bandit
processes. The transmitter can activate L of these processes.
If processes i is activated in state π, its next state is one of
the “corner” states {δs : s ∈ Si}, where the probability that
the next state is δs is equal to π(s). The activated process also
yields an expected reward

ρ̄i(π) = max
r∈R

∑
s∈Si

π(s)ρi(s, r).

If process i is not activated, it remains passive in state π, then
it does not yield any reward and its next state is π · P i. Thus,
the dynamics of the model are the same as (6) and the per-step
reward function is given by ρ̄i(Πi

t)A
i
t for arm i at time t. Such

a setup is the standard restless bandit model [16].
When a restless bandit problem satisfies a technical condition

known as indexability, then a low-complexity index strategy
known as the Whittle index can be proposed that is optimal
in certain cases [18] and performs close to optimal for many
applications. In the rest of this section, we provide the definition
of indexability, Whittle index and propose an algorithm for
computing the Whittle index.

A. Restless bandit formulation

The main idea of restless bandit formulation is to de-
compose the coupled n-channel optimization problem to n
independent one-channel optimization problems. In particular,
the optimization problem for channel i ∈ N considers the
process {Πi

t}t≥0 with dynamics (6) but a modified per-step
reward of (ρ̄i(π) − λ)ai. One may view λ as the cost for
transmitting over channel i.

The performance of any time-homogeneous policy f̃ i :
∆(Si)→ {0, 1} is given by

J iλ(f̃ i) := E

[ ∞∑
t=0

βt
(
ρ̄i(Πi

t)− λ
)
Ait

]
. (9)

Then, we consider the following optimization problem.

Problem 2 Given channel i ∈ N , the discount factor β ∈
(0, 1), the cost λ ∈ R, and the belief state space, transition
probability, reward function tuple (∆(Si), P i, ρi), choose a
policy f̃ i to maximize J iλ(f̃ i) given by (9).

Problem 2 is a Markov decision process which can be solved
by dynamic programming as explained below.

Theorem 1 Let V iλ : ∆(Si)→ R be the unique fixed point of
equation

V iλ(π) = max
a∈{0,1}

Qiλ(π, a) (10)

where

Qiλ(π, 0) = βV iλ(π · P i)

Qiλ(π, 1) = ρ̄iλ(π)− λ+ β
∑
s∈Si

π(s)V iλ(δs).

Let f̄ iλ(π) denote the arg max of the right hand side of (10)
where we set f̄ iλ(π) = 1 if Qiλ(π, 0) = Qiλ(π, 1). Then, the
time-homogeneous policy f̄ iλ is optimal for Problem 2. 2

PROOF The proof follows immediately from Markov decision
theory. �

B. Indexability and Whittle index

To define indexability of a process, we require the notion
of passive set. The passive set Piλ is the set of states where
being passive is optimal for process i, i.e.,

Piλ =
{
π ∈ ∆(Si) : f̄ iλ(π) = 0

}
.

Definition 1 (Indexability) For any λ1, λ2 ∈ R if Piλ is
weakly increasing in λ, i.e.,

λ1 ≤ λ2 =⇒ Piλ1
⊆ Piλ2

,

then process i is indexable. 2

Definition 2 (Whittle index) The Whittle index of belief
state π of arm i is defined as the smallest value of λ for
which π is not part of the passive set Piλ, i.e.,

wi(π) = inf
{
λ ∈ R : π /∈ Piλ

}
. 2

Equivalently, the Whittle index wi(π) is the smallest value of λ
for which the optimal policy is indifferent between activating
channel i or set it as passive when the belief state of the
channel is π. The restless bandit problem is indexable if all
channels are indexable.
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C. Information states

The dynamic programming of Problem 2 has a continuous
state space, which makes it difficult to solve. In this section, we
introduce a new information state which is countable and at the
same time, equivalent to the belief state. We then use standard
results from countable state MDPs to develop an approximate
dynamic program for Problem 2.

Let Oit ∈ Si denote the last observed state of channel i and
Ki
t ∈ N denote the time since the last observation. Then, we

have

(Oit+1,K
i
t+1) =

{
(Sit , 0) if Ait = 1

(Oit,K
i
t + 1) if Ait = 0.

(11)

Suppose the initial state πi0 is of the form δo0 · (P i)k0 for some
O0 ∈ Si and k0 ∈ Z≥0. Then, we have the following.

Lemma 1 At any time t, Πi
t = δOi

t
· (P i)Ki

t almost surely. 2

PROOF This result can be proved by induction.
• Basis of induction: The initial state πi0 is of the form
δo0 · (P i)k0 for some o0 ∈ Si and k0 ∈ Z≥0.

• Induction step: Now assume that the realization πit−1 is
of the form δoit−1

· (P i)k
i
t−1 . Comparing dynamics (6)

and (11), we get that πit is δoit · (P
i)k

i
t . �

By a slight abuse of notation, define ρ̄i(o, k) = ρ̄i(δo ·(P i)k).
Then, Theorem 1 is equivalent to the following theorem.

Theorem 2 Let W i
λ : Si×Z≥0 → R be the unique fixed point

of the following equation

W i
λ(o, k) = max{βW i

λ(o, k + 1),

ρ̄i(o, k)− λ+ β
∑
s∈Si

(P i)kosW
i
λ(s, 1)}. (12)

Let f̂ iλ(o, k) denote the arg max of the right hand side of (12)
where we set f̂ iλ(o, k) = 1 if the two argument inside max{·, ·}
are equal. Then, the time-homogeneous policy f̂ iλ is optimal
for Problem 2. 2

PROOF The proof follows immediately from Theorem 1 and
Lemma 1. �

D. Finite State Approximation

The dynamic program method described in Theorem 2
has a countable state space. We now provide a finite state
approximation of it.

Theorem 3 Given m ∈ N, let Nm := {0, . . . ,m} and W i
λ,m :

Si × Nm → R denote the unique fixed point of the following
policy equation

W i
λ,m(o, k) = max{βW i

λ,m(o, k + 1 ∧m),

ρ̄i(o, k)− λ+ β
∑
s∈Si

(P i)kosW
i
λ,m(s, 0)}. (13)

Let f̂ iλ,m(o, k) denote the arg max of the right hand side of
(13) where we set f̂ iλ,m(o, k) = 1 if the two argument inside

max{·, ·} are equal. Then, we have the following:
(i) Let ρi,λmax = maxo,k ρ

i(o, k)− λ, then

‖W i
λ(o, 0)−W i

λ,m(o, 0)‖∞ ≤
βm+1ρi,λmax

1− β
,∀o ∈ Si.

(ii) limm→∞W i
λ,m(o, k) = W i

λ(o, k), ∀(o, k) ∈ Si × Z≥0.
(iii) Let f̂ i,∗λ (·, ·) be any fixed point of {f̂ iλ,m(·, ·)}m≥1. Then,
the policy f̂ i,∗λ (·, ·) is optimal for Problem 2. 2

PROOF (i): The payoff obtained by the approximate optimal
policy starting from (o, 0), ∀o ∈ Si would be the same as
the optimal for times {0, . . . ,m} and after that the per-step
pay-off would differ at most ρi,λmax. Thus, the bound holds.
(ii) & (iii): The sequence of finite-state models described
above is an augmentation type approximation sequence (see
[19, Definition 2.5.3]). As a result, a limit point of f̂ i,∗λ exists
and the final result holds [19, Proposition B.5, Theorem 4.6.3].

E. Whittle index calculations

In this section, we demonstrate a set of algorithms by which
the Whittle index policy is constructed. The first one is a binary
search algorithm by which Whittle index for each information
state of a channel is obtained. By an abuse of notation, we use
wi(o, k) to denote Whittle index of information state (o, k) for
channel i.

Let us assume that there are activation costs LB and UB such
that f̂ i

LB
(o, k) = 1 and f̂ i

UB
(o, k) = 0 for all (o, k) ∈ Si ×Nm.

Given any λ ∈ R, we define the next critical cost as

Λic(λ) = inf{wi(o, k) : λ < wi(o, k), o ∈ Si, k ∈ Nm}.

If no such wi(o, k) exists then we set Λic(λ) = ∞. An
algorithm to compute the critical cost is given in Alg. 1 where
the policy f̂ iλ for a given λ is computed using the approximate
dynamic programming of Theorem 3.

Algorithm 1 Critical Cost Finder: Λic(λ)

1: Input: λ, UB, ε
2: λl ← λ, λu ← UB

3: if f̂ iλu
= f̂ iλ then

4: return ∞
5: end if
6: while |λu − λl| ≥ ε do
7: λc ← (λl + λu)/2
8: if f̂ iλc

= f̂ iλl
then

9: λl ← λc
10: else
11: λu ← λc
12: end if
13: end while
14: return λu

The calculation of the Whittle index is carried out in Alg. 2.
This algorithm is constructing {wi(o, k) : o ∈ Si, k ∈ Nm}
in an ascending manner while ensuring that the passive sets
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Algorithm 2 Whittle Index Calculation
1: Input: i, LB, UB, ε
2: λl ← LB

3: while Pλl
6= Si × Nm do

4: Compute λc = Λic(λl) (using by Alg. 1)
5: M0 = {(o, k) : f̂ iλc

(o, k) = 1 and f̂ iλl
(o, k) = 0}

6: M1 = {(o, k) : f̂ iλc
(o, k) = 0 and f̂ iλl

(o, k) = 1}
7: if M1 6= ∅ then
8: return “The problem is not indexable.”
9: else

10: wi(o, k)← λc, for all (o, k) ∈M0.
11: λl = λc
12: end if
13: end while
14: return wi(o, k) for all (o, k) ∈ Si × Nm.

are increasing. Fig. 2 presents an illustrative example of it.
Note that if we find two values λ1 and λ2 in the above set
such that λ1 ≤ λ2 but M1 6= ∅, that means that Pλ1 6⊆ Pλ2

and therefore, the process is not indexable. If M1 = ∅, the by
definition, the process is indexable and we identify the Whittle
index.

As the final step, the Whittle index heuristic prescribes that
at each time, obtain the Whittle index corresponding to current
information state of all channels and transmit over the L
channels with the smallest Whittle index. The algorithm is
shown in Alg. 3.

Algorithm 3 Whittle Index Heuristic
1: Compute wi(oi, k), ∀k ∈ Nm, ∀oi ∈ Si, and ∀i ∈ N by

Alg. 2.
2: t = 0.
3: while t ≥ 0 do
4: Observe (Oit,K

i
t), ∀i ∈ N .

5: Transmit over the channels with the L smallest
wi(Oit,K

i
t) using the resources gi,∗(δOi

t
· (P i)Ki

t , 1).
6: t = t+ 1.
7: end while

V. CONCLUSION

We consider dynamic spectrum access for transmitting over
multiple channels with partially observed channel state. We
model this problem as a POMDP and identified a simplified
information state. To circumvent the curse of dimensionality,
we convert the POMDP to a restless bandit and use the
Whittle index heuristic. There are two challenges in using the
Whittle index heuristic for belief-valued processes: (i) showing
that the model is indexable and (ii) computing the Whittle
index. We exploit the structure of the reachable set of beliefs
to convert the belief-valued process into a countable-state
process and then approximate the countable-state process by a
finite-state process. This approximation allows us to develop
low-complexity algorithms to check whether each channel

λ

(1)(2)(3) (4) (5)

LB UB
w(1, 1) w(1, 2) w(2, 1) w(2, 2)

Fig. 2. The figure depicts the binary search algorithm to find the Whittle
indices sequentially from left to right. The dashed arrows show the points
selected by Alg. 1 sequentially labeled to find w(1, 1) using LB and UB. To
find w(1, 2), Alg. 1 starts using w(1, 1) and UB as the bounds.

is indexable and if so, compute the Whittle index for each
information state.
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