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Abstract— We consider restless bandits with restarts, where
the state of the active arms resets according to a known
probability distribution while the state of the passive arms
evolves in a Markovian manner. We assume that the state of the
arm is observed after it is reset but not observed otherwise. We
show that the model is indexable and propose an efficient
algorithm to compute the Whittle index by exploiting the
qualitative properties of the optimal policy. A detailed numerical
study of machine repair models shows that Whittle index policy
outperforms myopic policy and is close to optimal policy.

I. INTRODUCTION

Resource allocation and scheduling problems arise in
various applications including telecommunication networks,
patient prioritization, machine maintenance, and sensor man-
agement. Identifying the optimal policy in such models suffers
from the curse of dimensionality because the state space is
exponential in the number of alternative. Restless bandits is
a widely-used solution framework for such models [1]–[12].

The key idea behind the restless bandit solution framework
is as follows. For each alternative or arm, we assign an index
(called the Whittle index) to each state and then, at each time,
sort the arms accordingly to the Whittle index of their current
state and play the arms with top-m indices. The resulting
policy is called the Whittle index policy [13].

The key features of the Whittle index policy are as follows.
First, it is a scalable heuristic because its complexity is linear
in the number of arms. Second, although it is a heuristic,
there are certain settings where it is optimal [14]–[17] and,
in general, it performs close to optimal in many instances
[10], [18]–[21].

Nonetheless, there are two challenges in using the Whittle
index policy. First, the Whittle index heuristic is applicable
only when a technical condition known as indexability is
satisfied. There is no general test for indexability, and the
existing sufficient conditions are for specific models [10], [19],
[20], [22]–[25]. Second, for some models, there are closed-
form expressions to compute the Whittle index [3]–[6], [10],
[21], [24], [26] but, in general, the Whittle index policy has
to be computed numerically. For a subclass of restless bandits
which satisfy an additional technical condition known as PCL
(partial conservation law), the Whittle index can be computed
using an algorithm called the adaptive greedy algorithm [18],
[27]. Recently, [26] presented a generalization of adaptive
greedy algorithm which is applicable to all indexable restless
bandits.

We are interested in resource allocation and scheduling
problems where the state of each arm is not fully-observed.

Such partially observable restless bandit models are concep-
tually and computationally more challenging. The sufficient
conditions for indexability that are derived for fully-observed
bandits [10], [13], [15], [24], [26], [28] are not directly
applicable to the partially observable setting. The existing
literature on partially observable restless bandits often restricts
attention to models where each arm has two states [1]–[5],
[9], [11], and some time, it is also assumed that the two states
are positively correlated [3]–[5]. There are very few results
for general state space models under partial observability [6],
[7], [12], [29], [30], and, for such models, indexability is
often verified numerically.

We focus on a class of partially observable restless multi-
armed bandits where choosing an arm resets its state. This
property was considered in [21] and has applications in
healthcare and machine maintenance [10], [30].

The main contributions of our paper are as follows:
• We investigate partially observable restless bandits with

restart and show that the model is indexable.
• We provide a refinement of the adaptive greedy algorithm

of [26] to efficiently compute the Whittle index.
• We present a detailed numerical study which illustrates

that the Whittle index policy performs close to optimal
for small scale systems and outperforms a commonly
used heuristic (the myopic policy) for large-scale sys-
tems.

The organization of the paper is as follows. In Section II,
we formulate the restless bandit problem under partial
observations for two different models. Then, we define a
belief state by which the partially-observable problem can
be converted into a fully-observable one. In Section III, we
present a short overview of restless bandits. In Section IV,
we show the restless bandit problem is indexable for both
models and present a general formula to compute the index. In
Section V, we present a countable state representation of the
belief state and use it to develop methods to compute Whittle
index. In Section VI, we present a detailed numerical study
which compares the performance of Whittle index policy with
two baseline policies. Finally, we conclude in Section VII.

A. Notations and Definitions

We use I as the indicator function, E as the expectation
operator, P as the probability function, R as the set of
real numbers, Z as the set of integers and Z≥0 as the set
of nonnegative integers. Calligraphic alphabets are used to
denote sets, bold variables are used for the vector of variables.
For a finite set X , P(X ) denotes the set of probability



distributions on X . Superscript i is used to index arms and
subscript t is used for time t and subscript 0:t shows the
history of the variable from time 0 up to time t.

Given ordered sets X and Y , a function f : X ×Y → R is
called submodular if for any x1, x2 ∈ X and y1, y2 ∈ Y such
that x2 ≥ x1 and y2 ≥ y1, we have f(x1, y2)− f(x1, y1) ≥
f(x2, y2)− f(x2, y1). Furthermore, the transition probability
matrix P is stochastic monotone if for any x, y ∈ X such
that x < y, we have

∑
w∈X≥z

Pxw ≤
∑

w∈X≥z
Pyw for any

z ∈ X .
Given a set Z , span(Z) denotes the span-norm of the set.

II. MODEL AND PROBLEM FORMULATION

A. Restless Bandit Process with restart

A discrete-time restless bandit process (or arm) is a con-
trolled Markov process (X , {0, 1}, {P (a)}a∈{0,1}, c, π0,Y)
where X denotes the finite set of states; {0, 1} denotes the
action space where the action 0 is called the passive action
and the action 1 is the active action; P (a), a ∈ {0, 1},
denotes the transition matrix when action a is chosen;
c : X × {0, 1} → R≥0 denotes the cost function; π0 denotes
the initial state distribution.

In this paper, we assume that the transitions under active
action satisfy the restart property, i.e., Px·(1) = Q, for all
x ∈ X , where Q is a known probability mass function (pmf).
An operator has to select m < n arms at each time but does
not observe the state of the arms.

We assume that the operator observes the state of the arm
after it has been reset, i.e.,

Y i
t+1 =

{
E if Ai

t = 0

Xi
t+1 if Ai

t = 1
, i ∈ N , (1)

We use Yi = X i ∪ {E} to denote the observation alphabet
for arm i.

B. Partially-observable Restless Multi-armed Bandit Problem

A partially-observable restless multi-armed bandit (PO-
RMAB) problem is a collection of n independent
arms (X i, {0, 1}, {P i(a)}a∈{0,1}, c

i, πi
0), i ∈ N :=

{1, . . . , n}.
Let X :=

∏
i∈N X i, A(m) :=

{
(a1, . . . , an) ∈ {0, 1}n :∑

i∈N ai ≤ m
}

, and Y :=
∏

i∈N Yi denote the combined
state, action, and observation spaces, respectively. Also, let
Xt = (X1

t , . . . X
n
t ) ∈ X , At = (A1

t , . . . , A
n
t ) ∈ A(m), and

Y t = (Y 1
t , . . . Y

n
t ) ∈ Y denote the combined states, actions

taken, and observations made by the operator at time t ≥ 0.
Due to the independent evolution of each arm, for each
realization x0:t of X0:t and a0:t of A0:t, we have

P(Xt+1 = xt+1|X0:t = x0:t,A0:t = a0:t)

=
∏
i∈N

P(Xi
t+1 = xi

t+1|Xi
t = xi

t, A
i
t = ait)

=
∏
i∈N

P i
xi
t,x

i
t+1

(ait).

When the system is in state xt and take action at, the
system incurs a cost c(xt,at) :=

∑
i∈N ci(xi

t, a
i
t). The

decision at time t is chosen according to

At = gt(Y 0:t−1,A0:t−1), (2)

where gt is the (history dependent) policy at time t. Let g =
(g1, g2, . . .) denote the policy for infinite time horizon and let
G denote the family of all such policies. Let π0 =

⊗
i∈N πi

0

denote the initial state distribution of all arms. Then, the
performance of policy g is given by

J (g)(π0) := (1− β)E

[ ∞∑
t=0

βt
∑
i∈N

ci(Xi
t , A

i
t)

∣∣∣∣Xi
0 ∼ πi

0,

∀i ∈ N

]
,

(3)
where β ∈ (0, 1) denotes the discount factor.

Formally, the optimization problem of interest is as follows:
Problem 1: Given a discount factor β ∈ (0, 1), the total

number n of arms, the number m to be selected, the system
model {(X i, {0, 1}, P i(a), ci, πi

0,Yi)}i∈N of each arm, and
the observation model at the operator, choose a Markov policy
g ∈ G that minimizes J (g)(π0) given by (3).

Problem 1 is a POMDP and the standard methodology
to solve POMDPs is to convert them to a fully observable
Markov decision process (MDP) by viewing the “belief state”
as the information state of the system [31].

C. Belief State

Let us define the operator’s belief Πi
t ∈ P(X i) on the state

of arm i at time t as follows: for any, xi
t ∈ X i, let Πi

t(x
i
t) :=

P(Xi
t = xi

t |Y i
0:t−1, A

i
0:t−1). Note that Πi

t is a distribution-
valued random variable. Also, define Πt := (Π1

t , . . . ,Π
n
t ).

Then, for arm i, the evolution of the belief state is as
follows:

Πi
t+1 =

{
Πi

tP, if Ai
t = 0,

δi
Xi

t+1
where Xi

t+1 ∼ Q, if Ai
t = 1.

(4)

The per-step cost function of the belief state Πi
t when action

Ai
t is taken is

c̄(Πi
t, A

i
t) = E[c

i
t(X

i
t , A

i
t)|Y i

0:t−1, A
i
0:t−1]

=
∑
x∈X i

Πi
t(x)c

i(x,Ai
t).

Define the combined belief state Θt ∈ P(X ) of the system
as follows: for any x ∈ X ,

Θt(x) = P(Xt = x |Y 0:t−1,A0:t−1).

Note that Θt is a random variable that takes values in
P(X ). Using standard results in POMDPs [31], we have
the following.

Proposition 1: In Problem 1, Θt is a sufficient statistic for
(Y 0:t−1,A0:t−1). Therefore, there is no loss of optimality in
restricting attention to decision policies of the form At =
gbelief
t (Θt). Furthermore, an optimal policy with this structure

can be identified by solving an appropriate dynamic program.
Next, we present our first simplification for the structure of
optimal decision policy as follows.



Proposition 2: For any x ∈ X , we have

Θt(x) =
∏
i∈N

Πi
t(x

i), a.s.. (5)

Therefore, there is no loss of optimality in restricting
attention to decision policies of the form At = gsimple

t (Πt).
Furthermore, an optimal policy with this structure can be
identified by solving an appropriate dynamic program.

Proof: Eq. (5) follows from the conditional indepen-
dence of the arms, and the nature of the observation function.
The structure of the optimal policies then follow immediately
from Proposition 1.

In Propositions 1 and 2, we do not present the DPs because
they suffer from the curse of dimensionality. In particular,
obtaining the optimal policy for PO-RMAB is PSPACE-
hard [32]. So, we focus on the Whittle index heuristics to
solve the problem.

III. WHITTLE INDEX POLICY SOLUTION CONCEPT

For the ease of notation, we will drop the superscript i
from all relative variables for the rest of this and the next
sections.

Consider an arm (X , {0, 1}, {P (a)}a∈{0,1}, c, π0,Y) with
a modified per-step cost function

c̄λ(π, a) := c̄(π, a)+λa, ∀π ∈ P(X ),∀a ∈ {0, 1}, λ ∈ R.
(6)

The modified cost function implies that there is a penalty of
λ for taking the active action. Given any time-homogeneous
policy g : P(X ) → {0, 1}, the modified performance of the
policy is

J
(g)
λ (π0) := (1− β)E

[ ∞∑
t=0

βtc̄λ(Πt, g(Πt))

∣∣∣∣X0 ∼ π0

]
. (7)

Subsequently, consider the following optimization problem.
Problem 2: Given an arm (X ,Y, {0, 1}, {P (a)}a∈{0,1}, c, π0),

the discount factor β ∈ (0, 1) and the penalty λ ∈ R, choose
a Markov policy g : P(X ) → {0, 1} to minimize J

(g)
λ (π0)

given by (7).
Problem 2 is a Markov decision process where one may

use dynamic programming to obtain the optimal solution as
follows.

Proposition 3: Let Vλ : P(X ) → R be the unique fixed
point of equation

Vλ(π) = min
{
(1− β)c̄λ(π, 0) + βVλ(πP ),

(1− β)c̄λ(π, 1) + β
∑
x∈X

QxVλ(δx)
}

(8)

Let gλ(π) denote the argmin of the right hand side of (8).
We set gλ(π) = 1 if the two argument inside min{·, ·} are
equal. Then, the time-homogeneous policy gλ is optimal for
Problem 2.

Proof: The result follows immediately from Markov
decision theory [33].

Finally, we present the following definitions.

Definition 1 (Passive Set): Given penalty λ, define the
passive set Wλ as the set of states where passive action
is optimal for the modified arm, i.e.,

Wλ := {π ∈ Π : gλ(π) = 0} .
Definition 2 (Indexability): an arm is indexable if Wλ is

weakly increasing in λ, i.e., for any λ1, λ2 ∈ R,

λ1 ≤ λ2 =⇒ Wλ1 ⊆ Wλ2 .
A restless multi-armed bandit problem is indexable if all n
arms are indexable.

Definition 3 (Whittle index): The Whittle index of the
state x of an arm is the smallest value of λ for which state π
is part of the passive set Wλ, i.e.,

w(π) = inf {λ ∈ R : x ∈ Wλ} .
Equivalently, the Whittle index w(π) is the smallest value
of λ for which the optimal policy is indifferent between the
active action and passive action when the belief state of the
arm is π.

The Whittle index policy is as follows: At each time
step, select m arms which are in states with the highest
indices. The Whittle index policy is easy to implement and
efficient to compute but it may not be optimal. As mentioned
earlier, Whittle index is optimal in certain cases [14]–[17]
and performs close to optimal for many other cases [10],
[18]–[21].

IV. INDEXABILITY AND THE CORRESPONDING WHITTLE
INDEX

Given an arm, let Σ denote the family of all stopping times
with respect to the natural filtration associated with {Πt}t≥0.
For any stopping time τ ∈ Σ and an initial belief state π ∈ Π,
define

L(π, τ) := E

[ τ−1∑
t=0

βtc̄(Πt, 0) + βτ c̄(Πτ , 1)
∣∣∣ Π0 = π

]
,

B(π, τ) := E[βτ |Π0 = π].

Theorem 1: The PO-RMAB defined in Section II is in-
dexable. In particular, each arm is indexable and the Whittle
index is given by

w(π) = inf {λ ∈ R : G(π) < Wλ} ,

where

G(π) := (1− β) inf
τ∈Σ

L(π, τ)− c̄(π, 1)

1−B(π, τ)
, (9)

Wλ := λ+ β
∑
x∈X

QxVλ(δx). (10)

Proof: First, we assert that Vλ(π) and Wλ are strictly
increasing in λ for any π ∈ Π which hold due to the fact
that c̄λ(π, a) is increasing in λ, π ∈ Π and a ∈ {0, 1}. From
[21, Lemma 2], we know that the passive set

Wλ = {π ∈ Π : G(π) < Wλ} . (11)

Note that G(π) does not depend on λ while we showed
that Wλ is strictly increasing in λ. Hence, Wλ is increasing
in λ. Thus arm i is indexable. The expression for the Whittle
index in the Theorem 1 follows immediately from (11).



(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Fig. 1: Belief state dynamics for a 3-state arm i in the sim-
plex P({1, 2, 3}). Dashed arrows show a sample realizations
of the belief state evolution under At = 0 for three time steps
and the solid arrow shows a sample realization of the belief
state evolution under At = 1.

V. WHITTLE INDEX COMPUTATION

Computing the Whittle index using the belief state repre-
sentation is intractable in general. Inspired by the approach
taken in [34], we introduce a new information state which is
equivalent to the belief state.

A. Information state

Assumption 1: The initial belief state π0 ∈ R :=
{
δsP

k :
s ∈ X , k ∈ Z≥0

}
.

Define a process {St,Kt}t≥0 as follows. The initial state
(s0, k0) is such that π0 = δs0P

k0 and for t > 0, Kt evolves
according to

Kt =

{
0, if At−1 = 1

Kt−1 + 1, if At−1 = 0
(12)

and St evolves according to

St =

{
Xt−1 where Xt−1 ∼ Q, if At−1 = 1

St−1, if At−1 = 0.
(13)

Note that once the first observation has been taken, Kt

denotes the time elapsed since the last observation of arm i
and St denotes the last observed states of arm i. Let St :=
(S1

t , . . . S
n
t ) and Kt := (K1

t , . . .K
n
t ). The relation between

the belief state Πt and variables St and Kt is characterized
in the following lemma.

Lemma 1: Under Assumption 1, for any i ∈ N and any t,
Πt ∈ R. In particular, Πt = δStP

Kt .
Proof: The results immediately follow from (4), (12),

and (13).
The expected per-step cost at time t may be written as

c̄(St,Kt, At) := c̄(δSt
PKt , At) =

∑
x∈X

[δSt
PKt ]xc(x,At).

(14)

and the total expected per-step cost incurred at time t may
be written as c̄(St,Kt,At) :=

∑n
i=1 c̄(St,Kt, At).

Proposition 4: In Problem 1, there is no loss of optimality
in restricting attention to decision policies of the form At =
ginfo
t (St,Kt).

Proof: This result immediately follows from Lemma 1
and (14).

Next, assume the following property holds:
(P) For every λ ∈ R, there exists a vector (θs,λ)s∈X , where

θs,λ ∈ Z≥−1 such that the semi-threshold policy

gλ(s, k) =

{
0, k < θs,λ

1, otherwise.

is optimal for Problem 2.

B. Structural properties of the optimal policy

In the following theorem, we show that the optimal policy
has a threshold structure with respect to the second dimension
of the information state.

Theorem 2: A sufficient condition for Property (P) to hold
is the following: Let c(x, a) = (1− a)ϕ(x) + aρ(x) where
ϕ : X → [0, ϕmax) and ρ : X → [0, ρmax) are increasing
functions in X and c(x, a) is submodular in (x, a).
The proof is omitted due to space constraints. See [35] for
details.

We use θ to denote the vector (θs)s∈X .

C. Performance of threshold based policies

We simplify the notation and denote a threshold-based
policy by θ instead of g(θ).

Let J (θ)
λ (s, k) be the total discounted cost incurred under

policy g(θ) with penalty λ when the initial information state
is (s, k), i.e., J (θ)

λ (s, k) is equal to

(1− β)E

[ ∞∑
t=0

βtc̄λ(St,Kt, g
(θ)(St,Kt))

∣∣∣ S0 = s

K0 = k

]
=: D(θ)(s, k) + λN (θ)(s, k), (15)

where D(θ)(s, k) is

(1−β)E

[ ∞∑
t=0

βtc̄(St,Kt, g
(θ)(St,Kt))

∣∣∣ (S0,K0) = (s, k)

]
,

and N (θ)(s, k) is

(1− β)E

[ ∞∑
t=0

βtg(θ)(St,Kt)
∣∣∣ (S0,K0) = (s, k)

]
.

We will show (see Theorem 4) that Whittle index can be
computed as a function of D(θ)(s, k) and N (θ)(s, k). But first
let’s define vector J

(θ)
λ (0) = (J

(θ)
λ (1, 0), . . ., J (θ)

λ (|X |, 0))
and vectors D(θ)(0) and N (θ)(0) in a similar manner. Then,
from (15), J (θ)

λ (0) = D(θ)(0)+λN (θ)(0). Let’s also define

L(θ)(s, k) := (1− β)

θs−1∑
t=k

βt−k c̄(s, t, 0)

+ (1− β)βθs−k c̄(s, θs, 1),

M (θ)(s, k) := (1− β)βθs−k.

Let L(θ)(0) = (L(θ)(1, 0), . . . , L(θ)(|X |, 0)) and
M (θ)(0) = (M (θ)(1, 0), . . . ,M (θ)(|X |, 0)).

Theorem 3: For any (s, k) ∈ X ×Z≥0, we have

D(θ)(s, k) = L(θ)(s, k) + βθs−k+1
∑
r∈X

QrD
(θ)(r, 0),



N (θ)(s, k) = M (θ)(s, k) + βθs−k+1
∑
r∈X

QrN
(θ)(r, 0).

Let Z(θ) be a |X | × |X | matrix where Z
(θ)
sr = βθs+1Qr,

for any s, r ∈ X . Then, D(θ)(0) = (I − Z(θ))−1L(θ)(0),
and N (θ)(0) = (I − Z(θ))−1M (θ)(0).

D. Whittle index

In this section, we provide an efficient algorithm to compute
the Whittle index.

1) Modified adaptive greedy algorithm. : As Kt ∈ Z≥0,
let Nℓ := {0, . . . , ℓ} where ℓ ∈ N denote the truncated space
such that Kt ∈ Nℓ. Let B = |X |(ℓ + 1) and BD(≤ B)
denote the number of distinct Whittle indices. Let Λ∗ =
{λ0, λ1, . . . , λBD

} where λ1 < λ2 < . . . < λBD
denote the

sorted distinct Whittle indices with λ0 = −∞. Let Wb :=
{(s, k) ∈ X × Nℓ : w(s, k) ≤ λb}. For any subset S ⊆
X ×Nℓ, define the policy ḡ(S) : X ×Nℓ → {0, 1} as

ḡ(X )(s, k) =

{
0, if (s, k) ∈ S
1, if (s, k) ∈ (X ×Nℓ)\S.

Given Wb, define Φb = {(s, k) ∈ (X × Nℓ) \ Wb :
(s,max{0, k − 1}) ∈ Wb} and Γb+1 = Wb+1\Wb. Addi-
tionally, for any b ∈ {0, . . . , BD − 1}, and all states y ∈ Φb,
define hb = ḡ(Wb), hb,y = ḡ(Wb∪{y}) and Λb,y = {(x, k) ∈
(X × Nℓ) : N (hb)(x, k) ̸= N (hb,y)(x, k)}. Then, for all
(x, k) ∈ Λb,y , define

µb,y(x, k) =
D(hb,y)(x, k)−D(hb)(x, k)

N (hb)(x, k)−N (hb,y)(x, k)
. (16)

Lemma 2: For d ∈ {0, . . . , BD − 1}, we have the follow-
ing:

1) For all y ∈ Γb+1, we have w(y) = λb+1.
2) For all y ∈ Φb and λ ∈ (λb, λb+1], we have

J
(hb,y)
λ (x) ≥ J

(hb)
λ (x) for all x ∈ X with equality

if and only if y ∈ Wb+1\Wb and λ = λb+1.
Proof: The result follows from [26, Lemma 3]. The

only difference is that since we know from Theorem 2 that
the optimal policy is a threshold policy with respect to the
second dimension, we restrict to y ∈ Φb.

Theorem 4: The following properties hold:
1) For any y ∈ Γb+1, the set Λb,y is non-empty.
2) For any x ∈ Λb,y , µb,y(x) ≥ λb+1 with equality if and

only if y ∈ Γb+1.
Proof: The result follows from [26, Theorem 2]. Similar

to Lemma 2, we consider y ∈ Φb.
By Theorem 4, we can find the Whittle indices itera-
tively. This approach is summarized in Algorithm 1. For a
computationally-efficient implementation using the Sherman-
Morrison formula, see [26, Algorithm 2].

VI. NUMERICAL ANALYSIS

We conduct numerical experiments for a machine mainte-
nance problem, and analyze how varying the number n of
machines, the number m of service-persons and the parame-
ters associated with each machine affects the performance.

Algorithm 1: Computing Whittle index of all infor-
mation states

input : RB (X , {0, 1}, P,Q, c, ρ), discount factor β.
Initialize b = 0, Wb = ∅.
while Wb ̸= X ×Nℓ do

Compute Λb,y and µb,y(x) using (16), ∀y ∈ Φb.
Compute µ∗

b,y = minx∈Λb,y
µb,y(x), ∀y ∈ Φb.

Compute λb+1 = miny∈Φb
µ∗
b,y .

Compute Γb+1 = argminy∈Φb
µ∗
b,y .

Set w(z) = λb+1, ∀z ∈ Γb+1.
Set Wb+1 = Wb ∪ Γb+1.
Set b = b+ 1.

Consider a maintenance company monitoring n machines
which are deteriorating independently over time. Each ma-
chine has multiple deterioration states sorted from pristine
to ruined levels. We assume that replacing the machine is
relatively inexpensive, and when a service-person visits a
machine, he simply replaces it with a new one. Due to
manufacturing mistakes, all the machines may not be in
pristine state when installed. There is a cost associated with
each state of the machine, and we are interested in determining
a scheduling policy to decide which machines should be
serviced at each time.

A. Policies Compared

We compare the performance of the following policies:
OPT: the optimal policy obtained using dynamic programming.

As discussed earlier, the dynamic programming compu-
tation to obtain the optimal policy suffers from the curse
of dimensionality. Therefore, the optimal policy can be
computed only for small-scale models.

MYP: myopic policy, which is a heuristic which sequentially
selects m machines as follows. Suppose ℓ < m machines
have been selected. Then select machine ℓ + 1 to be
the machine which provides the smallest increase in the
total per-step cost. The detailed description for model B
is shown in Alg. 2.

WIP: whittle index heuristic, as described in this paper.

B. Experiments and Results

There are three parameters associated with each machine:
the deterioration probability matrix P i, the reset pmf Qi

and the per-step cost ci(x, a). We assume the matrix P i is
chosen from a family of four types of structured transition
matrices Pℓ(p), ℓ ∈ {1, 2, 3, 4} where p is a parameter of
the model. The details of all these models are presented in
Appendix . We assume each element of Qi is sampled from
Exp(1), i.e., exponential distribution with the rate parameter
of 1, and then normalized such that sum of all elements
becomes 1. Finally, we assume that the per-step cost is given
by ci(x, 0) = (x− 1)2 and ci(x, 1) = 0.5|X i|2.

In all experiments, the discount factor is β = 0.99. The
performance of every policy is evaluated using Monte-Carlo
simulation of length 1000 averaged over 5000 sample paths.



Algorithm 2: Myopic Heuristic (Model B)
input : RB (X , {0, 1}, P,Q, c, ρ), discount factor β,

m.
Initialize t = 0.
while t ≥ 0 do

Set ℓ = 0.
while ℓ ≤ m do

Compute
i∗ℓ ∈ argmini∈Z

∑
j∈Z\{i} c̄

j(Sj
t ,K

j
t , 0) +

c̄i(Si
t ,K

i
t , 1).

Let M = M∪ {i∗ℓ}, Z = Z \ {i∗ℓ}.
Set ℓ = ℓ+ 1.

Service the machines with indices collected in M.

Update Ki
t according to (12) and Si

t according to
(13) for all i ∈ N .

Set t = t+ 1.

TABLE I: αOPT for different choice of parameters in Experi-
ment 1.

ℓ 1 2 3 4

αOPT 100.0 99.72 99.81 99.57

In Experiment 1, we consider a small scale problem where
we can compute OPT and we compare the performance of WIP
with it. However, in Experiment 2, we consider a large scale
problem where we compare the performance of WIP with MYP
as computing the optimal policy is highly time-consuming.

Experiment 1) Comparison of Whittle index with the opti-
mal policy: In this experiment, we compare the performance
of WIP with OPT. We assume |X | = 4, (ℓ + 1) = 4 and
n = 3, m = 1. In order to model heterogeneous machines, we
consider the following. Let (p1, . . . , pn) denote n equispaced
points in the interval [0.05, 0.95]. Then we choose Pℓ(pi) as
the transition matrix of machine i. We denote the accumulated
discounted cost of WIP and OPT by J(WIP) and J(OPT),
respectively. In order to have a better perspective of the
performances, we compute the relative performance of WIP
with respect to OPT by computing

αOPT = 100× J(OPT)

J(WIP)
. (17)

The closer α is to 100, the closer WIP is to OPT. The results
of αOPT for different choice of the parameters are shown in
Table I.

Experiment 2) Comparison of Whittle index with the
myopic policy for structured models.: In this experiment,
we increase the state space size to |X | = 20 and we set
(ℓ + 1) = 40, we select n from the set {20, 40, 60} and m
from the set {1, 5}. We denote the accumulated discounted
cost of MYP by J(MYP). In order to have a better prospective
of the performances, we compute the relative improvement

TABLE II: εMYP for different choice of parameters in Experi-
ment 2.

(a) m = 1

εMYP
ℓ

1 2 3 4

n
20 7.88 11.4 9.66 10.2
40 12.1 14.6 13.4 7.19
60 14.5 12.9 11.8 6.06

(b) m = 5

εMYP
ℓ

1 2 3 4

n
20 0.77 1.43 0.88 3.72
40 1.49 3.96 3.76 8.59
60 4.13 5.45 4.92 8.37

of WIP with respect to MYP by computing

εMYP = 100× J(MYP)− J(WIP)

J(MYP)
. (18)

Note that εMYP > 0 means that WIP performs better than
MYP. We generate structured transition matrices, similar
to Experiment 1, and apply the same procedure to build
heterogeneous machines. The results of εMYP for different
choice of the parameters are shown in Table II, respectively.

C. Discussion

In Experiment 1 where WIP is compared with OPT, we
observe αOPT is very close to 100 for almost all experiments,
implying that WIP performs as well as OPT for these
experiments.

In Experiment 2 where WIP is compared with MYP, we
observe εMYP ranges from 0.15% to 14.5% which in overall,
shows that WIP outperforms MYP considerably.

Furthermore, we observe that as n increases, εMYP also
increases in general. Also, as m increases, εMYP decreases in
general. This suggests that as m increases, there is an overlap
between the set of machines chosen according to WIP and
MYP, and hence, the performance of WIP and MYP become
close to each other.

VII. CONCLUSION

We investigated partially observable restless bandits. Unlike
most of the existing literature which restricts attention to
models with binary state space, we do not impose such as
assumption. To compute the Whittle index, we work with
a countable space representation rather than the belief state
representation. We established certain qualitative properties
of the auxiliary problem to compute the Whittle index. In
particular, for both models we showed that the optimal policies
of the auxiliary problem satisfy threshold properties. We
used the threshold policy to present a refinement of the
adaptive greedy algorithm of [26] to compute the Whittle
index. Finally, we presented a detailed numerical study of
a machine maintenance model. We observed that for small-
scale models, the Whittle index policy is close-to-optimal and



for large-scale models, the Whittle index policy outperforms
the myopic policy baseline.

APPENDIX

Consider a Markov chain with n states. Then a family of
structured stochastic monotone matrices which dominates the
identity matrix is illustrated below.

1) Matrix P1(p): Let q1 = 1− p and q2 = 0. Then,

P1(p) =


p q1 q2 0 0 0 0 . . . 0
0 p q1 q2 0 0 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 p q1 + q2
0 0 0 0 0 0 0 . . . 1

 .

2) Matrix P2(p): Similar to P1(p) with q1 = (1− p)/2
and q2 = (1− p)/2.

3) Matrix P3(p): Similar to P1(p) with q1 = 2(1− p)/3
and q2 = (1− p)/3.

4) Matrix P4(p): Let qi = (1− p)/(n− i). Then,

P4(p) =


p q1 q1 . . . q1 q1
0 p q2 . . . q2 q2
...

...
...

...
...

...
0 0 0 . . . p qn−1

0 0 0 . . . 0 1

 .

REFERENCES

[1] R. Meshram, D. Manjunath, and A. Gopalan, “On the Whittle index
for restless multiarmed hidden Markov bandits,” IEEE Trans. Autom.
Control, vol. 63, no. 9, pp. 3046–3053, 2018.

[2] S. Guha, K. Munagala, and P. Shi, “Approximation algorithms for
restless bandit problems,” Journal of the ACM (JACM), vol. 58, no. 1,
p. 3, 2010.

[3] K. Kaza, R. Meshram, V. Mehta, and S. N. Merchant, “Sequential
decision making with limited observation capability: Application to
wireless networks,” IEEE Transactions on Cognitive Communications
and Networking, vol. 5, no. 2, pp. 237–251, 2019.

[4] K. Kaza, V. Mehta, R. Meshram, and S. Merchant, “Restless bandits
with cumulative feedback: Applications in wireless networks,” in
Wireless Communications and Networking Conference. IEEE, 2018,
pp. 1–6.

[5] S. Aalto, P. Lassila, and P. Osti, “Whittle index approach to size-aware
scheduling for time-varying channels with multiple states,” Queueing
Systems, vol. 83, no. 3-4, pp. 195–225, 2016.
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