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Abstract

We consider a restless multi-armed bandit problem where the model of each arm is known approximately
and provide bounds on the loss of performance in using the Whittle index policy of the approximate model.
The bounds depend on the approximation errors in modeling each arm, properties of the transition dynamics
and the per-step reward of each arm, and the degree of suboptimality of the Whittle index policy in the
approximate model.

1. Introduction

Restless multi-armed bandits (RMAB), intro-
duced in [36], are an important modeling framework
for a variety of scheduling and resource allocation
problems arising in communication networks, power
systems, and machine maintenance. Such problems
can be modeled as Markov decision process (MDP)
but obtaining an optimal solution suffers from the
curse of dimensionality. In general, the MDP solu-
tion has exponential complexity in the number of al-
ternatives. The RMAB framework provides a scal-
able heuristic solution, known as the Whittle index
policy, which has linear complexity in the number
of alternatives (which are called arms in the rest-
less bandit literature). The Whittle index policy is
optimal in some settings (e.g., when the arms which
are not selected remain frozen [15], when the num-
ber of arms is asymptotically large [34], and when
the model satisfies some separation conditions [23]),
and performs close to optimal in a variety of appli-
cations [1, 4, 6, 16, 17, 28].
However, the current literature assumes that the

model of each arm is known perfectly. This is not al-
ways true, especially in applications where the mod-
els of the arms are estimated based on data. We are
interested in the following question: how sensitive
is the Whittle index policy to model approximation?
In particular, if we make some approximation errors
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in modeling the rewards and dynamics of each arm,
what is the loss in performance in taking a certainty
equivalence approach and following the Whittle in-
dex policy of the approximate model? This ques-
tion is also relevant for restless bandits with contin-
uous state space, where model approximation may
be required to compute the Whittle index.

For rested multi-armed bandits (i.e., when only
one arm can be activated at each time, and the
arms which are not activated remain frozen), it is
known that a policy which approximates the Git-
tins index is approximately optimal [20, 22]. Thus,
the sensitivity question reduces to the question of
the senstivity of the Gittins index to model param-
eters. However, the result and the proof technique
of [20] rely on specific features of the rested MAB
settings and cannot be directly generalized to rest-
less MABs. There are also other results in the
literature on approximate computation of Gittins
index [7], but they are also not applicable to the
restless setting.

The notion of sensitivity considered in this pa-
per is similar to the notion of certainty equivalence
used in stochastic control. In our setting, the de-
cision maker has an approximate model and wants
to use the optimal policy of the approximate model
in the true model. A related notion is that of ro-
bustness, where instead of choosing the optimal pol-
icy of the approximate model, the decision maker
chooses a policy that optimizes the worst case per-
formance over all realizations of the true model
[19, 27]. Such robust formulations for Gittins index
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have been considered in [10, 13, 22]. These results
have been generalized to a certain class of partially
observed models in [21]. As mentioned earlier, the
notion of robustness is different from the notion of
sensitivity or certainty equivalence that we consider
here.
Recently, there has been a significant interest in

learning Whittle index policies for RMAB [2, 5, 8,
14, 25, 31]. Most of these learn the Whittle index by
using reinforcement learning to learn a Q-function
of an auxiliary MDP associated with the compu-
tation of Whittle index. But, these papers do not
provide an explicit answer to the sensitivity ques-
tion that we are interested in.
Our main contributions are the following.

1. We formulate the question of sensitivity of the
Whittle index policy to model approximation.
In particular, we formalize how to define model
approximation of an arm and characterize the
sensitivity of Whittle index policy in terms of
approximation errors in modeling individual
arms and a property of the value function of
the optimal policy.

2. Our results depend on the choice of metric
on probability spaces. We consider a class of
metrics knows as integral probability metrics
(IPMs) and focus on two IPMs: total variation
distance and Wasserstein distance. For these
IPMs, we provide a computable upper bound
on the sensitivity of the Whittle index policy
which depends on the approximation errors in
modeling individual arms and properties of the
reward functions and transition kernels of the
arms.

The rest of the paper is organized as follows. In
Sec. 2, we present the model and the problem for-
mulation and state the main results. We present
some examples of our results in Sec. 3. In Sec. 4,
we present the proofs of the main results and con-
clude in Sec. 5.

Notation Used

We use uppercase letters to denote random vari-
ables (e.g. S,A, etc.), lowercase letters to denote
their realizations (e.g. s, a, etc.) and sans serif let-
ters to denote sets (e.g. S,A, etc.). We also use
superscripts (e.g. Si, Ai, etc. for arm i) to denote
quantities for a specific arm. For any set X, ∆(X)
is used to denote the space of probability distribu-
tions on X. P and E denote the probability of an

event and expectation of a random variable, respec-
tively. For an integer n, we use [n] to denote the
set of integers from 1 to n.

Given a set S and a function f : S → R, we use
span(f) to denote the span of f , i.e., span(f) =
sups,s′∈S |f(s) − f(s′)| and we use ∥f∥∞ to denote
the supremum norm of function f , i.e., ∥f∥∞ =
sups∈S f(s).

When (S, d) is a metric space we use Lip(f) to
denote the Lipschitz constant of f , i.e.,

Lip(f) = sup
s,s′∈S

|f(s)− f(s′)|
d(s, s′)

.

If this constant exists and is finite, then f is said to
be Lip(f)-Lipschitz.

2. Problem formulation and main results

The results of this paper are applicable to models
with discrete or continuous state spaces. For ease
of exposition, we present the model and results for
continuous state spaces. They can be easily trans-
lated to models with discrete state spaces.

2.1. Restless multi-armed bandits

A restless multi-armed bandit (RMAB) is a de-
cision making problem where there are n alterna-
tives or arms. Each arm i, i ∈ [n], is a controlled
Markov process αi = ⟨Si, {0, 1}, {pi(a)}a∈{0,1}, r

i⟩,
where Si denotes the state space which is assumed
to be a compact set, {0, 1} is the action space, pi(a),
a ∈ {0, 1}, denotes the transition density from Si to
Si when action a is chosen, and ri : Si×{0, 1} 7→ R
denotes the per-step reward which is assumed to be
uniformly bounded and continuous in Si. For some
of the results, we will assume that, for each arm
i ∈ [n], the state space Si is a metric space and use
di to denote the metric on Si.

The system operates in discrete time. We use
Si
t ∈ Si and Ai

t ∈ {0, 1} to denote the state and
action of arm i at time t. We use St = (S1

t , . . . , S
n
t )

and At = (A1
t , . . . , A

n
t ) to denote the global state

and actions of all arms at time t. Each component
of the global state evolves in a controlled Markov
manner independently of other components. In par-
ticular, for any measurable subsets Bi ⊂ Si, i ∈ [n],
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we have

P

(
St+1 ∈

∏

i∈[n]

Bi

∣∣∣∣ S1:t = s1:t,A1:t = a1:t

)

=
∏

i∈[n]

[∫

Bi

pi(sit+1 | sit, ait)dsit+1

]
.

At each time, a decision maker observes the
global state St and can activate (i.e., select ac-
tion Ai

t = 1) for at most m < n arms. The deci-
sion maker chooses its actions according to a time-
homogeneous Markov policy π : S → A(m), where
S =

∏
i∈[n] S

i denotes the set of all global states and

A(m) :=
{
a ∈ {0, 1}n : ∥a∥1 ≤ m

}
denotes the set

of feasible actions. The performance of any Markov
policy π starting from an initial state s0 ∈ S is given
by

V π(s0) = Qπ(s0, π(s0)), (1)

where

Qπ(s0,a0)

= Eπ

[ ∞∑

t=0

γt
∑

i∈[n]

ri(Si
t , A

i
t)

∣∣∣∣ S0 = s0,A0 = a0

]
,

(2)

where γ ∈ (0, 1) denotes the discount factor and
ri ∈ [0, 1]. The objective is to find a Markov policy
π which maximizes V π(s0).
The decision problem formulated above is a

Markov decision process (MDP) and can be solved
using dynamic programming. However, the dy-
namic programming solution suffers from the curse
of dimensionality because both the state space S
and action space A(m) grow exponentially with the
number of arms. To avoid the curse of dimensional-
ity, a popular heuristic is to use the Whittle index
policy [36], which has a linear complexity in the
number of arms. An overview of the Whittle index
policy can be found in [38, Sec. 3.3], [24, Sec. 3.5],
and [35, 36].

2.2. Problem formulation: Model approximation in
RMAB

We start by defining a class of metrics on proba-
bility measures known as integral probability met-
rics (IPM) [26].

Definition 1. Let (X,G) be a measurable space and
F denote a class of uniformly bounded measurable

functions on (X,G). The integral probability metric
(IPM) between two probability distributions µ, ν ∈
∆(X) with respect to the function class F is defined
as

dF(µ, ν) := sup
f∈F

∣∣∣∣
∫

X

fdµ−
∫

X

fdν

∣∣∣∣.

Some examples of IPM are total variation dis-
tance, Wasserstein distance, Kolmogorov distance,
Bounded-Lipschitz distance, and maximum mean
discrepancy. For total variation distance, F = {f :
1
2 span(f) ≤ 1} =: FTV; for Wasserstein distance,
F = {f : Lip(f) ≤ 1} =: FW. We refer the reader
to [33] for details about other examples.

Given a function class F and a function f (not
necessarily in F), the Minkowski functional [32] of
f with respect to F is defined as:

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (3)

When F = FTV (i.e., dF is the total variation dis-
tance), ρF(f) =

1
2 span(f); and when F = FW (i.e.,

dF is the Wasserstein distance), ρF(f) = Lip(f).
A key implication of the definition of Minkowski
functional is the following: for any function f , not
necessarily in function class F,

∣∣∣∣
∫

X

fdµ−
∫

X

fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν), (4)

We now formalize the notion of approximate rest-
less bandit model.

Definition 2. Consider two arms α = ⟨S, {0, 1},
{p(a)}a∈{0,1}, r⟩ and α̂ = ⟨S, {0, 1}, {p̂(a)}a∈{0,1},
r̂⟩ defined on the same state space. Given a function
space F and positive constants ε and δ, arm α̂ is
called an (ε, δ)-approximation of arm α if for all
s ∈ S and a ∈ {0, 1}:
∣∣r(s, a)− r̂(s, a)

∣∣ ≤ ε, dF
(
p(·|s, a), p̂(·|s, a)

)
≤ δ.

We fix the function space F and consider the fol-
lowing setup.

Approximation setup. Given a RMAB
{αi}i∈[n], where αi = ⟨Si, {0, 1}i, {pi(a)}a∈{0,1},
ri⟩, consider an approximate RMAB {α̂i}i∈[n],
where α̂i = ⟨Si, {0, 1}i, {p̂i(a)}a∈{0,1}, r̂

i⟩ and for
each i ∈ [n], arm α̂i is an (εi, δi)-approximation of
arm αi.

For any policy π : S → A(m) and initial state s,
let V π(s) denote the performance of π in RMAB
{αi}i∈[n] and let V̂ π(s) denote the performance of

3



policy π in RMAB {α̂i}i∈[n]. Let π∗ denote the
optimal policy for RMAB {αi}i∈[n] and let π̂∗ and
µ̂ denote the optimal policy and the Whittle index
policy1 for RMAB {α̂i}i∈[n].
For the Whittle index policy to be applicable,

the model must satisfy a technical condition known
as indexability [36]. So we impose the following
assumption.

Assumption 1. In the approximaion setup, all
arms {α̂i}i∈[n] are indexable.

We are interested in the following approximation
characterization.

Problem 1. In the approximation setup described
above, under Assumption 1, characterize the ap-
proximation error ∥V π∗ − V µ̂∥∞ (which is the sub-
optimality gap of using the Whittle index policy of
the approximate model in the true model) in terms
of ∥V̂ π̂∗ − V̂ µ̂∥∞ (which is the suboptimality gap of
using the Whittle index policy of the approximate
model in the approximate model) and the approxi-
mation errors {(εi, δi)}i∈[n].

2.3. Main results

We first define a property of an arm, which is
needed in our main result.

Definition 3. Consider the function class FW, an
arm αi = ⟨Si, {0, 1}i, {pi(a)}a∈{0,1}, r

i⟩ and a met-
ric di on Si. If

Lri := sup
s,s′∈Si

a∈{0,1}

|ri(s, a)− ri(s′, a)|
di(s, s′)

< ∞,

Lpi := sup
s,s′∈Si

a∈{0,1}

dFW(pi(· | s, a), pi(· | s′, a))
di(s, s′)

< ∞,

then the arm αi is said to be (Lri ,Lpi)-Lipschitz.

Now we present our main result. For any Markov
policy π, define

βπ
F :=

ε+ γδρF(V̂
π)

1− γ
,

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
. Then we have

the following.

1We can also consider µ̂ to be any arbitrary heuristic
policy here (the main results stay the same). We focus on
the Whittle index policy for further discussions because it is
the most commonly used heuristic for RMAB problems.

Theorem 1. For the approximation setup of
Sec. 2.2, under Assumption 1, we have

∥Qπ∗
−Qµ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F + ∥Q̂π̂∗

− Q̂µ̂∥∞
(5)

and

∥V π∗
− V µ̂∥∞ ≤ 3βπ̂∗

F + βµ̂
F + ∥V̂ π̂∗

− V̂ µ̂∥∞. (6)

The proof is given in Sec.4. The above bounds
depend on the properties of the optimal value func-
tion V π∗

, which can be difficult to compute. We
now present looser upper bounds which do not ex-
plicitly depend on V π∗

.

Proposition 1. When F = FTV (i.e. dF is the
total variation distance) and Assumption 1 holds,
then we have

∥Qπ∗
−Qµ̂∥∞ ≤ 4ε

(1− γ)
+

3γδ span(r̂)

2(1− γ)2

+
γδ span(V̂ µ̂)

2(1− γ)
+ ∥Q̂π̂∗

− Q̂µ̂∥∞

(7)

and

∥V π∗
− V µ̂∥∞ ≤ 4ε

(1− γ)
+

3γδ span(r̂)

2(1− γ)2

+
γδ span(V̂ µ̂)

2(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞,

(8)

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
and span(r̂) ≤

∑
i∈[n] span(r̂

i).

See Sec. 4.4 for proof.

Proposition 2. When F = FW (i.e. dF is
the Wasserstein distance), suppose Assumption 1
holds, and for each i ∈ [n], arm α̂i is (Lr̂i ,Lp̂i)-
Lipschitz with Lp̂i < γ−1, we have

∥Qπ∗
−Qµ̂∥∞ ≤ 4ε

(1− γ)
+

3γδLr̂

(1− γ)(1− γLp̂)

+
γδ Lip(V̂ µ̂)

(1− γ)
+ ∥Q̂π̂∗

− Q̂µ̂∥∞ (9)

and

∥V π∗
− V µ̂∥∞ ≤ 4ε

(1− γ)
+

3γδLr̂

(1− γ)(1− γLp̂)

+
γδ Lip(V̂ µ̂)

(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞, (10)
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P (0) =



0.2 0.3 0.5

0.1 0.5 0.4

0.4 0.3 0.3


 , P (0) =



0.1 0.6 0.3

0.2 0.7 0.1

0.1 0.8 0.1


 ,

P (1) =



0.4 0.4 0.2

0.3 0.3 0.4

0.2 0.2 0.6


 , P (1) =



0.50 0.40 0.10

0.30 0.60 0.10

0.25 0.55 0.20


 ,

r =



0.60 0.40

0.88 0.60

1.00 0.80


 , r =



0.52 0.64

0.44 0.96

0.76 0.44


 .

Arm 1 Arm 2

1

(a) True Model

P̂ (0) =



0.19 0.29 0.52

0.11 0.51 0.38

0.41 0.29 0.30


 , P̂ (0) =



0.09 0.62 0.29

0.21 0.69 0.10

0.12 0.79 0.09


 ,

P̂ (1) =



0.39 0.39 0.22

0.29 0.29 0.42

0.21 0.19 0.60


 , P̂ (1) =



0.48 0.42 0.10

0.31 0.59 0.10

0.24 0.55 0.21


 ,

r̂ =



0.596 0.404

0.872 0.596

0.996 0.792


 , r̂ =



0.512 0.636

0.432 0.968

0.756 0.448


 .

Arm 1 Arm 2

1

(b) Approximate Model

Figure 1: The true and approximate model for the example of Sec. 3.1

where (ε, δ) =
(∑

i∈[n] ε
i,
∑

i∈[n] δ
i
)
, Lr̂ ≤

maxi∈[n] Lr̂i and Lp̂ ≤ maxi∈[n] Lp̂i .

See Sec. 4.5 for proof.

Remark 1. In order to compute the Lipschitz
constant of V µ̂ in (9) and (10), we need a met-
ric on S. This metric is chosen as d(s, s′) =∑

i∈[n] d
i(si, s′

i
).

Remark 2. In the rested case, the Whittle index
policy reduces to the Gittins index policy and is
optimal. Therefore, in (6), V̂ π̂∗

= V̂ µ̂. Thus,
Theorem 1 also provides an approximation guaran-
tee for the rested RMAB which is different from
the stopping-time based approximation guarantee
in [20].

Remark 3. The upper bound of Theorem 1 depends
on the IPM in two ways. First, the parameter δ (i.e.
the degree of closeness of the approximate dynam-
ics to the true dynamics) depends on the IPM. In
addition, the ρF(·) term depends on the choice of
IPM. See Sec. 3.1 for an example on how the upper
bound depends on the choice of the IPM.

Remark 4. In Theorem 1, we only require the ap-
proximate model to be indexable (Assumption 1).
The original model is not required to be indexable.
This is a useful feature in settings where the orig-
inal model is not known and only an approximate
model is available.

3. Some illustrative examples

In this section, we provide some examples to il-
lustrate our results.

3.1. An example with finite state space

Consider an RMAB with two arms αi =
⟨S, {0, 1}, {P i(ai)}ai∈{0,1}, r

i⟩, i ∈ {1, 2}, where
S = {1, 2, 3} shown in Fig. 1a. Suppose these arms
are approximated by ⟨S, {0, 1}, {P̂ i(ai)}ai∈{0,1}, r̂

i⟩
show in Fig. 1b. It can be verified that the approx-
imate model is indexable. Thus, Assumption 1 is
satisfied.

Let ω̂i(s) denote the Whittle index (for the ap-
proximate model) of arm i in state s. We compute
these using the modified adaptive greedy algorithm
[3], and they are given by

ω̂1(1) = −0.308, ω̂1(2) = −0.309, ω̂1(3) = −0.140,

ω̂2(1) = 0.009, ω̂2(2) = 0.547, ω̂2(3) = −0.410.

The Whittle index policy µ̂ is given by

µ̂(s1, s2) = argmax
i∈{1,2}

ω̂i(si). (11)

We are interested in bounding the performance loss
in using the Whittle index policy for the approxi-
mate model, in the true model. For that matter,
we first compute the value function of the Whit-
tle index policy (in the true model) using the pol-
icy evaluation equation [29]. The value function is
given by2

V µ̂ =



16.172 16.562 16.165
16.474 16.864 16.401
16.509 16.899 16.638


 .

Since the model is small, we can compute the op-
timal value function (of the true model), which we

2The value function V µ̂ is a function from S1 × S2 →
R. We represent it as a matrix, where the (i, j)-th element
corresponds to the value V µ̂(i, j).
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do using the value iteration algorithm [29]. The
optimal value function is given by

V π∗
=



16.386 16.777 16.647
16.691 17.081 16.951
16.725 17.116 16.986


 .

Thus, the Whittle index policy has a suboptimality
gap of ∥V π∗ −V µ̂∥∞ = 0.550. Note that in practice
we do not have access to the true model, so we can-
not compute the suboptimality gap ∥V π∗ − V µ̂∥∞.
The results of Theorem 1 provide a method to
bound the suboptimality gap.

We first compute the values of approximate errors
(ε, δ) for arms 1 and 2 which are shown in Table 1
(for F = FW, we use d(s, s′) = |s− s′| as the metric
on S). We also compute the value function of the

Parameter Arm 1 Arm 2 Overall

ε 0.008 0.008 0.016

δF
TV

0.02 0.02 0.04

δF
W

0.03 0.03 0.06

Table 1: Parameters involved in Theorem 1 for Example 3.1.

Whittle index policy and the optimal value function
(for the approximate model). These are given by

V̂ µ̂ =



16.142 16.534 16.133
16.430 16.822 16.361
16.473 16.865 16.587




and

V̂ π̂∗
=



16.349 16.741 16.597
16.641 17.033 16.889
16.683 17.075 16.931


 .

Thus, the Whittle index policy has a suboptimality
gap of ∥V̂ π̂∗ − V̂ µ̂∥∞ = 0.528 in the approximate
model. Note that since we have access to the ap-
proximate model, the above value functions can be
computed in practice allowing us to estimate the
suboptimality gap in the approximate model. Now,
we use the results of Theorem 1 to bound the sub-
optimality gap in the true model.

We first consider the case when F = FTV. In
this case, ρF(·) = 1

2 span(·). Thus, the result (6) of

Theorem 1 simplifies to

∥V π∗
− V µ̂∥∞ ≤ 4ε

(1− γ)
+

3γδ span(V̂ π̂∗
)

2(1− γ)

+
γδ span(V̂ µ̂)

2(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4× 0.016

(1− 0.9)
+

3× 0.9× 0.04× 0.726

2(1− 0.9)

+
0.9× 0.04× 0.733

2(1− 0.9)
+ 0.528

≤ 1.163 + 0.528 = 1.691.

Now consider the case when F = FW. In this case,
ρF(·) = Lip(·). Thus, the result (6) of Theorem 1
simplifies to

∥V π∗
− V µ̂∥∞

≤ 4ε

(1− γ)
+

3γδ Lip(V̂ π̂∗
)

(1− γ)

+
γδ Lip(V̂ µ̂)

(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4× 0.016

(1− 0.9)
+

3× 0.9× 0.06× 0.392

(1− 0.9)

+
0.9× 0.06× 0.461

(1− 0.9)
+ 0.528

≤ 1.524 + 0.528 = 2.052.

Thus, in this example, we obtain a tighter bound by
using F = FTV. The above calculations show how
the result of Theorem 1 can be useful in bounding
the suboptimality gap of the Whittle index policy
when the true model is not known.

3.2. An example with continuous state spaces

Consider a model for machine maintenance with
n = 2 machines and m = 1 repair man. S = [0, 1]
denotes the state space of the machines where s = 0
denotes a machine in a pristine state and s = 1
denotes a completely deteriorated machine. We as-
sume that when the passive action a = 0 is taken,
the system incurs a per-step cost of s and deterio-
rates to a worse state in [s, 1] uniformly at random.
When the active action a = 1 is taken, the sys-
tem incurs a per-step cost of λ and the state of the
machine resets to a pristine state. Thus,

ri(si, 0) = −ξisi, ri(si, 1) = −λi,

pi(·|si, 0) = U(si, 1), pi(·|si, 1) = δD(·),
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where i ∈ {1, 2}, si ∈ S, ξ1 = 1.0, ξ2 = 0.5, λ1 =
0.7, λ2 = 0.3. U(x, y) denotes a uniform distribu-
tion on the interval [x, y], δD(·) is the Dirac delta
distribution and let γ = 0.9.
Suppose we want to compute the Whittle index

by discretization. In particular, we consider a piece-
wise constant approximation of the model as fol-
lows. We divide the interval [0, 1] into H subinter-
vals

[
0, 1

H

)
∪
[
1
H , 2

H

)
∪ · · · ∪

[
1− 1

H , 1
]

and consider the centers of each interval given by

Ŝ =
{

1
2H , 3

2H , . . . , 2H−1
2H

}
.

Consider a quantization function ϕ : S → Ŝ, which
maps any point to its closest point in Ŝ, i.e.,

ϕ(s) =





1
2H , if s ∈

[
0, 1

H

)
3

2H , if s ∈
[
1
H , 2

H

)

...
...

2H−1
2H , if s ∈

[
1− 1

H , 1
]

We then consider H = 100 and construct ap-
proximate arms α̂i = ⟨S, {0, 1}, {p̂i(a)}a∈{0,1}, r̂

i⟩,
where i ∈ {1, 2} and we have

p̂i(·|si, 0) = U(ϕ(si) + 1
2H , 1), p̂i(·|si, 1) = δD(·)

where U(x, y) denotes a uniform distribution on the
interval [x, y] and

r̂i(si, 0) = ri(ϕ(si), 0) = −ξiϕ(si), r̂i(si, 1) = −λi.

Since the approximate model satisfies the restart
property of [1, 3], it is indexable. Thus, Assump-
tion 1 is satisfied.
Let ω̂i(s) denote the Whittle index (for the ap-

proximate model) of arm i in state s. We compute
these using the modified adaptive greedy algorithm
[3], and they can be visualized in Fig. 2. The Whit-
tle index policy is given by (11).
Note that in this example, we do not solve for

value functions in the true model because it has a
continuous state space and so we cannot compute
the suboptimality gap ∥V π∗ − V µ̂∥∞. So, the re-
sults of Theorem 1 provide a method to bound the
suboptimality gap.
For that matter, we first compute the values of

approximate errors (ε, δ) for arms 1 and 2 which
are shown in Table 2 (for F = FW, we use d(s, s′) =
|s− s′| as the metric on S).

0 20 40 60 80 100

0

1

2

S1,S2

W
h
it
tl
e
in
d
ex

Arm 1
Arm 2

Figure 2: Whittle indices ω̂ plotted for all states for the
example of Sec. 3.2.

Parameter Arm 1 Arm 2 Overall

ε 0.005 0.0025 0.0075

δF
W

0.005 0.005 0.01

Table 2: Parameters involved in Theorem 1 for Example 3.2.

We are interested in bounding the performance
loss in using the Whittle index policy for the ap-
proximate model, in the approximate model. For
that matter, we first compute the value function of
the Whittle index policy V̂ µ̂ using the policy eval-
uation equation [29]. The value function can be
visualized by the 3D plot in Fig. 3a.

We can also compute the optimal value function
of the approximate model V̂ π̂∗

, which we do using
the value iteration algorithm [29]. The value func-
tion can be visualized by the 3D plot in Fig. 3b.

Thus, the Whittle index policy has a suboptimal-
ity gap of ∥V̂ π̂∗−V̂ µ̂∥∞ = 0.295 in the approximate
model. Note that since we have access to the ap-
proximate model, the above value functions can be
computed in practice allowing us to estimate the
suboptimality gap in the approximate model. Now,
we use the results of Theorem 1 to bound the sub-
optimality gap in the true model.
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(a) V̂ µ̂
(b) V̂ π̂∗

Figure 3: Value functions V̂ µ̂ and V̂ π̂∗
plotted for all states for the example of Sec. 3.2.

Thus, the result (6) of Theorem 1 simplifies to

∥V π∗
− V µ̂∥∞ ≤ 4ε

(1− γ)
+

3γδ Lip(V̂ π̂∗
)

(1− γ)

+
γδ Lip(V̂ µ̂)

(1− γ)
+ ∥V̂ π̂∗

− V̂ µ̂∥∞

≤ 4× 0.0075

(1− 0.9)
+

3× 0.9× 0.01× 0.014

(1− 0.9)

+
0.9× 0.01× 0.040

(1− 0.9)
+ 0.295

≤ 0.307 + 0.295

= 0.602.

The above calculations show how the result of The-
orem 1 can be useful in bounding the suboptimality
gap of the Whittle index policy when the true model
is not known.

4. Proof of main result

4.1. Roadmap of the proof

The RMAB {αi}i∈[n] can be considered as an
MDP M = ⟨S,A(m),p, r⟩ where for any st, st+1 ∈
S and at ∈ A(m), we have

p(st+1 | st,at) =
∏

i∈[n]

pi(sit+1 | sit, ait), (12)

r(st,at) =
∑

i∈[n]

ri(sit, a
i
t). (13)

The approximate RMAB {α̂i}i∈[n] can also be

considered as an MDP M̂ = ⟨S,A(m), p̂, r̂⟩ where
p̂ and r̂ are defined in a manner similar to p and r.

The main intuition of our proof is that if α̂i is
an (εi, δi)-approximation of arm αi for each i ∈ [n],
then M̂ is an (ε, δ)-approximation of M in some
appropriate sense to be described later, where (ε, δ)
can be characterized in terms of {(εi, δi)}i∈n. Then,
we can use approximation results from MDPs to
derive approximation bounds for RMABs. In the
rest of this section, we formalize this intuition.

4.2. Preliminary results

Definition 4. Consider the two MDPs M =
⟨S,A(m),p, r⟩ and M̂ = ⟨S,A(m), p̂, r̂⟩ which are
defined on the same state and action spaces. Given
a function space F and positive constants ε and δ,
the MDP M̂ is called an (ε, δ)-approximation of
the MDP M if for all s ∈ S and a ∈ A(m):

∣∣r(s,a)−r̂(s,a)
∣∣ ≤ ε, dF

(
p(·|s,a), p̂(· | s,a)

)
≤ δ.

Now we formalize the approximation bound be-
tween M and M̂.

Lemma 1. When F = FTV or F = FW, then
the MDP M̂ is an (ε, δ)-approximation of the
MDP M, where

(ε, δ) =

(∑

i∈[n]

εi,
∑

i∈[n]

δi
)
. (14)

Proof. See Appendix B.

8



From standard results of Markov decision the-
ory [30], we know that for a given policy π, the
performance V π defined by (1) satisfies the follow-
ing fixed point equation:

V π(s) = Qπ(s, π(s)), (15a)

Qπ(s,a) = E[r(s,a)] + γ

∫

S

V π(s′)p(ds′ | s,a).

(15b)

Similarly, for any policy π let V̂ π denote the per-
formance of policy π in the approximate model M̂.
Then, V̂ π satisfies the following fixed point equa-
tion:

V̂ π(s) = Q̂π(s, π(s)), (16a)

Q̂π(s,a) = E[r̂(s,a)] + γ

∫

S

V̂ π(s′)p̂(ds′ | s,a).

(16b)

An immediate consequence of Lemma 1 is the
following.

Proposition 3. For the approximate setup de-
scribed in Sec. 2.2 and for any policy π

∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞ ≤ βπ
F . (17)

Furthermore, for any policies π∗ and π̂∗ which are
optimal for M and M̂, we have

∥V π∗
− V̂ π̂∗

∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

∥∞ ≤ βπ̂∗

F . (18)

Therefore, by the triangle inequality

∥Qπ∗
−Qπ̂∗

∥∞ ≤ 2βπ̂∗

F and ∥V π∗
−V π̂∗

∥∞ ≤ 2βπ̂∗

F .
(19)

Proof. For the proof of the first part of (17), ob-
serve that from (15) and (16) we have that for any
s ∈ S,

|V π(s)− V̂ π(s)|

=
∣∣∣Qπ(s, π(s))− Q̂π(s, π(s))

∣∣∣
(a)

≤ ∥Qπ(s, ·)− Q̂π(s, ·)∥∞
(b)

≤ ∥Qπ − Q̂π∥∞,

where (a) and (b) follow from the definition of the
sup norm. Supremizing the LHS over s ∈ S, we get

∥V π − V̂ π∥∞ ≤ ∥Qπ − Q̂π∥∞. (20)

This proves the first part of (17). Now, we bound
∥Qπ − Q̂π∥∞ as follows: for any fixed s ∈ S, a ∈
A(m), from (15) and (16), we have

|Qπ(s,a)− Q̂π(s,a)|
(c)

≤ |E[r(s,a)]− E[r̂(s,a)]|

+ γ

∫

S

|V π(s′)− V̂ π(s′)|p(ds′ | s,a)

+ γ

∣∣∣∣
∫

S

V̂ π(s′)

[
p(ds′ | s,a)− p̂(ds′ | s,a)

]∣∣∣∣
(d)

≤ ε+ γ∥Qπ − Q̂π∥∞ + γρF(V̂
π)δ, (21)

where (c) follows from the definition of Qπ and
Q̂π, adding and subtracting the V̂ π term and the
triangle inequality; (d) follows from (20) and the
definition of an (ε, δ)-approximation for an MDP.
Supremizing the LHS of (21) over all s,a ∈ S ×
A(m) and re-arranging terms, we get

∥Qπ − Q̂π∥∞ ≤ ε+ γρF(V̂
π)δ

(1− γ)
= βπ

F . (22)

This proves the second part of (17).
For the proof of the first part of (18), observe

that from (15) and (16) we have that for any s ∈ S,

|V π∗
(s)− V̂ π̂∗

(s)|

=

∣∣∣∣ max
a∈A(m)

Qπ∗
(s,a)− max

a∈A(m)
Q̂π̂∗

(s,a)

∣∣∣∣
(e)

≤ max
a∈A(m)

∣∣Qπ∗
(s,a)− Q̂π̂∗

(s,a)
∣∣

≤ ∥Qπ∗
− Q̂π̂∗

∥∞,

where (e) follows from the inequality max f(x) −
max g(x) ≤ max |f(x) − g(x)|. Supremizing the
LHS over s ∈ S, we get

∥V π∗
− V̂ π̂∗

∥∞ ≤ ∥Qπ∗
− Q̂π̂∗

∥∞. (23)

This proves the first part of (17). Now, we bound
∥Qπ∗ − Q̂π̂∗∥∞ as follows: for any fixed s ∈ S,
a ∈ A(m), from (15) and (16), we have

|Qπ∗
(s,a)− Q̂π̂∗

(s,a)|
(f)

≤ |E[r(s,a)]− E[r̂(s,a)]|

+ γ

∫

S

|V π∗
(s′)− V̂ π̂∗

(s′)|p(ds′ | s,a)

+ γ

∣∣∣∣
∫

S

V̂ π̂∗
(s′)

[
p(ds′ | s,a)− p̂(ds′ | s,a)

]∣∣∣∣
(g)

≤ ε+ γ∥Qπ∗
− Q̂π̂∗

∥∞ + γρF(V̂
π̂∗
)δ, (24)
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where (f) is the same as (c); (g) follows from (23)
and the definition of an (ε, δ)-approximation for an
MDP. Supremizing the LHS of (24) over all s,a ∈
S× A(m) and re-arranging terms, we get

∥Qπ∗
− Q̂π̂∗

∥∞ ≤ ε+ γρF(V̂
π̂∗
)δ

(1− γ)
= βπ̂∗

F . (25)

This proves the second part of (17).

Finally, to show the first part of (19), consider

∥Qπ∗
−Qπ̂∗

∥∞
(h)

≤ ∥Qπ∗
− Q̂π̂∗

∥∞ + ∥Qπ̂∗
− Q̂π̂∗

∥∞
(i)

≤ βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,

where (h) follows from the triangle inequality; (i)
follows from (22) with π = π̂∗ and (25). To show
the second part of (19), consider

∥V π∗
− V π̂∗

∥∞
(j)

≤ ∥V π∗
− V̂ π̂∗

∥∞ + ∥V π̂∗
− V̂ π̂∗

∥∞
(k)

≤ ∥Qπ∗
− Q̂π̂∗

∥∞ + ∥Qπ̂∗
− Q̂π̂∗

∥∞
(l)

≤ βπ̂∗

F + βπ̂∗

F = 2βπ̂∗

F ,

where (j) follows from the triangle inequality; (k)
follows from (20) with π = π̂∗ and (23); (l) follows
from (22) with π = π̂∗ and (25).

4.3. Proof of Theorem 1

For the first part of the theorem, from the trian-
gle inequality, we have

∥Qπ∗
−Qµ̂∥∞ ≤ ∥Qπ∗

−Qπ̂∗
∥∞ + ∥Qπ̂∗

− Q̂π̂∗
∥∞

+ ∥Q̂π̂∗
− Q̂µ̂∥∞ + ∥Q̂µ̂ −Qµ̂∥∞

(a)

≤ 2βπ̂∗

F + βπ̂∗

F ∥Q̂π̂∗
− Q̂µ̂∥∞,+βµ̂

F , (26)

where each term of (a) is bound using Prop. 3. Re-
arranging terms proves (5).

For the second part of the theorem, from triangle
inequality we have

∥V π∗
− V µ̂∥∞ ≤ ∥V π∗

− V π̂∗
∥∞ + ∥V π̂∗

− V̂ π̂∗
∥∞

+ ∥V̂ π̂∗
− V̂ µ̂∥∞ + ∥V̂ µ̂ − V µ̂∥∞

(a)

≤ 2βπ̂∗

F + βπ̂∗

F + ∥V̂ π̂∗
− V̂ µ̂∥∞ + βµ̂

F , (27)

where each term of (b) is bound using Prop. 3. Re-
arranging the terms proves (6).

4.4. Proof of Proposition 1

First, observe that for F = FTV,

ρF(V̂
π̂∗
) =

1

2
span(V̂ π̂∗

)

(a)

≤ 1

2

span(r̂)

(1− γ)

(b)

≤ 1

2

∑
i∈[n] span(r̂

i)

(1− γ)
.

where (a) follows from [33, Lemma 39] and (b) fol-
lows because span is a semi-norm [30]. Using the
above bound in (5) and (6) and using Lemma 1 to
bound (ε, δ), we get (7) and (8).

4.5. Proof of Proposition 2

Suppose the state space Si of each arm is a met-
ric space with metric di. Define a metric d on
S as follows: for any q ∈ [1,∞] and s, s′ ∈ S,

d(s, s′) =
(∑

i∈[n] d
i(si, s′

i
)q
)1/q

. We now define
Lipshitz continuity for MDP M.

Definition 5. Given MDP M = ⟨S,A(m),p, r⟩,
if

Lr := sup
s,s′∈S
a∈A(m)

|r(s,a)− r(s′,a)|
d(s, s′)

< ∞,

Lp := sup
s,s′∈S
a∈A(m)

dFW(p(· | s,a),p(· | s′,a))
d(s, s′)

< ∞,

then the MDP M is said to be (Lr,Lp)-Lipschitz.

Lemma 2. If arms α̂i are (Lr̂i ,Lp̂i)-Lipschitz, for
all i ∈ [n], and k ∈ [1,∞], such that 1/k+1/q = 1,

then the MDP M̂ = ⟨S,A(m), p̂, r̂⟩ is (L
(k)
r̂ ,L

(k)
p̂ )-

Lipschitz, where

L
(k)
r̂ ≤

(∑

i∈[n]

(Lr̂i)
k

)1/k

, L
(k)
p̂ ≤

(∑

i∈[n]

(Lp̂i)k
)1/k

.

(28)

Proof. See Appendix C.

Now, observe that for F = FW,

ρF(V̂
π̂∗
) = Lip(V̂ π̂∗

)
(a)

≤
L
(k)
r̂

(1− γL
(k)
p̂ )

. (29)

where (a) follows from [18, Theorem 4.2]. To prove
Proposition 2, we will take k = ∞ because doing
so gives the tighest possible bound in (29). Sub-
stititing (29) in (5) and (6) and using Lemma 1 to
bound (ε, δ), we get (9) and (10).

10



5. Conclusions

We considered a restless multi-armed bandit
problem where the model of each arm is known
approximately and provided a bound on the loss
of performance in using the Whittle index policy of
the approximate model. The bound depends on the
approximation errors in modeling each arm, prop-
erties of the transition dynamics and the per-step
reward of each arm, and the degree of suboptimal-
ity of the Whittle index policy in the approximate
model.
The degree of approximation of an arm depends

on the choice of metric on probability spaces. We
quantify our bounds for two specific choices of met-
rics: total variation distance and Wasserstein dis-
tance. The results are easy to generalize to other
types of integral probability metrics (IPMs) as well.
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Appendix A. Preliminary Results

We first prove some preliminary results.

Lemma 3. Consider any f : S → R. Pick an
arm i ∈ [n] and arbitrarily fix s−i ∈ S−i. Define
f i : Si → R by f i(si) = f(si, s−i), for any si ∈ Si.
Then

(a) span(f i) ≤ span(f).

(b) Lip(f i) ≤ Lip(f).

Proof. (a) Consider for any s−i ∈ S−i

span(f i) = sup
si
(1)

,si
(2)

∈Si

∣∣∣∣f i(si(1))− f i(si(2))

∣∣∣∣

(a)
= sup

si
(1)

,si
(2)

∈Si

∣∣∣∣f(si(1), s−i)− f(si(2), s
−i)

∣∣∣∣

(b)

≤ sup
s(1),s(2)∈S

∣∣∣∣f(s(1))− f(s(2))

∣∣∣∣

= span(f),

where (a) follows from the definition of f i given
s−i and (b) follows from the fact that tak-
ing supremum over all S−i will given an upper
bound to any specific s−i.

(b) Again for any s−i ∈ S−i

Lip(f i) = sup
si,s̃i∈Si

|f i(si)− f i(s̃i)|
di(si, s̃i)

(c)
= sup

si,s̃i∈Si

|f(si, s−i)− f(s̃i, s−i)|
d((si, s−i), (s̃i, s−i))

(d)

≤ sup
s,s̃∈S

|f(s)− f(s̃)|
d(s, s̃)

= Lip(f),

where (c) follows from the definition of metric
d and function f i given s−i and (d) follows
from the fact that taking supremum over all
S−i will given an upper bound to any specific
s−i.

For the ease of notation, when F = FTV =
{f : S → R : 1

2 span(f) ≤ 1}, define Fi = {f i : Si →
R : 1

2 span(f
i) ≤ 1}. Similarly when F = FW =

{f : S → R : Lip(f) ≤ 1}, define Fi = {f i : Si →
R : Lip(f i) ≤ 1}. Lemma 3 implies that if f ∈ F,
for any s−i ∈ S−i, f i (as defined in Lemma 3) be-
longs to Fi.

Lemma 4. Let µi, νi be probability densities on Si.
Define µ = µ1 ⊗ · · · ⊗ µn and ν = ν1 ⊗ · · · ⊗ νn.
Then for F = FTV or F = FW,

dF(µ,ν) ≤
∑

i∈[n]

dFi(µi, νi).

Proof. We prove the result by induction on n. The
result is trivially true for n = 1. This forms the
basis of induction. Now assume that the result is
true for n = k − 1 and consider the case for n = k.

For any f ∈ F, S−k and s−k being the state space
and the state by excluding the kth component, we
have

∣∣∣∣
∫

S

fdµ−
∫

S

fdν

∣∣∣∣

=

∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k)

− νk(sk)ν−k(s−k)
]
dskds−k

∣∣∣∣
11



(a)

≤
∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)µ−k(s−k)

− µk(sk)ν−k(s−k)
]
dskds−k

∣∣∣∣

+

∣∣∣∣
∫

Sk

∫

S−k

f(sk, s−k)
[
µk(sk)ν−k(s−k)

− νk(sk)ν−k(s−k)
]
dskds−k

∣∣∣∣
(b)

≤
∫

Sk

∣∣∣∣
∫

S−k

f(sk, s−k)
[
µ−k(s−k)− ν−k(s−k)

]

ds−k

∣∣∣∣µk(sk)dsk

+

∫

S−k

∣∣∣∣
∫

Sk

f(sk, s−k)
[
µk(sk)− νk(sk)

]

dsk
∣∣∣∣ν−k(s−k)ds−k (A.1)

where (a) follows from adding and subtracting the
same term and using the triangle inequality and
(b) also follows from the triangle inequality. Now
observe that for a fixed sk, by Lemma 3, f(sk, ·) ∈
F−k. Therefore,

∣∣∣∣
∫

S−k

f(sk, s−k)
[
µ−k(s−k)− ν−k(s−k)

]
ds−k

∣∣∣∣
≤ dF−k(µ−k, ν−k) (A.2)

and similarly,

∣∣∣∣
∫

Sk

f(sk, s−k)
[
µk(sk)− νk(sk)

]
dsk

∣∣∣∣
≤ dFk(µk, νk) (A.3)

Substituting (A.2) and (A.3) in (A.1), we get

∣∣∣∣
∫

S

fdµ−
∫

S

fdν

∣∣∣∣

≤
∫

Sk

dF−k(µ−k, ν−k)µk(sk)dsk

+

∫

S−k

dFk(µk, νk)µ−k(s−k)ds−k

= dFk(µk, νk) + dF−k(µ−k, ν−k)

(c)

≤
∑

i∈[k]

dFi(µi, νi),

where (c) follows from the induction hypothesis
which is true for k − 1. The final result follows
from induction.

Appendix B. Proof of Lemma 1

For the first part, consider

|r(s,a)− r̂(s,a)| =

∣∣∣∣∣∣
∑

i∈[n]

ri(si, ai)−
∑

i∈[n]

r̂i(si, ai)

∣∣∣∣∣∣
(a)

≤
∑

i∈[n]

∣∣ri(si, ai)− r̂i(si, ai)
∣∣ (b)

≤
∑

i∈[n]

εi.

where (a) follows from the triangle inequality and
(b) follows from the assumption on the arms. This
proves the first part of the Lemma.

The second part follows from the definition of p
and p̂ (Eq. (12)) and Lemma 4.

Appendix C. Proof of Lemma 2

For the first part, consider
∣∣r̂(s(1),a)− r̂(s(2),a)

∣∣

=

∣∣∣∣∣∣
∑

i∈[n]

r̂i(s(1)
i, ai)−

∑

i∈[n]

r̂i(s(2)
i, ai)

∣∣∣∣∣∣
(a)

≤
∑

i∈[n]

∣∣r̂i(s(1)i, ai)− r̂i(s(2)
i, ai)

∣∣

(b)

≤
∑

i∈[n]

Lr̂id
i(s(1)

i, s(2)
i)

(c)

≤
(∑

i∈[n]

(Lr̂i)
k

)1/k

d(s(1), s(2)).

where (a) follows from the triangle inequality, (b)
follows from the assumption on the arms and (c)
follows from Hölder’s inequality and the definition
of metric d.
For the second part, consider

dF(p̂(·|s(1),a), p̂(·|s(2),a))
(d)

≤
∑

i∈[n]

dFi(p̂i(·|s(1)i, ai), p̂i(·|s(2)i, ai))

(e)

≤
∑

i∈[n]

Lp̂idi(s(1)
i, s(2)

i)

(f)

≤
(∑

i∈[n]

(Lp̂i)k
)1/k

d(s(1), s(2)).

where (d) follows from Lemma 4, (e) follows from
the assumption on the arms and (f) follows from
Hölder’s inequality and the definition of metric d.
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