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Abstract

Restless bandits are a class of sequential resource allocation problems concerned with
allocating one or more resources among several alternative processes where the evolu-
tion of the processes depends on the resources allocated to them. Such models capture
the fundamental trade-offs between exploration and exploitation. In 1988, Whittle devel-
oped an index heuristic for restless bandit problems which has emerged as a popular
solution approach because of its simplicity and strong empirical performance. The
Whittle index heuristic is applicable if the model satisfies a technical condition known
as indexability. In this paper, we present two general sufficient conditions for indexa-
bility and identify simpler-to-verify refinements of these conditions. We then revisit a
previously proposed algorithm called the adaptive greedy algorithm which is known to
compute the Whittle index for a sub-class of restless bandits. We show that a general-
ization of the adaptive greedy algorithm computes the Whittle index for all indexable
restless bandits. We present an efficient implementation of this algorithm which can
compute the Whittle index of a restless bandit with K states in O(K3

)
computations.

Finally, we present a detailed numerical study which affirms the strong performance of
the Whittle index heuristic.
Keywords: Multi-armed bandits; restless bandits; Whittle index; indexability; stochastic
scheduling; resource allocation
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1. Introduction

Restless bandits are a class of sequential resource allocation problems concerned with allo-
cating one or more resources among several alternative processes where the evolution of the
processes depends on the resources allocated to them. Such models arise in various applica-
tions, such as machine maintenance [18], congestion control [7], healthcare [11], finance [15],
channel scheduling [21], smart grid [1], and others.

Restless bandits are a generalization of classical multi-armed bandits [13], where the pro-
cesses remain frozen when resources are not allocated to them. Gittins [14] showed that when
a single resource is to be allocated among multiple processes, the optimal policy has a simple
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structure: compute an index for each process and allocate the resource to the process with the
largest (or the lowest) index. In contrast, the general restless bandit problem is PSPACE-hard
[27]. Whittle [32] showed that index-based policies are optimal for the Lagrangian relaxation
of the restless bandit problem and argued that the corresponding index, now called the Whittle
index, is a reasonable heuristic for restless bandit problems. Subsequently, it has been shown
that the Whittle index heuristic is optimal under some conditions [22, 31] and performs well in
practice [5, 16, 19].

The Whittle index heuristic is applicable if a technical condition known as indexability is
satisfied. Sufficient conditions for indexability have been investigated under specific modeling
assumptions: two-state restless bandits [7, 21]; monotone bandits [5, 7, 15]; models with right-
skip-free transitions [18, 19]; models with monotone or convex cost/reward [5–8, 19, 33];
models satisfying partial conservation laws [23, 25]; and models arising in specific applications
[6, 8, 16, 18, 19].

Niño-Mora [25, 26] proposed a generalization of the Whittle index called the marginal
productivity index (MPI) for resource allocation problems where processes can be allocated
fractional resources. In [25], he also proposed an algorithm called the adaptive greedy algo-
rithm, to compute the MPI when the model satisfies a technical condition called partial
conservation laws (PCL). For restless bandits which satisfy the PCL condition, the Whittle
index can be computed using the adaptive greedy algorithm. However, for general restless
bandits, there are no known efficient algorithms to exactly compute the Whittle index. It is
possible to approximately compute the Whittle index by conducting a binary search over a
penalty for the active action (or a subsidy for the passive action) [2, 29], but such a binary
search is computationally expensive, because each step of the binary search requires solving a
dynamic program.

In this paper, we revisit the restless bandit problem and present three contributions. Our first
contribution is to provide general sufficient conditions for indexability which are based on an
alternative characterization of the passive set. We also present easy-to-verify refinements of
these sufficient conditions.

Our second contribution is to use a novel geometric interpretation of the Whittle index to
show that a refinement of the adaptive greedy algorithm proposed by Niño-Mora [25] computes
the Whittle index for all indexable restless bandits. We provide a computationally efficient
implementation, which computes the Whittle indices of a restless bandit with K states in O(K3

)
computations.

Our third contribution is to present three special cases: (i) restless bandits with optimal
threshold-based policy, which were previously studied in [3, 5, 7, 15, 17, 30], (ii) stochastic
monotone bandits which may be considered as a generalization of monotone bandits [5, 7, 15],
and (iii) restless bandits with controlled restarts, similar to [3, 30], which are a generalization
of the restart models [18, 19]. We show that these models are always indexable and the Whittle
index can be computed in closed form.

Finally, we present a detailed numerical study comparing the performance of the Whittle
index policy with that of the optimal and myopic policies. Our study shows that in general,
the performance of Whittle index policy is comparable to that of the optimal policy and
considerably better than that of the myopic policy.

Notation. Uppercase letters (X, Y , etc.) denote random variables, lowercase letters (x, y, etc.)
denote their realization, and script letters (X , Y , etc.) denote their state spaces. Subscripts
denote time: so, Xt denotes a system variable at time t and X1:t is shorthand for the system
variables (X1, . . . , Xt). P(·) denotes the probability of an event; E[·] denotes the expectation of
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a random variable. Z and R denote the sets of integers and real numbers. Given a matrix P, Pij

denotes its (i,j)th element.

2. Restless bandits: problem formulation and solution concept

2.1. Restless bandit process

A discrete-time restless bandit process (RB) is a controlled Markov process (X , {0, 1},
{P(a)}a∈{0,1}, c, x0) where X denotes the state space, which is a finite or countable set; {0, 1}
denotes the action space, where the action 0 is called the passive action and the action 1 is
the active action; P(a), a ∈ {0, 1}, denotes the transition matrix when the action a is chosen;
c : X × {0, 1} →R denotes the cost function; and x0 denotes the initial state. We use Xt

and At to denote the action of the process at time t. The process evolves in a controlled
Markov manner; i.e., for any realization x0 : t+1 of X0 : t+1 and a0 : t+1 of A0 : t+1, we have
P
(
Xt+1 = xt+1|X0 : t = x0 : t, A0 : t = a0 : t

)= P
(
Xt+1 = xt+1|Xt = xt, At = at

)
, which we denote

by Pxtxt+1 (at).

2.2. Restless multi-armed bandit problem

A restless multi-armed bandit is a collection of n independent RBs
(X i, {0, 1},

{Pi(a)}a∈{0,1}, ci, xi
0

)
, i ∈N := {1, . . . , n}. A decision-maker observes the state of all RBs,

may choose to activate only m < n of them, and incurs a cost equal to the sum of the costs
incurred by the individual RBs.

Let X := ∏
i∈N X i and A(m) := {

a = (
a1, . . . , an

) ∈An :
∑

i∈N ai = m
}

denote the
joint state space and the feasible action space, respectively. Let Xt := (

X1
t , . . . Xn

t

)
and

At = (
A1

t , . . . , An
t

)
denote the joint state and actions at time t. As the RBs evolve independently,

for any realization x0 : t of X0 : t and a0 : t of A0 : t, we have

P
(
Xt+1 = xt+1|X0 : t = x0 : t, A0 : t = a0 : t

)=
n∏

i=1

P

(
Xi

t+1 = xi
t+1|Xi

t = xi
t, Ai

t = ai
t

)
.

When the system is in the state xt = (
x1

t , . . . , xn
t

)
and the decision-maker chooses action

at = (
a1

t , . . . , an
t

)
, the system incurs a cost c̄(xt, at) := ∑

i∈N ci
(
xi

t, ai
t

)
. The decision-maker

chooses his actions using a time-homogeneous Markov policy g : X →A(m), i.e., chooses
At = g(Xt). The performance of any Markov policy g is given by

J(g)(x0) := (1 − β)E

[ ∞∑
t=0

β tc̄(Xt, g(Xt))

∣∣∣∣X0 = x0

]
,

where β ∈ (0, 1) is the discount factor and x0 is the initial state of the system.
We are interested in the following optimization problem.

Problem 1. Given the discount factor β ∈ (0, 1), the total number n of arms, the number m of
active arms, RBs

(X i, {0, 1}, {Pi(a)}a∈{0,1}, ci, xi
0

)
, i ∈N , and the initial state x0 ∈X , choose

a Markov policy g : X →A(m) that minimizes J(g)(x0).

Problem 1 is a multi-stage stochastic control problem and one can obtain an optimal solution
using dynamic programming. However, the dynamic programming solution is intractable for
large n since the cardinality of the state space is

∏
i∈N |X i|, which grows exponentially with

n. In the next section, we describe a heuristic known as the Whittle index to efficiently obtain a
suboptimal solution of the problem.
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2.3. Indexability and the Whittle index

Consider an RB (X , {0, 1}, {P(a)}a∈{0,1}, c, x0). For any λ ∈R, we consider a Markov
decision process {X , {0, 1}, {P(a)}a∈{0,1}, cλ, x0}, where

cλ(x, a) := c(x, a) + λa, ∀x ∈X , ∀a ∈ {0, 1}. (1)

The parameter λ may be viewed as a penalty for taking the active action. The performance of
any time-homogeneous policy g : X → {0, 1} is

J(g)
λ (x0) := (1 − β)E

[ ∞∑
t=0

β tcλ(Xt, g(Xt))

∣∣∣∣X0 = x0

]
. (2)

Consider the following optimization problem.

Problem 2. Given the RB
(X , {0, 1}, {P(a)}a∈{0,1}, cλ, x0

)
and the discount factor β ∈ (0, 1),

choose a Markov policy g : X → {0, 1} to minimize J(g)
λ (x0).

Problem 2 is also a Markov decision process and one can obtain an optimal solution using
dynamic programming. Let Vλ : X →R be the unique fixed point of the following:

Vλ(x) = min
{
Hλ(x, 0), Hλ(x, 1)

}
, ∀x ∈X , (3)

where
Hλ(x, a) = (1 − β)cλ(x, a) + β

∑
y∈X

Pxy(a)Vλ(y), a ∈ {0, 1}. (4)

Let gλ(x) denote the minimizer of the right-hand side of (3), where we set gλ(x) = 1
if Hλ(x, 0) = Hλ(x, 1). Then, from Markov decision theory [28], we know that the time-
homogeneous policy gλ is optimal for Problem 2.

Define the passive set �λ to be the set of states where the passive action is optimal, i.e.,

�λ := {x ∈X : gλ(x) = 0}. (5)

Definition 1 (Indexability). An RB is indexable if �λ is increasing in λ, i.e., for any λ′, λ′′ ∈R,
λ′ ≤ λ′′ implies that �λ′ ⊆ �λ′′ .

Definition 2 (Whittle index). The Whittle index of state x of an indexable RB is the smallest
value of λ for which x is part of the passive set �λ, i.e., w(x) = inf {λ ∈R : x ∈ �λ}.
Alternatively, the Whittle index w(x) is a value of the penalty λ for which the optimal policy is
indifferent between taking the active and the passive action when the RB is in state x.

2.4. Whittle index heuristic

A restless multi-armed bandit problem is said to be indexable if all RBs are indexable. For
indexable problems, the Whittle index heuristic is as follows: Compute the Whittle indices of
all arms offline. Then, at each time, obtain the Whittle indices of the current state of all arms
and play arms with the m largest Whittle indices.

As mentioned earlier, the Whittle index policy is a popular approach for restless bandits
because (i) its complexity is linear in the number of alternatives and (ii) its performance is
often close to optimal in practice [5, 16, 19]. However, there are only a few general conditions
to check indexability for general models.
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2.5. Alternative characterizations of the passive set

We now present alternative characterizations of the passive set, which are important for the
sufficient conditions for indexability that we provide later.

Let � denote the family of all stopping times with respect to the natural filtration of {Xt}t≥0.
For any state x ∈X , penalty λ ∈R, and stopping time τ ∈ �, define

M(x, τ ) := E
[
βτ |X0 = x, {At = 0}τ−1

t=0

]
,

L(x, τ ) := E

[
τ−1∑
t=0

β tc(Xt, 0) + βτ c(Xτ , 1)
∣∣∣ X0 = x, {At = 0}τ−1

t=0

]
,

Wλ(x) := (1 − β)λ + β
∑
y∈X

Pxy(1)Vλ(x). (6)

Let hτ,λ denote the (history-dependent) policy that takes the passive action up to time τ − 1,
takes the active action at time τ , and then follows the optimal policy gλ (for Problem 2). We
now present different characterizations of the passive set.

Proposition 1. The following characterizations of the passive set are equivalent:

• �
(a)
λ = {x ∈X : gλ(x) = 0},

• �
(b)
λ = {x ∈X : Hλ(x, 0) < Hλ(x, 1)},

• �
(c)
λ =

{
x ∈X : ∃σ ∈ �, σ �= 0, such that J(hσ,λ)

λ (x) < J(h0)
λ (x)

}
,

• �
(d)
λ = {x ∈X : ∃σ ∈ �, σ �= 0, such that (1 − β) (L(x, σ ) − c(x, 1)) < Wλ(x) −

E[βσ Wλ(Xσ )|X0 = x]}.
See Appendix A for the proof.

3. Sufficient conditions for indexability

In this section, we identify sufficient conditions for an RB to be indexable.

3.1. Preliminary results

Consider an RB (X , {0, 1}, {P(a)}a∈{0,1}, c, x0). For any Markov policy g : X → {0, 1} and
λ ∈R, we can write

J(g)
λ (x) = D(g)(x) + λN(g)(x), (7)

where

D(g)(x) := (1 − β)E

[ ∞∑
t=0

β tc(Xt, g(Xt))

∣∣∣∣X0 = x

]

and

N(g)(x) := (1 − β)E

[ ∞∑
t=0

β tg(Xt)

∣∣∣∣X0 = x

]

are the expected discounted total cost and the expected number of activations under the
policy g starting at the initial state x. D(g)(·) and N(g)(·) can be computed using policy
evaluation formulas. In particular, define P(g) : X ×X →R and c(g) : X →R as follows:
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FIGURE 1. An illustration of the plot of J(·)
λ (x) versus λ for g ∈ G := {h1, h2, h3}. Let λ

ij
c denote the

λ-value of the intersection of J(hi)
λ (x) and J

(hj)
λ (x). Note that in this plot, for all λ ∈ (−∞, λ12

c

]
the policy

h1 is optimal; for all λ ∈
[
λ12

c , λ23
c

]
the policy h2 is optimal; and for all λ ∈

[
λ23

c , ∞
)

the policy h3 is

optimal. The lower concave envelope of J(hi)
λ (x) (shown as a thick line) is the value function Vλ(x), which

is piecewise linear, concave, increasing, and continuous.

P(g)
xy = Pxy(g(x)) and c(g)

λ (x) = cλ(x, g(x)) = c(g)(x, g(x)) + λg(x) for any x ∈X . We also view
g as an element in {0, 1}|X |. Then, using the policy evaluation formula for infinite-horizon
Markov decision processes [28], we obtain

D(g)(x) = (1 − β)
[
(I − βP(g))−1c(g)](x) and N(g)(x) = (1 − β)

[
(I − βP(g))−1g

]
(x). (8)

We now provide a geometric interpretation of the value function Vλ(x) as a function of
λ. For any g ∈ G, the plot of J(g)

λ (x) = D(g)(x) + λN(g)(x) as a function of λ is a straight line

with y-intercept D(g)(x) and slope N(g)(x). By definition, Vλ(x) = infg∈G J(g)
λ (x). Thus, Vλ(x) is

the lower concave envelope of the family of straight lines
{
J(g)
λ (x)

}
g∈G . (See Figure 1 for an

illustration.) Thus, we have the following.

Lemma 1. For any x ∈X , Vλ(x) is continuous, increasing, piecewise linear, and concave in λ.
Furthermore, when X is finite, Vλ(x) is piecewise linear.

Proof. For any Markov policy g, N(g)(x) is non-negative. Therefore, J(g)
λ (x) = D(g)(x) +

λN(g)(x) is increasing and continuous in λ. Since Vλ(x) is an infimization of a family of linear
functions, it is concave (see Figure 1). In addition, as monotonicity and continuity are pre-
served under infimization, the value function is also increasing and continuous in λ. Finally,
when X is finite, there are only finite number of pieces. Thus, Vλ(x) is the minimum of finitely
many linear functions, and hence piecewise linear. �
Lemma 2. For any λ′, λ′′ ∈R,

(λ′′ − λ′)N(gλ′′ )(x) ≤ Vλ′′ (x) − Vλ′ (x) ≤ (λ′′ − λ′)N(gλ′ )(x), ∀x ∈X .

Consequently, N(gλ)(x) is non-increasing in λ.

Proof. Recall that Vλ(x) = J(gλ)
λ (x) ≤ J

(gλ′ )
λ (x) for any λ′ �= λ. Thus,

Vλ′′ (x) − Vλ′ (x) = J
(gλ′′ )
λ′′ (x) − J

(gλ′ )
λ′ (x) ≤ J

(gλ′ )
λ′′ (x) − J

(gλ′ )
λ′ (x)

(a)= (λ′′ − λ′)N(gλ′ )(x), (9)
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where (a) follows from (7). Similarly, we have

Vλ′′ (x) − Vλ′ (x) = J
(gλ′′ )
λ′′ (x) − J

(gλ′ )
λ′ (x) ≥ J

(gλ′′ )
λ′′ (x) − J

(gλ′′ )
λ′ (x)

(a)= (λ′′ − λ′)N(gλ′′ )(x), (10)

where (a) follows from (7). The result follows from combining the above inequalities. �

3.2. Sufficient conditions for indexability

Theorem 1. Define H= {(g, h) : g, h : X → {0, 1} such that for all x ∈X , N(g)(x) ≥ N(h)(x)}.
Each of the following is a sufficient condition for Whittle indexability:

(a) For any g, h ∈H, we have that for every x, z ∈X ,

∑
y∈X

{[
βPzy(1) − Pxy(1)

]+
N(g)(y) − [

Pxy(1) − βPzy(1)
]+

N(h)(y)
}

≤ (1 − β)2

β
. (11)

(b) For any g, h ∈H, we have that for every x ∈X ,

∑
y∈X

{[
Pxy(0) − Pxy(1)

]+
N(g)(y) − [

Pxy(1) − Pxy(0)
]+

N(h)(y)
}

≤ 1 − β

β
. (12)

See Appendix B for the proof. The sufficient conditions of Theorem 1 can be difficult to verify.
Simpler sufficient conditions are stated below.

Proposition 2. Each of the following is a sufficient condition for (11):

(a) maxx,z∈X
∑

y∈X
[
βPzy(1) − Pxy(1)

]+ ≤ (1 − β)2/β.

(b) Pxy(1) = Pzy(1), for any x, y, z ∈X .

In addition, each of the following is a sufficient condition for (12):

(c) maxx∈X
∑

y∈X
[
Pxy(0) − Pxy(1)

]+ ≤ (1 − β)/β.

(d) β ≤ 0.5.

See Appendix C for the proof.

Some remarks

1. The sufficient conditions of Theorem 1 and of parts (a), (c), and (d) of Proposition 2 may
be viewed as bounds on the discount factor β for which an RB is indexable. Numerical
experiments to explore such a property are presented in [25]. A qualitatively similar
result was established in [23, Corollary 5], which showed that a restless bandit pro-
cess is generalized-conservation-laws (GCL-) indexable for sufficiently small discount
factors. GCL-indexability is a sub-class of PCL-indexability, which is a sub-class of
Whittle indexability. Thus, Proposition 2 provides a quantitative characterization of the
qualitative observation made in [9] and generalizes it to a broader class of models.

2. We refer to models that satisfy the sufficient condition of Proposition 2(b) as rest-
less bandits with controlled restarts. Such models arise in various scheduling problems
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(e.g., machine maintenance, surveillance) where taking the active action resets the state
according to a known probability distribution. Specific instances of such models are con-
sidered in [3, 30]. The special case when the active action resets to a specific (pristine)
state are considered in [18, 19].

3. A different class of restart models have been considered in [7, 8, 20], where the passive
action resets the state of the arm. Note that such models do not satisfy Proposition
2(b), and additional modeling assumptions are required to establish indexability. See
[7, 8, 20] for details.

4. An algorithm to compute the Whittle index

Given an indexable RB, a naive method to compute the Whittle index at state x is to do a
binary search over the penalty λ and find the critical penalty w(x) such that for λ ∈ (−∞, w(x)),
gλ(x) = 0, and for λ ∈ [w(x), ∞), gλ(x) = 1. Although such an approach has been used in the
literature [2, 29], it is not efficient as it requires a separate binary search for each state. For a
sub-class of restless bandits which satisfy an additional technical condition called partial con-
servation laws (PCL), Niño-Mora [24, 25] presented an algorithm called the adaptive greedy
algorithm to compute the Whittle index. In this section, we present an algorithm that may be
viewed as a refinement of the adaptive greedy algorithm and show that it computes the Whittle
index for all indexable RBs. The result of this section are restricted to the case of finite X .

Let K denote the number of states (i.e., K = |X |), and let KD( ≤ K) denote the num-
ber of distinct Whittle indices. Let �∗ = {λ1, . . . , λKD}, where λ1 < λ2 < · · · < λKD is the
sorted list of distinct Whittle indices. Also, let λ0 = −∞. For any d ∈ {0, . . . , KD}, let
Pd := {x ∈X : w(x) ≤ λd} denote the set of states with Whittle index less than or equal to
λd. Note that P0 = ∅ and PKD =X . Let 	d+1 =Pd+1\Pd denote the set of states with Whittle
index λd+1.

For any subset S ⊆X , define the policy ḡ(S) : X → {0, 1} as

ḡ(S)(x) =
{

0, if x ∈ S,

1, if x ∈X \S .
(13)

Thus, the policy ḡ(S) takes the passive action in the set S and the active action in the set X \S .
Now, for any d ∈ {0, . . . , KD − 1} and all states y ∈X \Pd, define hd = ḡ(Pd),

hd,y = ḡ(Pd∪{y}), and for all x ∈ �d,y,

�d,y = {
x ∈X : N(hd)(x) �= N(hd,y)(x)

}
, μd,y(x) = D(hd,y)(x) − D(hd)(x)

N(hd)(x) − N(hd,y)(x)
. (14)

Lemma 3. For an indexable RB with d ∈ {0, . . . , KD − 1}, we have the following:

1. For all y ∈ 	d+1, we have w(y) = λd+1.

2. For all y ∈X \Pd and λ ∈ (λd, λd+1], we have J
(hd,y)
λ (x) ≥ J(hd)

λ (x) for all x ∈X , with
equality if and only if y ∈ 	d+1 and λ = λd+1.

Proof. See Appendix D. �
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Theorem 2. For an indexable RB, the following properties hold:

1. For any y ∈ 	d+1, the set �d,y is non-empty.

2. For any x ∈ �d,y, μd,y(x) ≥ λd+1, with equality if and only if y ∈ 	d+1.

Proof. The proof of each part is as follows:

1. We prove the result by contradiction. Suppose that there exists a y ∈ 	d+1 such that
�d,y = ∅, which means N(hd)(x) = N(hd,y)(x) for all x ∈X . By Lemma 3, we have that

J(hd)
λd+1

(x) = J
(hd,y)
λd+1

(x).

Therefore, from (7) we infer D(hd)(x) = D(hd,y)(x) for all x ∈X . Since both D(g)(x) and
N(g)(x) do not depend on λ, (7) implies that for any λ and x ∈X , we have J(hd)

λ (x) =
J
(hd,y)
λ (x). This implies that the policies hd and hd,y will be optimal for the same set of

λ. Now, since the policy hd is optimal for all λ ∈ (λd, λd+1] (by definition), so is hd,y.
Hence y ∈Pd. But we started by assuming that y �∈Pd, so we have a contradiction.

2. By Lemma 3, Part 2, for all y ∈X \Pd, λ ∈ (λd, λd+1], and for all x ∈ �d,y, we have

J
(hd,y)
λ (x) ≥ J(hd)

λ (x). Then, by (7), we infer

D(hd,y)(x) + λN(hd,y)(x) ≥ D(hd)(x) + λN(hd)(x).

Finally, we have μd,y(x) ≥ λ and thus μd,y(x) ≥ λd+1 for all x ∈ �d,y. This proves the
first part of the statement. To prove the second part, note that the policy hd is an optimal
policy for λ ∈ (λd, λd+1], and for any y ∈Pd+1, the policy hd,y is an optimal policy for
λ ∈ (λd+1, λd+2]. From Lemma 1, we know that Vλ(x) is continuous in λ for all x ∈X .
So, for all x ∈X ,

lim
λ↑λd+1

J(hd)
λ (x) = lim

λ↑λd+1
Vλ(x) = lim

λ↓λd+1
Vλ(x) = lim

λ↓λd+1
J
(hd,y)
λ (x).

Thus, for all x ∈X , J(hd)
λd+1

(x) = J
(hd,y)
λd+1

(x), and therefore,

D(hd)(x) + λd+1N(hd)(x) = D(hd,y)(x) + λd+1N(hd,y)(x).

As a result, λd+1 = μd,y(x) for all x ∈ �d,y.

�
Theorem 2 suggests a method for identifying the Whittle index of any indexable RB by

iteratively identifying the set Pd and the Whittle index λd. By definition, P0 = ∅ and λ0 =
−∞. Now suppose P0 ⊂P1 ⊂ . . . ⊂Pd and λ0 < λ1 < . . . < λd have been identified. We will
describe how to determine Pd+1 and λd+1:

1. For hd = ḡ(Pd), compute N(hd) by solving (8).

2. For all y ∈X \Pd, compute N(hd,y) where hd,y = ḡ(P∪{y}) by solving (8), and compute
�d,y. Let μ∗

d,y = minx∈�d,y μd,y(x), where μd,y(x) is given by Theorem 2. Then λd+1 =
miny∈X \Pd μ∗

d,y, 	d+1 = arg miny∈X \Pd μ∗
d,y, and we get Pd+1 =Pd ∪ 	d+1 (recall that

argmin denotes the set of all minimizers) and w(x) = λd+1 for all x ∈ 	d+1.
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Algorithm 1: Computing Whittle index of all states of an indexable RB

Iteratively proceeding in this way, we can compute the Whittle index for all states. The detailed
algorithm is presented in Algorithm 1.

4.1. An efficient implementation using the Sherman–Morrison formula

We now present an efficient implementation of Algorithm 1 using the Sherman–Morrison
inverse formula. Suppose A ∈R

n×n is an invertible square matrix and u, v ∈R
n are column

vectors such that A + uvT is invertible. Then the Sherman–Morrison inverse formula is

(
A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (15)

Furthermore, given b ∈R
n, if x is the solution of Ax = b and y is the solution Ay = u, then the

solution of
(
A + uvT

)
x̃ = b is given by the following (see [12, Corollary 2]):

x̃ = x − vTx

1 + vTy
y. (16)

Let 
(g) = (
I − βP(g)

)−1. Note that for any Markov policy g,
(
I − βP(g)

)
is invertible,

because βP(g) is a sub-stochastic matrix and has a spectral radius less than 1. Therefore,
the conditions for using the Sherman–Morrison formula are satisfied. Hence, using (16),
Equation (8) may be written (in matrix form) as

D(g) = (1 − β)
(g)c(g) and N(g) = (1 − β)
(g)g. (17)

Now, for any d ∈ {0, . . . , KD − 1} and a state y ∈X \Pd, consider the policies hd = ḡ(Pd)

and hd,y = ḡ(Pd,y). Let ey denote the unit vector with 1 in the yth location, and let ρy be a vector
given by [ρy]x = Pyx(1) − Pyx(0), for all x ∈X . Then P(hd,y) = P(hd) − eyρ

T
y . Therefore,

I − βP(hd,y) = (
I − βP(hd)

)+ βeyρ
T
y .
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Let 

(hd)·y denote the yth column of 
(hd), i.e., 


(hd)·y = 
(hd)ey. Then, by the Sherman–
Morrison inverse formula ((15) and (16)), we have


(hd,y) = 
(hd) − β
(hd)eyρ
T
y 
(hd)

1 + βρT
y 


(hd)·y
, (18)

D(hd,y) = D(hd) − βρT
y D(hd)

1 + βρT
y 


(hd)·y

(hd)·y , N(hd,y) = N(hd) − βρT

y N(hd)

1 + βρT
y 


(hd)·y

(hd)·y . (19)

Thus, if 
(hd) has been computed, then 
(hd,y) can be computed in O(K2
)

computations.

In addition, if 
(hd), D(hd), and N(hd) have been computed, then D(hd,y) and N(hd,y) can be
computed in O(K) computations.

So we can use (18) and (19) to implement Algorithm 1 in a more efficient manner. However,
there is one additional step that needs to be handled, which we explain next.

As hd+1 = ḡ
(
Pd∪	d+1

)
, we get

I − βP(hd+1) = (
I − βP(hd))+ β

∑
y∈	d+1

eyρ
T
y . (20)

Thus, I − βP(hd+1) is a rank-|	d+1| update of I − βP(hd). When |	d+1| > 1, we can either
sequentially apply Equations (18) and (19) for all y ∈ 	d+1 or use the Woodbury formula to
compute 
(hd+1) and compute D(hd+1) and N(hd+1) using (17). The Woodbury formula is a
generalization of the Sherman–Morrison formula. Suppose A ∈R

n×n is an invertible matrix
and U, V ∈R

n×m are such that A + UVT is invertible. Then the Woodbury formula is

(A + UVT)−1 = A−1 − A−1U(I + VTU)−1VTA−1.

The complexity of sequentially applying the Sherman–Morrison formula is O(|	d+1|K2
)

to

compute 
(hd+1) and O(|	d+1|K
)

to compute D(hd+1) and N(hd+1). The complexity of using

the Woodbury formula is O(|	d+1|2.807 + K2
)

to compute 
(hd+1) and O(K2
)

to compute

D(hd+1) and N(hd+1).
We show the complete algorithm to efficiently compute the Whittle index in Algorithm 2,

where we use sequential application of Sherman–Morrison formula to compute 
(hd+1),
D(hd+1), and N(hd+1).

Some remarks

1. The idea of computing the index by iteratively sorting the states according to their index
is commonly used in the algorithms to compute the Gittins index; for example, the
largest-remaining-index algorithm, the state-elimination algorithm, the triangularization
algorithm, and the fast-pivoting algorithm use variations of this idea. See [10] for details.

2. The computational complexity of Algorithm 2 is O(K3
)
, which can be characterized as

follows. The algorithm starts with computing 
(h0), which requires O(K2.807
)

com-
putations (using Strassen’s algorithm), and D(h0) and N(h0), each of which requires
O(K2

)
computations. Then, in the inner for loop, computing each of D(hd,y), N(hd,y),

and μ∗
d,y requires O(K) computations, and the inner loop is executed |X \Pd| times.
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Algorithm 2: Computing Whittle index of all states of an indexable RB

Afterwards, updating 
(hd+1), D(hd+1), and N(hd+1) requires O(|	d+1|K2
)
, O(|	d+1|K),

and O(|	d+1|K) computations, respectively. Therefore, the computational complexity of
the algorithm is

O(K2.807)+O(K2)+
KD∑

d=1

(O(|X \Pd|K) +O(|	d+1|K2)+O(2|	d+1|K
))

≤O(K2.807)+
KD∑

d=1

O(K2)+O
([

KD∑
d=1

|	d+1|
]

K2

)

≤O(K2.807)+O
(

K3
)

+O
(

K3
)

≤O
(

K3
)

,

where the first inequality uses the fact that |X \Pd| ≤ K and the second inequality uses
the fact that

∑KD
d=1 |	d+1| = K.

3. Note that Algorithm 2 computes the Whittle index exactly. In contrast, using binary
search [2] computes the Whittle index approximately. Let Cmax and Cmin denote the
upper and lower bound on the per-step cost. Then we know that for any state x, w(x) ∈
[Cmin, Cmax]. Now, suppose we want to compute the Whittle index to an accuracy of
δ. Then the interval [Cmin, Cmax] needs to be divided into log2 ((Cmax − Cmin)/δ) steps.
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For each step of the binary search, we need to solve the dynamic program (3). There are
two main algorithms to solve dynamic programs [28]: policy iteration, which gives an
exact solution, and value iteration, which gives an approximate solution.

Each iteration of policy iteration has two steps: (i) policy evaluation, which is done
by solving a linear system and has complexity O(K3

)
, and (ii) policy improvement,

which requires O(K2
)

computations. Thus, the overall complexity of policy iteration is
O(NPIK3), where NPI is the number of iterations after which policy iteration converges.

Each iteration of value iteration requires O(K2
)

computations. Let NVI denote the
number of iterations for value iteration (typically, the iteration stops when a stopping
criterion is met). Then the complexity of approximately solving the dynamic program is
O(NVIK2

)
.

Note that the binary search needs to be repeated for each state. Thus, using
binary search to compute the Whittle index to an accuracy of δ has a complexity of
O( log2

((
Cmax − Cmin

)
/δ
)
NPIK4

)
if the dynamic program at each step is solved exactly

and has a complexity of O( log2
((

Cmax − Cmin
)
/δ
)
NVIK3

)
if the dynamic program at

each step is solved approximately.

4.2. Discussion on PCL-indexability

As mentioned earlier, an algorithm very similar to Algorithm 1 was proposed in [25]
for computing the Whittle index for RBs that satisfy a technical condition known as PCL-
indexability. The analysis in [25] is done under the assumption that the system starts from a
designated start state distribution π0. For any policy g, define N(g) =∑

x∈X N(g)(x)π0(x), and
define D(g) =∑

x∈X D(g)(x)π0(x). Let x1, . . . , xK be a permutation of the state space such that
the corresponding Whittle indices are non-decreasing: λ1 ≤ · · · ≤ λK . For any k ∈ {1, . . . , K},
let P̄k denote the set {x1, . . . , xk}.

Now, for any k ∈ {1, . . . , K} and all states y ∈X \ P̄k, define h̄k = ḡ
(
P̄k

)
, h̄k,y = ḡ

(
P̄k∪{y}

)
,

and define

μ̄k,y = D
(

h̄k,y

)
− D

(
h̄k

)
N
(

h̄k

)
− N

(
h̄k,y

) . (21)

In [25] an algorithm called the adaptive greedy algorithm is presented to iteratively iden-
tify the sets P̄k and compute the corresponding Whittle indices. This algorithm is shown in
Algorithm 3.

An RB is said to be PCL-indexable [25] if it satisfies the following conditions:

1. For any S ⊆X and y ∈X \S , we have N
(

ḡ(S)
)
− N

(
ḡ(S∪{y}))

> 0.

2. The sequence of index values produced by the adaptive greedy algorithm is monotoni-
cally non-decreasing.

Finally, the following result is established.

Theorem 3 (Theorem 1 of [25]). A PCL-indexable RB is indexable, and the adaptive greedy
algorithm gives its Whittle indices.

The main differences between our result and that of [25] are as follows:

1. An implication of the first condition in the definition of PCL indexability is that the
denominator in (21) is never zero. In contrast, we do not impose such a restriction and
work with the non-empty subset of states for which the denominator in (14) is non-zero.
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Algorithm 3: The adaptive greedy algorithm of [25]

2. In Algorithm 3, the sets {P̄k}K
k=1 are constructed by adding states one by one, even when

μ̄k,y has multiple argmins. In contrast, in Algorithm 1, the sets {Pd}KD
d=1 are constructed

by adding all states which have the same Whittle index at once.

3. In Algorithm 3, one has to check that the indices are generated in a non-decreasing
order (which is the second condition of PCL-indexability). In contrast, in Algorithm 1,
the indices are always generated in an increasing order, and therefore Condition 2 for
PCL-indexability is always satisfied.

4. Finally, Theorem 3 only guarantees that Algorithm 3 computes the Whittle index
for RBs which satisfy PCL-indexability. Moreover, the second condition for PCL-
indexability can only be checked after running Algorithm 3. In contrast, Theorem 2
guarantees that Algorithm 1 computes the Whittle index for all indexable RBs.

We conclude this discussion by revisiting an example from [25] which is an indexable RB
that is not PCL-indexable. For this example, X = {1, 2, 3}; the transition matrices are

P(0) =
⎡
⎢⎣

0.3629 0.5028 0.1343

0.0823 0.7534 0.1643

0.2460 0.0294 0.7246

⎤
⎥⎦ , P(1) =

⎡
⎢⎣

0.1719 0.1749 0.6532

0.0547 0.9317 0.0136

0.1547 0.6271 0.2182

⎤
⎥⎦ ;

the per-step cost is c(x, 0) = 0 for all x ∈X and c(1, 1) = −0.44138, c(2, 1) = −0.8033,
c(3, 1) = −0.14257; and β = 0.9. The corresponding Whittle indices are [0.18, 0.8, 0.57].

This model is not PCL-indexable, since if g = [1, 1, 0] and h = [0, 1, 0], then N(g) =
[5.66, 8.24, 4.23] and N(h) = [6.65, 8.59, 4.88]. Therefore, for any initial state distribution π0,
N(g) < N(h).

However, as the problem is indexable, we can still apply Algorithm 1 to compute Whittle
indices without any limitations. The steps are as follows:

1. Initialize d = 0 and have P0 = ∅. Thus ḡ(P0) = [1, 1, 1] and we compute N
(

ḡ(P0)
)
=

[10, 10, 10] and D
(

ḡ(P0)
)
= [−6.43, −7.43, −6.51].
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2. There are three possibilities for y ∈X \P0 = {1, 2, 3}:
• For y = 1, h0,1 = [0, 1, 1]. We compute N(h0,1) = [7.88, 9.29, 9.13] and D(h0,1) =

[−6.05, −7.30, −6.35]. Therefore, �0,1 = {
x ∈X : N(ḡ(P0)(x) �= N(h0,1)(x)

}=
{1, 2, 3}. Now for each x ∈ �0,1, we compute μ0,1(1) = μ0,1(2) = μ0,1(3) = 0.18.
Therefore, μ∗

0,1 = 0.18.

• For y = 2, h0,2 = [1, 0, 1]. We compute N(h0,2) = [4.58, 2.93, 4.10] and D(h0,2) =
[−1.27, −0.7, −0.89]. Therefore, �0,2 =

{
x ∈X : N(ḡ(P0)

(x) �= N(h0,2)(x)
}

=
{1, 2, 3}. Now for each x ∈ �0,2, we compute μ0,2(1) = μ0,2(2) = μ0,2(3) = 0.95.
Therefore, μ∗

0,2 = 0.95.

• For y = 3, h0,3 = [1, 1, 0]. We compute N(h0,3) = [5.66, 8.24, 4.23] and D(h0,3) =
[−3.64, −6.30, −2.79]. Therefore, �0,3 =

{
x ∈X : N(ḡ(P0)

(x) �= N(h0,3)(x)
}

=
{1, 2, 3}. Now for each x ∈ �0,3, we compute μ0,3(1) = μ0,3(2) = μ0,3(3) = 0.64.
Therefore, μ∗

0,3 = 0.64.

Now λ1 = min
{
μ∗

0,1, μ∗
0,2, μ∗

0,3

}= 0.18. Therefore, P1 = {1}, w(1) = 0.18, ḡ(P1) =
[0, 1, 1]. We have already computed N

(
ḡ(P1)

)
= [7.88, 9.29, 9.13] and D

(
ḡ(P1)

)
=

[−6.05, −7.30, −6.35].

3. There are two possibilities for y ∈X \P1 = {2, 3}:
• For y = 2, h1,2 = [0, 0, 1]. We compute N(h1,2) = [1.48, 1.52, 2.57] and D(h1,2) =

[−0.21, −0.22, −0.37]. Therefore, �1,2 =
{

x ∈X : N(ḡ(P1)
(x) �= N(h1,2)(x)

}
=

{1, 2, 3}. Now for each x ∈ �1,2, we compute μ1,2(1) = μ1,2(2) = μ1,2(3) = 0.91.
Therefore, μ∗

1,2 = 0.91.

• For y = 3, h1,3 = [0, 1, 0]. We compute N(h1,3) = [6.65, 8.59, 4.88] and D(h1,3) =
[−1.22, −0.66, −0.83]. Therefore, �1,3 =

{
x ∈X : N(ḡ(P1)

(x) �= N(h1,3)(x)
}

=
{1, 2, 3}. Now for each x ∈ �1,3, we compute μ1,3(1) = μ1,3(2) = μ1,3(3) = 0.57.
Therefore, μ∗

1,3 = 0.57.

Now λ2 = min
{
μ∗

1,2, μ∗
1,3

}= 0.57. Therefore, P2 = {1, 3}, w(3) = 0.57, ḡ(P2) =
[0, 1, 0]. We have already computed N

(
ḡ(P2)

)
= [6.65, 8.59, 4.88] and D

(
ḡ(P2)

)
=

[−1.22, −0.66, −0.83].

4. There is only one possibility for y ∈X \P2 = {2}:
• For y = 3, h3,2 = [0, 0, 0], N(h3,2) = [0, 0, 0], and D(h3,2) = [−0.21, −0.22, −0.37].

Therefore, �3,2 =
{

x ∈X : N(ḡ(P2)
(x) �= N(h3,2)(x)

}
= {1, 2, 3}. Now for each x ∈

�3,2, we compute μ3,2(1) = μ3,2(2) = μ3,2(3) = 0.8. Therefore, μ∗
3,2 = 0.8.

Now μ∗
3,2 = 0.57. Therefore, P3 = {1, 2, 3} and w(2) = 0.8.

Finally, the Whittle indices are [0.18, 0.8, 0.57].
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5. Some special cases

In this section, we refine the results developed in this paper to some special cases.

5.1. Restless bandits with optimal threshold-based policy

Consider an RB
(X , {0, 1}, {P(a)}a∈{0,1}, c, x0

)
where the state space X is a totally ordered

set, i.e., X = {1, . . . , K}. Let X0 = {0, . . . , K}; let X≥� denote the set of states greater than or
equal to the state �, and let X≤� denote the set of states less than or equal to the state �. We
suppose that the model satisfies the following assumption:

(P) There exists a non-decreasing family of thresholds {�λ}λ∈R, �λ ∈X0, such that the
threshold policy g(�λ) is optimal for Problem 2 with activation cost λ.

Several models where (P) holds have been considered in the literature [3, 5, 7, 15, 17, 30]. A
key implication of Property (P) is the following.

Lemma 4. Suppose an RB defined on a totally ordered state space satisfies Property (P). Then
the RB is indexable and the Whittle index w(�) is non-decreasing in � ∈X .

Proof. Note that Property (P) implies that the passive set �λ = {x ∈X : gλ(x) = 0} =X≤�λ ,
which is increasing in λ. Hence the RB is indexable. Moreover, for any state �, the Whittle
index w(�) is the smallest value of λ such that �λ = �. Therefore, by Property (P), w(�) is
non-decreasing in �. �

As in Section 4, we assume that there are KD( ≤ K) distinct Whittle indices given by �∗ =
{λ1, . . . , λKD}, where λ1 < λ2 < . . . λKD . We also let λ0 = −∞, and for any d ∈ {0, . . . , KD},
we let Pd = {x ∈X : w(x) ≤ λd}. As stated in the proof of Lemma 4, Property (P) implies that
Pd =X≤�λd

. Therefore, 	d+1 = {
�λd + 1, . . . , �λd+1

}
. Thus, Theorem 2 simplifies as follows.

Corollary 1. Suppose an RB defined on a totally ordered state space satisfies Property (P).
Then the following properties hold:

1. For any y ∈ 	d+1, the set �d,y is non-empty.

2. For any x ∈ �d,y, μd,y(x) ≥ λd+1, with equality if and only if y ∈ 	d+1.

Thus, based on Corollary 1, for models that satisfy Property (P), we can simplify
Algorithm 2 as shown in Algorithm 4. Instead of computing μ∗

d,y for all y ∈X \Pd, we can
compute it sequentially and break the loop when μ∗

d,y �= λd+1. Note that this simplification

does not change the asymptotic complexity of the algorithm, which is still O(K3
)
.

Remark 1. Note that if the model satisfies additional assumptions such that it is known up
front that no two states have the same Whittle index, then we do not need the inner for loop
(over y) in Algorithm 4, and can simply compute the Whittle index of the state � as

w(�) = min
D
(

ḡ(X≤�+1)
)
(x) − D

(
g(X≤�)

)
(x)

N
(

ḡ(X≤�)
)
(x) − N

(
g(X≤�+1)

)
(x)

,

where the minimum is over all x such that the denominator is non-zero.
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Algorithm 4: Whittle index for RB with optimal threshold-based policy

In the next section, we present a new model called stochastic monotone bandits, which may
be considered as a generalization of monotone bandits [5, 7, 15], and show that these models
satisfy Property (P).

5.2. Stochastic monotone bandits

We first start with the definition of a submodular function. Given ordered sets X and Y ,
a function f : X ×Y →R is called submodular if for any x1, x2 ∈X and y1, y2 ∈Y such that
x2 ≥ x1 and y2 ≥ y1, we have f (x1, y2) − f (x1, y1) ≥ f (x2, y2) − f (x2, y1).
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We say that the RB is stochastic monotone if it satisfies the following conditions:

(D1) For any a ∈ {0, 1}, P(a) is stochastically monotone; i.e., for any x, y ∈X such that x < y,
we have

∑
w∈X≥z

Pxw(a) ≤
∑

w∈X≥z

Pyw(a)

for any z ∈X .

(D2) For any z ∈X , Szx(a) := ∑
w∈X≥z

Pxw(a) is submodular in (x, a).

(D3) For any a ∈ {0, 1}, c(x, a) is non-decreasing in x.

(D4) The cost c(x, a) is submodular in (x, a).

For ease of notation, for any � ∈X0, we let g(�) = ḡ(X≤�) denote a policy with threshold �

(where ḡ(S) is as defined in (13)).

Lemma 5. A stochastic monotone RB satisfies the following properties:

1. For any λ ∈R, there exists a threshold �λ ∈X ∗ such that the threshold policy g(�λ) is
optimal for Problem 2. If there are multiple such thresholds, we use �λ to denote the
largest threshold.

2. If, for any x ∈X , N
(

g(�)
)
(x) is non-increasing in �, then �λ is non-decreasing with λ.

Hence, the model satisfies Property (P) and is therefore indexable.

Proof. For the first part, we note that Conditions (D1)–(D4) are the same as the properties
of [28, Theorem 4.7.4], which implies that there exists a threshold as stated.

For the second part, we first show that for any � ∈X ∗, J

(
g(�)
)

λ (x) is submodular in (�, λ) for
all x ∈X . In particular, for any k < �, we have

J

(
g(�)
)

λ (x) − J

(
g(k)
)

λ (x) = D

(
g(�)
)

λ (x) − D

(
g(k)
)

λ (x) + λ(N

(
g(�)
)

λ (x) − N

(
g(k)
)

λ (x)).

Now (D5) implies that the difference J

(
g(�)
)

λ (x) − J

(
g(k)
)

λ (x) is non-increasing in λ. Therefore,

J

(
g(�)
)

λ (x) is submodular in (�, λ). Consequently, from [28, Theorem 2.8.2],

�λ = max

{
�′ ∈ arg min

�∈X ∗ J

(
g(�)
)

λ (x)

}

is non-decreasing in λ. �

5.3. Restless bandits with controlled restarts

Consider restless bandits with controlled restarts (i.e., models where Pxy(1) does not depend
on x). By Proposition 2(c), such models are indexable. In this section, we explain how to
simplify the computation of the Whittle index for such models. For ease of notation, we use
Pxy to denote Pxy(0) and Qy to denote Pxy(1).
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Define D(g) =∑
x∈X QxD(g)(x) and N(g) =∑

x∈X QxN(g)(x). Now, following the dis-
cussion of Section 4, we can show that the result of Theorem 2 continues to hold when μd,y is
replaced by

μ̂d,y = D(hy) − D
(

ḡ(Pd )
)

N
(

ḡ(Pd )
)
− N(hy)

.

Therefore, we can replace μd,y(x) in Algorithm 1 by μ̂d,y. Our key result for this section is that
D(g) and N(g) can be computed efficiently for models with controlled restarts.

For that matter, given any policy g, let τg denote the hitting time of the set
�(g) = {x ∈X : g(x) = 1}. Let

L(g) := E

[ τg∑
t=0

β tc(Xt, g(Xt))
∣∣∣ X0 ∼ Q

]
and M(g) := E

[ τg∑
t=0

β t
∣∣∣ X0 ∼ Q

]

denote the expected discounted cost and expected discounted time for hitting �(g) starting
with an initial state distribution of Q. Then, using ideas from renewal theory, we can show the
following.

Theorem 4. For any policy g,

D(g) = L(g)

M(g)
and N(g) = 1

βM(g)
− 1 − β

β
.

Proof. The proof follows from standard ideas in renewal theory. By the strong Markov
property, we have

D(g) =E

[
(1 − β)

τg∑
t=0

β tc(Xt, g(Xt)) + βτg+1D(g)
∣∣∣ X0 ∼ Q

]

= (1 − β)L(g) +E
[
βτg+1|X0 ∼ Q

]
D(g). (22)

Using the definition of M(g), we have E
[
βτg+1|X0 ∼ Q

]= 1 − (1 − β)M(g). Substituting this in
(22) and rearranging the terms we get D(g) = L(g)/M(g).

For N(g), by the strong Markov property we have

N(g) =E

[
(1 − β)βτg + βτg+1N(g)

∣∣∣ X0 ∼ Q
]

=E
[
βτg |X0 ∼ Q

](
1 − β + βN(g))= 1 − (1 − β)M(g)

β

(
1 − β + βN(g)).

Therefore, we get N(g) = (
1 − (1 − β)M(g)

)
/βM(g). �

Given any policy g, we can efficiently compute L(g) and M(g) using standard formulas for
truncated Markov chains. For any vector v, let v(g) denote the vector with components indexed
by the set {x ∈X : g(x) = 0}, and let ṽ(g) denote the remaining components. For example, if
X = {1, 2, 3, 4}, g = (1, 0, 1, 0), and v = [1, 2, 3, 4], then v(g) = (2, 4) and ṽ(g) = (1, 3).
Similarly, for any square matrix Z, let Z[g] denote the square sub-matrix corresponding to
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Algorithm 5: Myopic heuristic

the elements {x ∈X : g(x) = 0}, and let Z̃[g] denote the sub-matrix with rows {x ∈X : g(x) = 0}
and columns {x ∈X : g(x) = 1}. For example, if g = [1, 0, 1, 0] and if

Z =

⎡
⎢⎢⎢⎣

1 2 3 4

5 6 8 8

9 10 11 12

13 14 15 16

⎤
⎥⎥⎥⎦ ,

then Z[g] =
[

6 8

14 16

]
and Z[g] =

[
5 8

13 15

]
. Then, from standard formulas for truncated

Markov chains, we have the following.

Proposition 3. For any policy g, let c0 and c1 denote column vectors corresponding to c(·, 0)
and c(·, 1). Then

L(g) = Q(g)(I − βP[g])−1
(

c(g)
0 + βP̃[g]c̃(g)

1

)
+ Q̃(g)c̃(g)

1 ,

M(g) = Q(g)(I − βP[g])−1
(

1(g) + βP̃[g]1̃
(g)
)

+ Q̃(g)1̃
(g)

.

This gives us an efficient method to compute L(g) and M(g), which can in turn be used to
compute D(g) and N(g) and used in a modified version of Algorithm 1 as explained.

6. Numerical experiments

In this section, we evaluate how well the Whittle index policy (WIP) performs compared to
the optimal policy (OPT) as well as to a baseline policy known as the myopic policy (MYP)
(shown in Algorithm 5). The code is available at [4].

6.1. Experimental setup

In our experiments, we consider restart bandits with P(1) = [1, 0, . . . , 0]. There are two
other components of the model: the transition matrix P(0) and the cost function c. We choose
these components as follows.
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FIGURE 2. Relative performance αOPT of WIP versus OPT for Experiment 2.

FIGURE 3. Relative improvement εMYP of WIP versus MYP for Experiment 3.

6.1.1. The choice of transition matrices. We have three setups for choosing P(0). The first
setup is a family of four types of structured stochastic monotone matrices, which we denote
by P�(p), � ∈ {1, . . . , 4}, where p ∈ [0, 1] is a parameter of the model. The second setup is a
randomly generated stochastic monotone matrix which we denote by R(d), where d ∈ [0, 1] is
a parameter of the model. In the third setup, we generate random stochastic matrices using the
Lévy distribution. The details of these models are presented in the supplementary material.

6.1.2. The choice of the cost function. For all our experiments we choose c(x, 0) = (x − 1)2

and c(x, 1) = 0.5(|X | − 1)2.

6.2. Experimental details and results

We conduct different experiments to compare the performance of the Whittle index with
the optimal policy and the myopic policy for different setups (described in Section 6.1) and for
different choices of the size |X | of the state space, the number n of arms, and the number m of
active arms. For all experiments we choose the discount factor β = 0.95.

We evaluate the performance of a policy via Monte Carlo simulations over S trajectories,
where each trajectory is of length T . In all our experiments, we choose S = 2500 and T = 250.

Experiment 1. Comparison of Whittle index with the optimal policy for structured models.
The optimal policy is computed by solving the Markov decision process for Problem 1, which
is feasible only for small values of |X | and n. We choose |X | = 5 and n = 5 and compare the
two policies for the model P�(·), � ∈ {1, . . . , 4} and m ∈ {1, 2}.
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FIGURE 4. Relative improvement εMYP of WIP versus MYP for Experiment 4.

For a given value of n and �, we pick n equispaced points (p1, . . . , pn) in the inter-
val [0.35, 1] and choose P�(pi) as the transition matrix of arm i. We observed that αOPT =
J(OPT)/J(WIP), the relative (percentage) performance improvement of WIP compared to OPT,
was in the range of 99.95%–100% for all parameters.

Experiment 2. Comparison of Whittle index with the optimal policy for randomly sampled
models. As before, we pick |X | = 5 and n = 5 so that it is feasible to calculate the optimal
policy. For each arm, we sample the transition matrix from R(5/|X |) and repeat the experiment
250 times. Histograms of αOPT over experiments for m ∈ {1, 2} appear in Figure 2, which shows
that WIP performs close to OPT in all cases.

Experiment 3. Comparison of Whittle index with the myopic policy for structured models.
We generate the structured models as in Experiment 1 but for |X | = 25, n ∈ {25, 50, 75}, and

https://doi.org/10.1017/apr.2021.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.61


1186 N. AKBARZADEH AND A. MAHAJAN

FIGURE 5. Relative improvement εMYP of WIP versus MYP for Experiment 5.

m ∈ {1, 2, 5}. In this case, let εMYP = (J(MYP) − J(WIP))/J(MYP) denote the relative improve-
ment of WIP compared to MYP. The results of εMYP for different choices of the parameters are
shown in Figure 3.

In Figure 3, we observe that WIP performs considerably better than MYP. In addition to that,
the performance of WIP is better with respect to MYP when � = 4, which is more complicated
than models where � ∈ {1, 2, 3}. However, increasing m does not necessarily contribute to bet-
ter εMYP, as overlap between the choices of the two policies may increase. Note that as P4(·)
is very different from the rest of the models, the trend of bars in Figure 3d with respect to n
varies differently from the rest of the models.

Experiment 4. Comparison of Whittle index with the myopic policy for randomly sampled
models. We generate 250 random models as described in Experiment 2 but for |X | = 25 and
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larger values of n. For each case, εMYP is computed. Histograms of εMYP for different choices
of the parameters are shown in Figure 4.

The results show that on average, WIP performs considerably better than MYP, and this
improvement is guaranteed as the concentration of data for the sampled models is mostly on
positive values of εMYP.

Experiment 5. Comparison of Whittle index with the myopic policy for restart models. We
generate 250 random stochastic matrices for P(0). Each row of the matrix is generate according
to Section 1.3 of the supplementary material. We set |X | = 25, n ∈ {25, 50, 75}, and m ∈ {1, 2}.
For each case, εMYP is computed; histograms of εMYP for different choices of the parameters
are shown in Figure 5.

7. Conclusion

We present two general sufficient conditions for restless bandit processes to be indexable.
The first condition depends only on the transition matrix P(1), while the second condition
depends on both P(0) and P(1). These sufficient conditions are based on alternative char-
acterizations of the passive set, which might be useful in general as well. We also present
refinements of these sufficient conditions that are simpler to verify. Two of these simpler con-
ditions are worth highlighting: models where the active action resets the state according to a
known distribution, and models where the discount factor is less than 0.5.

We then present a generalization of a previously proposed adaptive greedy algorithm, which
was developed to compute the Whittle index for a sub-class of restless bandits known as
PCL-indexable bandits. We show that the generalized adaptive greedy algorithm computes
the Whittle index for all indexable bandits. We provide a computationally efficient implemen-
tation of our algorithm, which computes the Whittle indices of a restless bandit with K states
in O(K3

)
computations.

Finally, we show how to refine the results for two classes of restless bandits: stochastic
monotone bandits and restless bandits with controlled restarts. We also present a detailed
numerical study which shows that the Whittle index policy performs close to the optimal policy
and is considerably better than a myopic policy.

Appendix A. Proof of Proposition 1

We first present a preliminary result.

Lemma 6. For τ = 0, the policy h0 satisfies J(h0)
λ (x) = Hλ(x, 1) = (1 − β)c(x, 1) + Wλ.

Proof. Consider the stopping time τ = 0. The policy h0 takes the active action at time 0 and
follows the optimal policy afterwards. Thus, for any x ∈X ,

J(h0)(x) = (1 − β)(c(x, 1) + λ) + β
∑
y∈X

Pxy(1)Vλ(y) = Hλ(x, 1).

By (4) and (6) we have Hλ(x, 1) = (1 − β)c(x, 1) + Wλ(x). �

We now proceed with the proof of Proposition 1. By definition, �
(a)
λ = �λ. We establish

the equality of other characterizations:

(i) �
(a)
λ = �

(b)
λ . We have x ∈ �λ

(a)⇐⇒ gλ(x) = 0
(b)⇐⇒ Hλ(x, 0) < Hλ(x, 1), where (a) fol-

lows from (5) and (b) follows from the dynamic program (3).
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(ii) �
(b)
λ ⊆ �

(c)
λ . Let σ denote the hitting time of X \ �λ. If we start in the state x ∈ �

(b)
λ =

�λ, then the policy hσ,λ is same as the optimal policy. Hence, J(hσ,λ)
λ (x) = Hλ(x, 0).

Thus, for any x ∈ �
(b)
λ = �λ,

J(hσ,λ)
λ (x) = Hλ(x, 0)

(a)
< Hλ(x, 1)

(b)= J(h0)
λ (x),

where (a) follows from fact that x ∈ �
(b)
λ and (b) from Lemma 6.

(iii) �
(c)
λ ⊆ �

(b)
λ . Let x ∈ �

(c)
λ , and let σ ∈ � denote a stopping time such that J(hσ,λ)

λ (x) <

J(h0)
λ (x). Now, the optimal policy performs at least as well as the policy hσ,λ. Therefore,

Vλ(x) ≤ J(hσ,λ)
λ (x). Combining this result with Lemma 6 we have Vλ(x) < Hλ(x, 1). Thus,

we must have Vλ(x) = Hλ(x, 0), which results in Hλ(x, 0) < Hλ(x, 1), which implies
x ∈ �

(b)
λ .

(iv) �
(c)
λ = �

(d)
λ . According to the definitions of L(x, τ ) and Wλ(x) we have

J
(hτ,λ)
λ (x) = (1 − β)L(x, τ ) +E[βτ Wλ(Xτ )|X0 = x]. (23)

Thus, J(hσ,λ)
λ (x) < J(h0)

λ (x) if and only if

(1 − β)L(x, σ ) +E[βσ Wλ(Xσ )|X0 = x] < (1 − β)c(x, 1) + Wλ(x), (24)

where we have used (23) for J(hσ,λ)
λ (x) and Lemma 6 for J(h0)

λ (x). Rearranging the terms

of (24) we get the expression in �
(d)
λ . Hence, �

(c)
λ = �

(d)
λ .

Appendix B. Proof of Theorem 1

B.1. Proof of Theorem 1(a)

We first present a preliminary result. Let �λ := λ′′ − λ′.

Lemma 7. Under (11), for any λ′′ > λ′ and σ ∈ �, σ �= 0, we have that for any x ∈X ,

Wλ′ (x) −E[βσ Wλ′ (Xσ )|X0 = x] ≤ Wλ′′ (x) −E[βσ Wλ′′ (Xσ )|X0 = x].

Proof. By (6), for any x ∈X we have

(Wλ′′ (x) −E[βσ Wλ′′ (Xσ )|X0 = x]) − (Wλ′ (x) −E[βσ Wλ′ (Xσ )|X0 = x])

= (1 − β)�λ

(
1 − M(x, σ )

)+ βE

[∑
y∈X

(
Pxy(1) − βσ PXσ y(1)

)(
Vλ′′ (y) − Vλ′ (y)

) ∣∣∣∣ X0 = x

]
.

(25)
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Now, since σ ≥ 1, M(x, σ ) ≤ β, and

(1 − β)�λ(1 − M(x, σ )) ≥ �λ(1 − β)2. (26)

Now consider

βE

[∑
y∈X

(
Pxy(1) − βσ PXσ y(1)

)(
Vλ′′ (y) − Vλ′ (y)

) ∣∣∣∣ X0 = x

]

(a)≥ βE

[∑
y∈X

(
Pxy(1) − βPXσ y(1)

)(
Vλ′′ (y) − Vλ′ (y)

) ∣∣∣∣ X0 = x

]

(b)≥ β�λE

[∑
y∈X

{[
Pxy(1) − βPXσ y(1)

]+
N(gλ′′ )(y)

+ [
Pxy(1) − βPXσ y(1)

]−
N(gλ′ )(y)

}∣∣∣∣X0 = x

]

(c)≥ −�λ(1 − β)2, (27)

where (a) holds because σ ≥ 1, (b) holds by Lemma 2, and (c) follows from (11). Substituting
(26) and (27) in (25), we get the result of the lemma. �

We now proceed with the proof of Theorem 1(a). Consider λ′ < λ′′. Suppose x ∈ �λ′ .
By Proposition 1(d), there exists a σ �= 0 such that (1 − β) (L(x, σ ) − c(x, 1)) < Wλ′ (x) −
E[βσ Wλ′ (Xσ )|X0 = x]. Combining this result with the result of Lemma 7, we infer (1 −
β) (L(x, σ ) − c(x, 1)) < Wλ′′ (x) −E[βσ Wλ′′ (Xσ )|X0 = x]. Thus, x ∈ �λ′′ . Hence, �λ′ ⊆ �λ′′
and the RB is indexable.

B.2. Proof of Theorem 1.b

Consider λ′ < λ′′. An RB is indexable if �λ′ ⊆ �λ′′ , or equivalently, for any x such that
Hλ′ (x, 0) < Hλ′ (x, 1), we have Hλ′′ (x, 0) < Hλ′′ (x, 1). A sufficient condition for this is to show
that Hλ′ (x, 1) − Hλ′ (x, 0) ≤ Hλ′′ (x, 1) − Hλ′′ (x, 0), or equivalently, that Hλ′′ (x, 0) − Hλ′ (x, 0) ≤
Hλ′′ (x, 1) − Hλ′ (x, 1). We prove this inequality as follows.

Let �λ = λ′′ − λ′. By (4), for any x ∈X we have

(Hλ′′ (x, 1) − Hλ′ (x, 1)) − (Hλ′′ (x, 0) − Hλ′ (x, 0))

= �λ(1 − β) + β
∑
y∈X

(Pxy(1) − Pxy(0))(Vλ′′ (y) − Vλ′ (y))

(a)≥ �λ

(
1 − β + β

∑
y∈X

[
Pxy(1) − Pxy(0)

]+
N(gλ′′ )(y) + [

Pxy(1) − Pxy(0)
]−

N(gλ′ )(y)

)
(b)≥ 0,

where (a) follows from Lemma 2 and (b) holds by (12). Therefore the RB is indexable.
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Appendix C. Proof of Proposition 2

We prove the result of each part separately.

(a) This follows from observing that∑
y∈X

{[
βPzy(1) − Pxy(1)

]+
N(g)(y) − [

Pxy(1) − βPzy(1)
]+

N(h)(y)
}

(a)≤
∑
y∈X

[
βPzy(1) − Pxy(1)

]+
N(g)(y)

(b)≤
∑
y∈X

[
βPzy(1) − Pxy(1)

]+ ≤ max
x,z∈X

∑
y∈X

[
βPzy(1) − Pxy(1)

]+
,

where we are ignoring negative terms in (a) and using N(g)(x) ≤ 1 in (b).

(b) For any x, y, z ∈X , Pxy(1) − βPzy(1) = (1 − β)Pxy(1). Thus,∑
y∈X

{[
βPzy(1) − Pxy(1)

]+
N(g)(y) − [

Pxy(1) − βPzy(1)
]+

N(h)(y)
}

= −
∑
y∈X

(1 − β)Pxy(1)N(h)(y) ≤ 0 <
(1 − β)2

β
.

(c) This follows from observing that∑
y∈X

{[
Pxy(0) − Pxy(1)

]+
N(g)(y) − [

Pxy(1) − Pxy(0)
]+

N(h)(y)
}

(a)≤
∑
y∈X

[
Pxy(0) − Pxy(1)

]+
N(g)(y)

(b)≤
∑
y∈X

[
Pxy(0) − Pxy(1)

]+ ≤ max
x∈X

∑
y∈X

[
Pxy(0) − Pxy(1)

]+
,

where we are ignoring negative terms in (a) and using N(g)(x) ≤ 1 in (b).

(d) The fact that β ≤ 0.5 implies that

1 − β

β
≥ 1 ≥ max

x∈X
[
Pxy(0) − Pxy(1)

]+
,

which is the same as the sufficient condition (c) established above.

Appendix D. Proof of Lemma 3

The proof of each part is as follows:

1. Since the model is indexable and y ∈ 	d+1, w(d) = λd+1. Therefore, the optimal policy
is indifferent between choosing the active and the passive action at λ = λd+1.

2. By definition, for any λ ∈ (λd, λd+1], hd is an optimal policy. Therefore, we have

J
(hd,y)
λ (x) ≥ J(hd)

λ (x) with y ∈X \Pd for all x ∈X , with equality if y ∈ 	d+1 and λ = λd+1.
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