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Abstract

We consider the restless bandits with general state space under partial
observability with two observational models: first, the state of each bandit
is not observable at all, and second, the state of each bandit is observable
only if it is chosen. We assume both models satisfy the restart property under
which we prove indexability of the models and propose the Whittle index policy
as the solution. For the first model, we derive a closed-form expression for
the Whittle index. For the second model, we propose an efficient algorithm
to compute the Whittle index by exploiting the qualitative properties of the
optimal policy. We present detailed numerical experiments for multiple instances
of machine maintenance problem. The result indicates that the Whittle index
policy outperforms myopic policy and can be close to optimal in different setups.
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1. Introduction

Resource allocation and scheduling problems arise in various applications including
telecommunication networks, patient prioritization, machine maintenance, and sensor
management. Identifying the optimal policy in such models suffers from the curse of
dimensionality because the state space is exponential in the number of alternative.
Restless bandits is a widely-used solution framework for such models [1, 2, 4, 14,16–18,
20,23,28,32,33].

The key idea behind the restless bandit solution framework is as follows. For each
alternative or arm, we assign an index (called the Whittle index) to each state and
then, at each time, sort the arms accordingly to the Whittle index of their current state
and play the arms with top-m indices. The resulting policy is called the Whittle index
policy [35].

The key features of the Whittle index policy are as follows. First, it is a scalable
heuristic because its complexity is linear in the number of arms. Second, although it is
a heuristic, there are certain settings where it is optimal [12, 21, 22, 34] and, in general,
it performs close to optimal in many instances [5, 6, 10,14,15,25].
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Nonetheless, there are two challenges in using the Whittle index policy. First,
the whittle index heuristic is applicable only when a technical condition known as
indexability is satisfied. There is no general test for indexability, and the existing
sufficient conditions are for specific models [6,7,9,10,13–15,36]. Second, for some models,
there are closed-form expressions to compute the Whittle index [1, 3, 5, 13–15,17, 18, 20]
but, in general, the Whittle index policy has to be computed numerically. For a subclass
of restless bandits which satisfy an additional technical condition known as PCL (partial
conservation law), the Whittle index can be computed using an algorithm called the
adaptive greedy algorithm [24,25]. Recently, [3] presented a generalization of adaptive
greedy algorithm which is applicable to all indexable restless bandits.

We are interested in resource allocation and scheduling problems where the state
of each arm is not fully-observed. Such partially observable restless bandit models
are conceptually and computationally more challenging. The sufficient conditions
for indexability that are derived for fully-observed bandits [3, 13–15, 29, 34, 35] are
not directly applicable to the partially observable setting. The existing literature on
partially observable restless bandits often restricts attention to models where each arm
has two states [1, 2, 16–18,23, 32], and some time, it is also assumed that the two states
are positively correlated [1,17,18]. There are very few results for general state space
models under partial observability [4,11,20,28], and, for such models, indexability is
often verified numerically. In addition, there are very few algorithms to compute the
Whittle index for such models.

The main contributions of our paper are as follows:

• We investigate partial observable restless bandits with general state spaces and
consider two observation models, which we call model A and model B. We show
that both models are indexable.

• For model A, we provide a closed-form expression to compute the Whittle index.
For model B, we provide a refinement of the adaptive greedy algorithm of [3] to
efficiently compute the Whittle index.

• We present a detailed numerical study which illustrates that the Whittle index
policy performs close to optimal for small scale systems and outperforms a
commonly used heuristic (the myopic policy) for large-scale systems.

The organization of the paper is as follows. In Section 2, we formulate the restless
bandit problem under partial observations for two different models. Then, we define a
belief state by which the partially-observable problem can be converted into a fully-
observable one. In Section 3, we present a short overview of restless bandits. In
Section 4, we show the restless bandit problem is indexable for both models and present
a general formula to compute the index. In Section 5, we present a countable state
representation of the belief state and use it to develop methods to compute Whittle
index. In Section 6, we present the proofs of the results. In Section 7, we present a
detailed numerical study which compares the performance of Whittle index policy with
two baseline policies. Finally, we conclude in Section 8.

1.1. Notations and Definitions

We use I as the indicator function, E as the expectation operator, P as the probability
function, R as the set of real numbers, Z as the set of integers and Z≥0 as the set of
nonnegative integers. Calligraphic alphabets are used to denote sets, bold variables are
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used for the vector of variables. For a finite set X , P(X ) denotes the set of probability
distributions on X . Superscript i is used to index arms and subscript t is used for
time t and subscript 0:t shows the history of the variable from time 0 up to time t.

Given ordered sets X and Y, a function f : X × Y → R is called submodular
if for any x1, x2 ∈ X and y1, y2 ∈ Y such that x2 ≥ x1 and y2 ≥ y1, we have
f(x1, y2) − f(x1, y1) ≥ f(x2, y2) − f(x2, y1). Furthermore, the transition probability
matrix P is stochastic monotone if for any x, y ∈ X such that x < y, we have∑

w∈X≥z
Pxw ≤

∑
w∈X≥z

Pyw for any z ∈ X .

Given a set Z, span(Z) denotes the span-norm of the set.

2. Model and Problem Formulation

2.1. Restless Bandit Process with restart

A discrete-time restless bandit process (or arm) is a controlled Markov process (X , {0, 1},
{P (a)}a∈{0,1}, c, π0,Y) where X denotes the finite set of states; {0, 1} denotes the
action space where the action 0 is called the passive action and the action 1 is the
active action; P (a), a ∈ {0, 1}, denotes the transition matrix when action a is chosen;
c : X ×{0, 1} → R≥0 denotes the cost function; π0 denotes the initial state distribution.

In this paper, we assume that the transitions under active action satisfy the restart
property, i.e., Px·(1) = Q, for all x ∈ X , where Q is a known probability mass function
(pmf). An operator has to select m < n arms at each time but does not observe the
state of the arms. We consider two observation models.

• Model A: In model A, the operator does not observe anything. We denote this
by Y i

t = E, where E denotes a blank symbol.

• Model B: In model B, the operator observes the state of the arm after it has
been reset, i.e.,

Y i
t+1 =

{
E if Ai

t = 0

Xi
t+1 if Ai

t = 1
, i ∈ N , (1)

We use Yi to denote the observation alphabet for arm i. For model A, Yi = {E} and
for model B, Yi = X ∪ {E}, for all i ∈ N .

2.2. Partially-observable Restless Multi-armed Bandit Problem

A partially-observable restless multi-armed bandit (PO-RMAB) problem is a col-
lection of n independent restless bandits (X i, {0, 1}, {P i(a)}a∈{0,1}, c

i, πi
0), i ∈ N :=

{1, . . . , n}.

Let X :=
∏

i∈N X i, A(m) :=

{
(a1, . . . , an) ∈ {0, 1}n :

∑
i∈N ai ≤ m

}
, and Y :=∏

i∈N Yi denote the combined state, action, and observation spaces, respectively. Also,
let Xt = (X1

t , . . . X
n
t ) ∈ X , At = (A1

t , . . . , A
n
t ) ∈ A(m), and Y t = (Y 1

t , . . . Y
n
t ) ∈ Y

denote the combined states, actions taken, and observations made by the operator at
time t ≥ 0. Due to the independent evolution of each arm, for each realization x0:t of
X0:t and a0:t of A0:t, we have

P(Xt+1 = xt+1|X0:t = x0:t,A0:t = a0:t) =
∏
i∈N

P(Xi
t+1 = xi

t+1|Xi
t = xi

t, A
i
t = ait)
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=
∏
i∈N

P i
xi
t,x

i
t+1

(ait).

When the system is in state xt and take action at, the system incurs a cost c(xt,at) :=∑
i∈N ci(xi

t, a
i
t). The decision at time t is chosen according to

At = gt(Y 0:t−1A0:t−1), (2)

where gt is the (history dependent) policy at time t. Let g = (g1, g2, . . .) denote the
policy for infinite time horizon and let G denote the family of all such policies. Let
π0 =

⊗
i∈N πi

0 denote the initial state distribution of all arms. Then, the performance
of policy g is given by

J (g)(π0) := (1− β)E

[ ∞∑
t=0

βt
∑
i∈N

ci(Xi
t , A

i
t)

∣∣∣∣Xi
0 ∼ πi

0,

∀i ∈ N

]
, (3)

where β ∈ (0, 1) denotes the discount factor.
Formally, the optimization problem of interest is as follows:

Problem 1. Given a discount factor β ∈ (0, 1), the total number n of arms, the
number m to be selected, the system model {(X i, {0, 1},Yi, P i(a), ci, f i, πi

0)}i∈N of
each arm, and the observation model at the operator, choose a Markov policy g ∈ G
that minimizes J (g)(π0) given by (3).

Problem 1 is a POMDP and the standard methodology to solve POMDPs is to
convert them to a fully observable Markov decision process (MDP) by viewing the
“belief state” as the information state of the system [8].

2.3. Belief State

Let us define the operator’s belief Πi
t ∈ P(X i) on the state of arm i at time t as

follows: for any, xi
t ∈ X i, let Πi

t(x
i
t) := P(Xi

t = xi
t |Y i

0:t−1, A
i
0:t−1). Note that Πi

t is a
distribution-valued random variable. Also, define Πt := (Π1

t , . . . ,Π
n
t ).

Then, for arm i, the evolution of the belief state is as follows: for model A, the belief
update rule is

Πi
t+1 =

{
Πi

tP, if Ai
t = 0,

Q, if Ai
t = 1,

(4)

and for model B, the belief update rule is

Πi
t+1 =

{
Πi

tP, if Ai
t = 0,

δi
Xi

t+1
where Xi

t+1 ∼ Q, if Ai
t = 1.

(5)

The per-step cost function of the belief state Πi
t when action Ai

t is taken is

c̄(Πi
t, A

i
t) = E[c

i
t(X

i
t , A

i
t)|Y i

0:t−1, A
i
0:t−1] =

∑
x∈X i

Πi
t(x)c

i(x,Ai
t).

Define the combined belief state Θt ∈ P(X ) of the system as follows: for any x ∈ X ,

Θt(x) = P(Xt = x |Y 0:t−1,A0:t−1).

Note that Θt is a random variable that takes values in P(X ). Using standard results
in POMDPs [8], we have the following.
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Proposition 1. In Problem 1, Θt is a sufficient statistic for (Y 0:t−1,A0:t−1). There-
fore, there is no loss of optimality in restricting attention to decision policies of the form
At = gbelieft (Θt). Furthermore, an optimal policy with this structure can be identified by
solving an appropriate dynamic program.

Next, we present our first simplification for the structure of optimal decision policy as
follows.

Proposition 2. For any x ∈ X , we have

Θt(x) =
∏
i∈N

Πi
t(x

i), a.s.. (6)

Therefore, there is no loss of optimality in restricting attention to decision policies of
the form At = gsimple

t (Πt). Furthermore, an optimal policy with this structure can be
identified by solving an appropriate dynamic program.

Proof. Eq. (6) follows from the conditional independence of the arms, and the
nature of the observation function. The structure of the optimal policies then follow
immediately from Proposition 1. □

In Propositions 1 and 2, we do not present the DPs because they suffer from the
curse of dimensionality. In particular, obtaining the optimal policy for PO-RMAB is
PSPACE-hard [26]. So, we focus on the Whittle index heuristics to solve the problem.

3. Whittle index policy solution concept

For the ease of notation, we will drop the superscript i from all relative variables for
the rest of this and the next sections.

Consider an arm (X , {0, 1}, {P (a)}a∈{0,1}, c, π0,Y) with a modified per-step cost
function

c̄λ(π, a) := c̄(π, a) + λa, ∀π ∈ P(X ),∀a ∈ {0, 1}, λ ∈ R. (7)

The modified cost function implies that there is a penalty of λ for taking the active action.
Given any time-homogeneous policy g : P(X ) → {0, 1}, the modified performance of
the policy is

J
(g)
λ (π0) := (1− β)E

[ ∞∑
t=0

βtc̄λ(Πt, g(Πt))

∣∣∣∣X0 ∼ π0

]
. (8)

Subsequently, consider the following optimization problem.

Problem 2. Given an arm (X ,Y, {0, 1}, {P (a)}a∈{0,1}, c, π0), the discount factor β ∈
(0, 1) and the penalty λ ∈ R, choose a Markov policy g : P(X ) → {0, 1} to minimize

J
(g)
λ (π0) given by (8).

Problem 2 is a Markov decision process where one may use dynamic program to
obtain the optimal solution as follows.

Proposition 3. Let Vλ : P(X ) → R be the unique fixed point of equation

Vλ(π) = min

{
(1− β)c̄(π, 0) + βVλ(πP ), (1− β)c̄(π, 1) + (1− β)λ+ βVλ(Q)

}
(9)
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for Model A and the unique fixed point of equation

Vλ(π) = min

{
(1− β)c̄(π, 0) + βVλ(πP ), (1− β)c̄(π, 0) + β

∑
x∈X

QxVλ(δx)

}
(10)

for Model B. Let gλ(π) denote the argmin of the right hand side of (9) for Model A
and the argmin of the right hand side of (10) for Model B. We set gλ(π) = 1 if the two
argument inside min{·, ·} are equal. Then, the time-homogeneous policy gλ is optimal
for Problem 2.

Proof. The result follows immediately from Markov decision theory [27]. □

Finally, we present the following definitions.

Definition 1. (Passive Set.) Given penalty λ, define the passive set Wλ as the set of
states where passive action is optimal for the modified arm, i.e.,

Wλ := {π ∈ Π : gλ(π) = 0} .

Definition 2. (Indexability.) an arm is indexable if Wλ is weakly increasing in λ, i.e.,
for any λ1, λ2 ∈ R,

λ1 ≤ λ2 =⇒ Wλ1
⊆ Wλ2

.

A restless multi-armed bandit problem is indexable if all n arms are indexable.

Definition 3. (Whittle index.) The Whittle index of the state x of an arm is the
smallest value of λ for which state π is part of the passive set Wλ, i.e.,

w(π) = inf {λ ∈ R : x ∈ Wλ} .

Equivalently, the Whittle index w(π) is the smallest value of λ for which the optimal
policy is indifferent between the active action and passive action when the belief state
of the arm is π.

The Whittle index policy is as follows: At each time step, select m arms which are
in states with the highest indices. The Whittle index policy is easy to implement and
efficient to compute but it may not be optimal. As mentioned earlier, Whittle index is
optimal in certain cases [12, 21, 22, 34] and performs close to optimal for many other
cases [5, 6, 10,14,15,25].

4. Indexability and the corresponding Whittle index for models A and B

Given an arm, let Σ denote the family of all stopping times with respect to the
natural filtration associated with {Πt}t≥0. For any stopping time τ ∈ Σ and an initial
belief state π ∈ Π, define

L(π, τ) := E

[ τ−1∑
t=0

βtc̄(Πt, 0) + βτ c̄(Πτ , 1)
∣∣∣ Π0 = π

]
,

B(π, τ) := E[βτ |Π0 = π].
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Theorem 1. The PO-RMAB for model A and B is indexable. In particular, each arm
is indexable and the Whittle index is given by

w(π) = inf {λ ∈ R : G(π) < Wλ} ,

where

G(π) := (1− β) inf
τ∈Σ

L(π, τ)− c̄(π, 1)

1−B(π, τ)
, (11)

Wλ := λ+ βV next
1 (12)

where V next
1 = Vλ(Q) for model A and V next

1 =
∑

x∈X QxVλ(δx) for model B.

Proof. First, we assert that Vλ(π) and Wλ are strictly increasing in λ for any π ∈ Π
which hold due to the fact that c̄λ(π, a) is increasing in λ, π ∈ Π and a ∈ {0, 1}.
From [5, Lemma 2], we know that the passive set

Wλ = {π ∈ Π : G(π) < Wλ} . (13)

Note that G(π) does not depend on λ while we showed that Wλ is strictly increasing
in λ. Hence, Πλ is increasing in λ. Thus arm i is indexable. The expression for the
Whittle index in the Theorem 1 follows immediately from (13). □

5. Whittle index computation

Computing the Whittle index using the belief state representation is intractable in
general. Inspired by the approach taken in [31], we introduce a new information state
which is equivalent to the belief state.

5.1. Information state

For models A and B, define RA =
{
QP k : k ∈ Z≥0

}
, RB =

{
δsP

k : s ∈ X , k ∈
Z≥0

}
.

Assumption 1. For model A, π0 ∈ RA and for model B, π0 ∈ RB.

For model A, define a process {Kt}t≥0 as follows. The initial state k0 is such that
π0 = QP k0 and for t > 0, Kt is given by

Kt =

{
0, if At−1 = 1

Kt−1 + 1, if At−1 = 0.
(14)

Similarly, for model B, define a process {St,Kt}t≥0 as follows. The initial state
(s0, k0) is such that π0 = δs0P

k0 and for t > 0, Kt evolves according to (14) and St

evolves according to

St =

{
Xt−1 where Xt−1 ∼ Q, if At−1 = 1

St−1, if At−1 = 0.
(15)

Note that once the first observation has been taken in both models, Kt denotes the
time elapsed since the last observation of arm i and, in addition in model B, St denotes
the last observed states of arm i. Let St := (S1

t , . . . S
n
t ) and Kt := (K1

t , . . .K
n
t ). The

relation between the belief state Πt and variables St and Kt is characterized in the
following lemma.
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(1, 0, 0) (0, 1, 0)

(0, 0, 1)

Figure 1: Belief state dynamics for a 3-state arm i in the simplex P({1, 2, 3}). Dashed
arrows show a sample realizations of the belief state evolution under At = 0 for three
time steps and the solid arrow shows a sample realization of the belief state evolution
under At = 1.

Lemma 1. The following statements hold under Assumption 1:

• For model A, for any i ∈ N and any t, Πt ∈ RA. In particular, Πt = QPKt .

• For model B, for any i ∈ N and any t, Πt ∈ RB. In particular, Πt = δStP
Kt .

Proof. The results immediately follow from (4)-(5) and (14)-(15). □

For model A, the expected per-step cost at time t may be written as

c̄(Kt, At) := c̄((QP )Kt , At) =
∑
x∈X

[(QP )Kt ]xc(x,At). (16)

and the total expected per-step cost incurred at time t may be written as c̄(Kt,At) :=∑n
i=1 c̄(Kt, At).
Similarly, for model B, the expected per-step cost at time t may be written as

c̄(St,Kt, At) := c̄(δStP
Kt , At) =

∑
x∈X

[δStP
Kt ]xc(x,At). (17)

and the total expected per-step cost incurred at time tmay be written as c̄(St,Kt,At) :=∑n
i=1 c̄(St,Kt, At).

Proposition 4. In Problem 1, there is no loss of optimality in restricting attention
to decision policies of the form At = ginfot (Kt) for model A and of the form At =

ginfot (St,Kt) for model B.

Proof. This result immediately follows from Lemma 1, (16) and (17). □

Next, consider the following assumption on the per-step cost function.

Assumption 2. Let c(x, a) = (1 − a)ϕ(x) + aρ(x) where ϕ : X → [0, ϕmax) and
ρ : X → [0, ρmax) are increasing functions in X and c(x, a) is submodular in (x, a).

Under Assumption 2, we derive structural properties of the optimal policies for
models A and B. Then, we show how the performance measure can be decomposed and
computed. Next, we apply a finite state approximation to restrict the set of possible
information states and make the computations feasible, and ultimately, we provide
the Whittle index formula for model A and present an adaptive greedy algorithm to
compute the Whittle indices for model B.
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5.2. Structural properties of the optimal policy

In the following theorem, we show that the optimal policy for model A has a threshold
structure and the optimal policy for model B has a threshold structure with respect to
the second dimension of the information state.

Theorem 2. Under Assumption 2, the following statements hold:

1. In model A, for any λ ∈ R, the optimal policy gAλ (k) is a threshold policy, i.e.,
there exists a threshold θAλ ∈ Z≥−1 such that

gAλ (k) =

{
0, k < θAλ
1, otherwise.

2. In model B, for any λ ∈ R, the optimal policy gBλ (s, k) is a threshold policy with
respect to k for every s ∈ X , i.e., there exists a threshold θBs,λ ∈ Z≥−1 for each
s ∈ X such that

gBλ (s, k) =

{
0, k < θBs,λ
1, otherwise.

We use θB to denote the vector (θBs )s∈X .

5.3. Performance of threshold based policies

We simplify the notation and denote the policy corresponding to thresholds θA and

θB instead of g(θ
A) and g(θ

B).

Model A Let J
(θA)
λ (k) be the total discounted cost incurred under policy g(θ

A) with
penalty λ when the initial state is k, i.e.,

J
(θA)
λ (k) := (1− β)E

[ ∞∑
t=0

βtc̄λ(Kt, g
(θA)(Kt))

∣∣∣ K0 = k

]
=: D(θA)(k) + λN (θA)(k),

(18)

where

D(θA)(k) := (1− β)E

[ ∞∑
t=0

βtc(Kt, g
(θA)(Kt))

∣∣∣ K0 = k

]
,

N (θA)(k) := (1− β)E

[ ∞∑
t=0

βtg(θ
A)(Kt)

∣∣∣ K0 = k

]
.

D(θA)(k) represents the expected total discounted cost while N (θA)(k) represents the

expected number of times active action is selected under policy g(θ
A) starting from the

initial information state k.
We will show (see Theorem 7) that the Whittle index for model A can be computed

as a function of D(θA)(k) and N (θA)(k). First, we present a method to compute these
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two variables. Let

L(θA)(k) := (1− β)

θA−1∑
t=k

βt−k c̄(t, 0) + (1− β)βθA−k c̄(θA, 1)

M (θA)(k) := (1− β)βθA−k

where L(θA)(k) and M (θA)(k) denote the expected discounted cost and time starting
from information state k until reaching threshold θA, respectively.

Theorem 3. For any k ∈ Z≥0, we have

D(θA)(k) = L(θA)(k) + βθA−k+1 L(θA)(0)

1− βθA+1
,

N (θA)(k) = M (θA)(k) + βθA−k+1 M (θA)(0)

1− βθA+1
.

Model B Let J
(θB)
λ (s, k) be the total discounted cost incurred under policy g(θ

B)

with penalty λ when the initial information state is (s, k), i.e.,

J
(θB)
λ (s, k) = (1− β)E

[ ∞∑
t=0

βtc̄λ(St,Kt, g
(θB)(St,Kt))

∣∣∣ (S0,K0) = (s, k)

]
=: D(θB)(s, k) + λN (θB)(s, k), (19)

where

D(θB)(s, k) := (1− β)E

[ ∞∑
t=0

βtc̄(St,Kt, g
(θB)(St,Kt))

∣∣∣ (S0,K0) = (s, k)

]
,

N (θB)(s, k) := (1− β)E

[ ∞∑
t=0

βtg(θ
B)(St,Kt)

∣∣∣ (S0,K0) = (s, k)

]
.

D(θB)(s, k) and N (θB)(s, k) have the same interpretations as the ones for model A. We
will show (see Theorem 8) that Whittle index for model B can be computed as a function

of D(θB)(s, k) and N (θB)(s, k). But first let’s define vector J
(θB)
λ (0) = (J

(θB)
λ (1, 0), . . .,

J
(θB)
λ (|X |, 0)) and vectors D(θB)(0) and N (θB)(0) in a similar manner. Then, from

(18), J
(θB)
λ (0) = D(θB)(0) + λN (θB)(0). Let’s also define

L(θB)(s, k) := (1− β)

θB
s −1∑
t=k

βt−k c̄(s, t, 0) + (1− β)βθB
s −k c̄(s, θBs , 1),

M (θB)(s, k) := (1− β)βθB
s −k.

LetL(θB)(0) = (L(θB)(1, 0), . . . , L(θB)(|X |, 0)) andM (θB)(0) = (M (θB)(1, 0), . . . ,M (θB)(|X |, 0)).
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Theorem 4. For any (s, k) ∈ X ×Z≥0, we have

D(θB)(s, k) = L(θB)(s, k) + βθB
s −k+1

∑
r∈X

QrD
(θB)(r, 0),

N (θB)(s, k) = M (θB)(s, k) + βθB
s −k+1

∑
r∈X

QrN
(θB)(r, 0).

Let Z(θB) be a |X | × |X | matrix where Z
(θB)
sr = βθB

s +1Qr, for any s, r ∈ X . Then,

D(θB)(0) = (I − Z(θB))−1L(θB)(0),

N (θB)(0) = (I − Z(θB))−1M (θB)(0).

5.4. Finite state approximation

For computing Whittle index, we provide a finite state approximation of Proposition 3
for models A and B. Essentially, we truncate the countable set of possible information
state Kt to a finite set and provide the approximation bound on the optimal value
function for each of the models.

Theorem 5. (Model A.) Given ℓ ∈ N, let Nℓ := {0, . . . , ℓ} and Vℓ,λ : Nℓ → R be the
unique fixed point of equation

Vℓ,λ(k) = min
a∈{0,1}

Hℓ,λ(k, a), ĝℓ,λ(k) = argmin
a∈{0,1}

Hℓ,λ(k, a)

where

Hℓ,λ(k, 0) = (1− β)c̄(k, 0) + βVλ(max{k + 1, ℓ}),
Hℓ,λ(k, 1) = (1− β)c̄(k, 1) + (1− β)λ+ βVℓ,λ(0).

We set ĝℓ,λ(k) = 1 if Hℓ,λ(k, 0) = Hℓ,λ(k, 1). Then, we have the following:
(i) For any 0 ≤ k ≤ ℓ, we have

|Vλ(k)− Vℓ,λ(k)| ≤
βℓ−k+1 span(cλ)

1− β
.

(ii) For all k ∈ Z≥0, limℓ→∞ Vℓ,λ(k) = Vλ(k). Moreover, let ĝ∗λ(·) be any limit point of
{ĝℓ,λ(·)}ℓ≥1. Then, the policy ĝ∗λ(·) is optimal for Problem 2.

Theorem 6. (Model B.) Given ℓ ∈ N, let Nℓ := {0, . . . , ℓ} and Vℓ,λ : X ×Nℓ → R be
the unique fixed point of equation

Vℓ,λ(s, k) = min
a∈{0,1}

Hℓ,λ(s, k, a), ĝℓ,λ(s, k) = argmin
a∈{0,1}

Hℓ,λ(s, k, a)

where

Hℓ,λ(s, k, 0) = (1− β)c̄(s, k, 0) + βVλ(s,max{k + 1, ℓ}),

Hℓ,λ(s, k, 1) = (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
x′∈X̃

Qx′Vℓ,λ(x
′, 0).
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We set ĝℓ,λ(s, k) = 1 if Hℓ,λ(s, k, 0) = Hℓ,λ(s, k, 1). Then, we have the following:
(i) For any 0 ≤ k ≤ ℓ,

|Vλ(s, k)− Vℓ,λ(s, k)| ≤
βℓ−k+1 span(cλ)

1− β
,∀s ∈ X .

(ii) For all (s, k) ∈ X × Z≥0, limℓ→∞ Vℓ,λ(s, k) = Vλ(s, k). Let ĝ∗λ(·, ·) be any limit
point of {ĝℓ,λ(·, ·)}ℓ≥1. Then, the policy ĝ∗λ(·, ·) is optimal for Problem 2.

Due to Theorems 5 and 6, we can restrict the countable part of the information state
to a finite set, Nℓ.

5.5. Whittle index

Next, we derive a closed form expression to compute the Whittle index for model A
and provide an efficient algorithm to compute the Whittle index for model B.

5.5.1. Whittle index formula for model A. For model A, we obtain the Whittle index

formula based on the two variables D(θA)(·) and N (θA)(·) as follows.

Theorem 7. Let ΛA
k = {k0 ∈ {0, 1, . . . , (ℓ+ 1)− 1} : N (k)(k0) ̸= N (k+1)(k0)}. Then,

under Assumption 2, ΛA
k ≠ ∅ and for any k0 ∈ ΛA

k , the Whittle index of model A at
information state k ∈ Nℓ is

wA(k) = min
k0∈ΛA

k

D(k+1)(k0)−D(k)(k0)

N (k)(k0)−N (k+1)(k0)
. (20)

Proof. Since model A is a restart model, the result follows from [3, Lemma 4]. □

Theorem 7 gives us a closed-form expression to compute the Whittle index for model A.

5.5.2. Modified adaptive greedy algorithm for model B. Let B = |X |(ℓ+1) and BD(≤ B)
denote the number of distinct Whittle indices. Let Λ∗ = {λ0, λ1, . . . , λBD

} where
λ1 < λ2 < . . . < λBD

denote the sorted distinct Whittle indices with λ0 = −∞. Let
Wb := {(s, k) ∈ X ×Nℓ : w(s, k) ≤ λb}. For any subset S ⊆ X ×Nℓ, define the policy
ḡ(S) : X ×Nℓ → {0, 1} as

ḡ(X )(s, k) =

{
0, if (s, k) ∈ S
1, if (s, k) ∈ (X ×Nℓ)\S.

Given Wb, define Φb = {(s, k) ∈ (X × Nℓ) \ Wb : (s,max{0, k − 1}) ∈ Wb} and
Γb+1 = Wb+1\Wb. Additionally, for any b ∈ {0, . . . , BD − 1}, and all states y ∈ Φb,
define hb = ḡ(Wb), hb,y = ḡ(Wb∪{y}) and Λb,y = {(x, k) ∈ (X × Nℓ) : N (hb)(x, k) ̸=
N (hb,y)(x, k)}. Then, for all (x, k) ∈ Λb,y, define

µb,y(x, k) =
D(hb,y)(x, k)−D(hb)(x, k)

N (hb)(x, k)−N (hb,y)(x, k)
. (21)

Lemma 2. For d ∈ {0, . . . , BD − 1}, we have the following:

1. For all y ∈ Γb+1, we have w(y) = λb+1.
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Algorithm 1: Computing Whittle index of all information states of model B

input :RB (X , {0, 1}, P,Q, c, ρ), discount factor β.
Initialize b = 0, Wb = ∅.
while Wb ̸= X ×Nℓ do

Compute Λb,y and µb,y(x) using (21), ∀y ∈ Φb.
Compute µ∗

b,y = minx∈Λb,y
µb,y(x), ∀y ∈ Φb.

Compute λb+1 = miny∈Φb
µ∗
b,y.

Compute Γb+1 = argminy∈Φb
µ∗
b,y.

Set w(z) = λb+1, ∀z ∈ Γb+1.
Set Wb+1 = Wb ∪ Γb+1.
Set b = b+ 1.

2. For all y ∈ Φb and λ ∈ (λb, λb+1], we have J
(hb,y)
λ (x) ≥ J

(hb)
λ (x) for all x ∈ X

with equality if and only if y ∈ Wb+1\Wb and λ = λb+1.

Proof. The result follows from [3, Lemma 3]. The only difference is that since we
know from Theorem 2 that the optimal policy is a threshold policy with respect to the
second dimension, we restrict to y ∈ Φb. □

Theorem 8. The following properties hold:

1. For any y ∈ Γb+1, the set Λb,y is non-empty.

2. For any x ∈ Λb,y, µb,y(x) ≥ λb+1 with equality if and only if y ∈ Γb+1.

Proof. The result follows from [3, Theorem 2]. Similar to Lemma 2, we consider
y ∈ Φb. □

By Theorem 8, we can find the Whittle indices iteratively. This approach is summarized
in Algorithm 1. For a computationally-efficient implementation using the Sherman-
Morrison formula, see [3, Algorithm 2].

6. Proof of Main Results

6.1. Proof of Theorem 2

Let µ1 and µ2 be two probability mass functions on totally ordered set X̃ . Then we
say µ1 stochastically dominates µ2 if for all x ∈ X̃ ,

∑
z∈X̃≥x

µ1
z ≥

∑
z∈X̃≥x

µ2
z. Given

two |X̃ | × |X̃ | transition matrices M and N , we say M stochastically dominates N
if each row of M stochastically dominates the corresponding N . A basic property of
stochastic dominance is the following.

Lemma 3. If M1 stochastically dominates M2 and c is an increasing function defined
on X̃ , then for all x ∈ X̃ ,

∑
y∈X̃ M1

xyc(y) ≥
∑

y∈X̃ M2
xyc(y).

Proof. This is an induction from [27, Lemma 4.7.2]. □

Consider a fully-observable restless bandit process {(X̃ , {0, 1}, {P̃ , Q̃}, c̃, π̃0)} (note
that Y is removed due to the observability assumption). According to [3], we say a
fully-observable restless bandit process is stochastic monotone if it satisfies the following
conditions.
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(D1) P̃ and Q̃ are stochastic monotone transition matrices.

(D2) For any z ∈ X̃ ,
∑

w∈X̃≥z
[P̃ − Q̃]xw is non-decreasing in x ∈ X̃ .

(D3) For any a ∈ {0, 1}, c̃(x, a) is non-decreasing in x.

(D4) c̃(x, a) is submodular in (x, a).

The following is established in [3, Lemma 5].

Proposition 5. The optimal policy of a stochastic monotone fully-observable restless
bandit process is a threshold policy denoted by g̃, which is a policy which takes passive
action for states below a threshold denoted by θ̃ and active action for the rest of the
states, i.e.,

g̃ =

{
0, x < θ̃

1, otherwise
.

6.1.1. Proof of Theorem 2, Part 1 We show that each machine in model A is a stochas-
tic monotone fully-observable restless bandit process. Each condition of stochastic
monotone fully-observable restless bandit process is presented and proven for model A
below.

(D1’) The transition probability matrix under passive action for model A based on the
information states is PA

xy = I{y=x+1} and the transition probability matrix under

active action for model A is QA
xy = I{y=0}. Thus, PA and QA are stochastic

monotone matrices.

(D2’) Since PA is a stochastic monotone matrix and QA has constant rows,
∑

r≥z[P
A−

QA]sr is non-decreasing in s for any z ∈ Nℓ.

(D3’) As P stochastically dominates the identity matrix, we infer from [19, Theorem 1.1-
b and Theorem 1.2-c], that QP ℓ stochastically dominates QP k for any ℓ > k ≥ 0.
Additionally, cλ(x, a) is increasing in x for any a ∈ {0, 1}. By (16) we have
c̄λ(k, a) =

∑
x∈X [(QP )k]xcλ(x, a). Therefore, by Lemma 3, c̄λ(k, a) is non-

decreasing in k.

(D4’) As c(x, a) is submodular in (x, a) and as shown in (D3’), QP ℓ stochastically
dominates QP k for any ℓ > k ≥ 0. Therefore, by Lemma 3, c̄λ(k, 0)− c̄λ(k, 1) =∑

x∈X [(QP )k]x(cλ(x, 0)− cλ(x, 1)) is non-decreasing in (k, a).

Therefore, according to Proposition 5, the optimal policy of a fully-observable restless
bandit process under model A is a threshold based policy.

6.1.2. Proof of Theorem 2, Part 2 We first characterize the behavior of value function
and state-action value function for Model B.

Lemma 4. We have

a. c̄λ(s, k, a) is increasing in k for any s ∈ X and a ∈ {0, 1}.

b. Given a fixed λ, Vλ(s, k) is increasing in k for any s ∈ X .
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c. c̄λ(s, k, a) is submodular in (k, a), for any s ∈ X .

d. Hλ(s, k, a) is submodular in (k, a), for any s ∈ X .

Proof. The proof of each part is as follows.

a. By definition, we have

c̄λ(s, k, a) =
∑
x∈X

[δsP
k](x)c(x, a) + λa.

Similar to the proof of (D3’) in Proposition 5, for a given s ∈ X and a ∈ {0, 1},
[δsP

k](x) is increasing in k and x and as c(x, a) is increasing in x, c̄(s, k, a) is
increasing in k.

b. Let

Hj
λ(s, k, 0) := (1− β)c̄(s, k, 0) + βV j

λ (s, k + 1),

Hj
λ(s, k, 1) := (1− β)c̄(s, k, 1) + (1− β)λ+ β

∑
r

QrV
j
λ (r, 0),

V j+1
λ (s, k) := min

a∈{0,1}
{Hj

λ(s, k, a)},

where V 0
λ (·, ·) = 0 for all (s, k) ∈ X ×Z≥0.

Claim: V j
λ (s, k) is non-decreasing in k for any s ∈ X and j ≥ 0.

We prove the claim by induction. By construction, V 0
λ (s, k) is non-decreasing in

k for any s ∈ X . This forms the basis of induction. Now assume that V j
λ (s, k) is

non-decreasing in k is for any s ∈ X and some j ≥ 0. Consider ℓ > k ≥ 0. Then,
by induction hypothesis we have

Hj
λ(s, ℓ, 0) = (1− β)c̄(s, ℓ, 0) + βV j

λ (s, ℓ+ 1)

≥ (1− β)c̄(s, k, 0) + βV j
λ (s, k + 1) = Hj

λ(s, k, 0),

Hj
λ(s, ℓ, 1) = (1− β)c̄(s, ℓ, 1) + (1− β)λ+ β

∑
r

QrV
j
λ (r, 0)

≥ (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
r

QrV
j
λ (r, 0) = Hj

λ(s, k, 1).

Therefore,

V j+1
λ (s, ℓ) = min

a
{Hj

λ(s, ℓ, a)} ≥ min
a

{Hj
λ(s, k, a)} = V j+1

λ (s, k).

Thus, V j+1
λ (s, k) is non-decreasing in k for any s ∈ X . This completes the

induction step. Vλ(s, k) = limj→∞ V j
λ (s, k) and monotonicity is preserved under

limits, the induction proof is complete.

c. c(x, a) is submodular in (x, a). Also, note that δsP
k is the sth row of P k. Thus,

δsP
k+1 stochastically dominates δsP

k and by Lemma 3 we have∑
x∈X

[δs(P
k+1 − P k)]x(c(x, 0)− c(x, 1)) ≥ 0.
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Therefore, ∑
x∈X

[δs(P
k − P k+1)]xc(x, 1) ≥

∑
x∈X

[δs(P
k − P k+1)]xc(x, 0).

Consequently,∑
x∈X

[δsP
k]xc(x, 1)−

∑
x∈X

[δsP
k]xc(x, 0) ≥

∑
x∈X

[δsP
k+1]xc(x, 1)−

∑
x∈X

[δsP
k+1]xc(x, 0).

Hence,

c̄(s, k, 1)− c̄(s, k, 0) ≥ c̄(s, k + 1, 1)− c̄(s, k + 1, 0).

d. As for any s ∈ X , Vλ(s, k) is increasing in k, and c̄λ(s, k, a) is submodular in
(k, a), for any k ∈ Nℓ and a ∈ {0, 1}, we have

Hλ(s, k, 1)−Hλ(s, k, 0) = (1− β)c̄(s, k, 1) + (1− β)λ+ β
∑
r

QrVλ(r, 0)

− (1− β)c̄(s, k, 0)− βVλ(s, k + 1)

≥ (1− β)c̄(s, k + 1, 1) + (1− β)λ+ β
∑
r

QrVλ(r, 0)

− (1− β)c̄(s, k + 1, 0)− βVλ(s, k + 2)

= Hλ(s, k + 1, 1)−Hλ(s, k + 1, 0).

□

Lemma 5. Suppose f : X × Y → R is a submodular function and for each x ∈ X ,
miny∈Yf(x, y) exists. Then, max{argminy∈Y f(x, y)} is monotone non-decreasing in
x.

Proof. This result follows from [27, Lemma 4.7.1]. □

Finally, we conclude that as Hλ(s, k, a) is submodular in (k, a) for any s ∈ X , then,
based on Lemma 5 and as only two actions is available, the optimal policy is a threshold
policy specified in the theorem statement.

6.2. Proof of Theorem 3

By the strong Markov property, we have

D(θA)(k) = (1− β)

θA∑
j=k

βtc̄(t, g(t)) + βθA−k+1D(θA)(0) = L(θA)(k) + βθA−k+1D(θA)(0),

N (θA)(k) = (1− β)βθA−k + βθA−k+1N (θA)(0) = M (θA)(k) + βθA−k+1N (θA)(0).

If we set k = 0 in the above,

D(θA)(0) =
L(θA)(0)

1− βθA+1
and N (θA)(0) =

M (θA)(0)

1− βθA+1
.
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6.3. Proof of Theorem 4

By the strong Markov property, we have

D(θB)(s, k) = (1− β)

θB
s∑

j=k

βtc̄(s, t, g(s, t)) + βθB
s −k+1

∑
r∈X

QrD
(θB)(r, 0)

= L(θB)(s, k) + βθB
s −k+1

∑
r∈X

QrD
(θB)(r, 0),

N (θB)(s, 0) = (1− β)βθB
s −k + βθB

s −k+1
∑
r∈X

QrN
(θB)(r, 0)

= M (θB)(s, k) + βθB
s −k+1

∑
r∈X

QrN
(θB)(r, 0).

If we set k = 0 in the above,

D(θB)(s, 0) = L(θB)(s, 0) + βθB
s +1

∑
r∈X

QrD
(θB)(r, 0),

N (θB)(s, 0) = M (θB)(s, 0) + βθB
s +1

∑
r∈X

QrN
(θB)(r, 0).

which results in

D(θB)(0) = L(θB)(0) + Z(θB)D(θB)(0),

N (θB)(0) = M (θB)(0) + Z(θB)N (θB)(0)

and hence, the statement is obtained by reformation of the terms inside the equations.

6.4. Proof of Theorem 5

(i): Starting from information state k ∈ Nℓ, the cost incurred by ĝℓ,λ(·) is the same
as gAλ (·) for information states {k, . . . , ℓ}. The per-step cost incurred by ĝℓ,λ(·) differs
from gAλ (·) for information states {ℓ+ 1, . . .} by at most span(cλ).
(ii): The sequence of finite-state models described above is an augmentation type
approximation sequence. As a result, a limit point of ĝ∗λ exists and the final result holds
by [30, Proposition B.5, Theorem 4.6.3].

6.5. Proof of Theorem 6

(i): Starting from information state (s, k), given any s ∈ X and k ∈ Nℓ, the cost
incurred by ĝℓ,λ(·, ·) is the same as gBλ (·, ·) for information states {(s, l)}ℓl=k. The
per-step cost incurred by ĝℓ,λ(·, ·) differs from gBλ (·, ·) for later realized information
states by at most ∆cλ. Thus, the bound holds.
(ii): The sequence of finite-state models described above is an augmentation type
approximation sequence. As a result, a limit point of ĝ∗λ exists and the final result
holds [30, Proposition B.5, Theorem 4.6.3].

7. Numerical Analysis

Consider a maintenance company monitoring n machines which are deteriorating
independently over time. Each machine has multiple deterioration states sorted from
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pristine to ruined levels. However, the state of the machine is not observed. There is a
cost associated with running the machine and the cost is non-decreasing function of the
state. If a machine is left un-monitored, then the state of the machine deteriorates and
after a while, it ruins. However, the state of the machine is not observed. There is a
cost associated with running the machine and the cost is a non-decreasing function of
the state.

Furthermore, we assume the company cannot observe the state of the machines
unless it sends a service-person to visit the machine. We assume that replacing the
machine is relatively inexpensive, and when a service-person visits a machine, he simply
replaces it with a new one. Due to manufacturing mistakes, all the machines may
not be in pristine state when installed. If the service-person can observe the state
of the machine when installing a new one, the observation model is same as model
B. Otherwise, it is model A. There are m < n service-persons. We are interested in
determining a scheduling policy to decide which machines should be serviced at each
time.

7.1. Policies Compared

We compare the performance of the following policies:

opt: the optimal policy obtained using dynamic programming. As discussed earlier,
the dynamic programming computation to obtain the optimal policy suffers from
the curse of dimensionality. Therefore, the optimal policy can be computed only
for small-scale models.

myp: myopic policy, which is a heuristic which sequentially selects m machines as
follows. Suppose ℓ < m machines have been selected. Then select machine ℓ+ 1
to be the machine which provides the smallest increase in the total per-step cost.
The detailed description for model B is shown in Alg. 2.

wip: whittle index heuristic, as described in this paper.

Algorithm 2: Myopic Heuristic (Model B)

input :RB (X , {0, 1}, P,Q, c, ρ), discount factor β, m.
Initialize t = 0.
while t ≥ 0 do

Set ℓ = 0.
while ℓ ≤ m do

Compute i∗ℓ ∈ argmini∈Z
∑

j∈Z\{i} c̄
j(Sj

t ,K
j
t , 0) + c̄i(Si

t ,K
i
t , 1).

Let M = M∪ {i∗ℓ}, Z = Z \ {i∗ℓ}.
Set ℓ = ℓ+ 1.

Service the machines with indices collected in M.
Update Ki

t according to (14) and Si
t according to (15) for all i ∈ N .

Set t = t+ 1.

7.2. Experiments and Results

We conduct numerical experiments for both models A and B, and vary the number n
of machines, the number m of service-persons and the parameters associated with each
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Table 1: αopt for different choice of parameters in Experiment 1.

(a) Model A

ℓ 1 2 3 4

αopt 100.0 100.0 100.0 100.0

(b) Model B

ℓ 1 2 3 4

αopt 100.0 99.72 99.81 99.57

machine. There are three parameters associated with each machine: the deterioration
probability matrix P i, the reset pmf Qi and the per-step cost ci(x, a). We assume the
matrix P i is chosen from a family of four types of structured transition matrices Pℓ(p),
ℓ ∈ {1, 2, 3, 4} where p is a parameter of the model. The details of all these models are
presented in Appendix A. We assume each element of Qi is sampled from Exp(1), i.e.,
exponential distribution with the rate parameter of 1, and then normalized such that
sum of all elements becomes 1. Finally, we assume that the per-step cost is given by
ci(x, 0) = (x− 1)2 and ci(x, 1) = 0.5|X i|2.

In all experiments, the discount factor is β = 0.99. The performance of every policy
is evaluated using Monte-Carlo simulation of length 1000 averaged over 5000 sample
paths.

In Experiment 1, we consider a small scale problem where we can compute opt and
we compare the performance of wip with it. However, in Experiment 2, we consider a
large scale problem where we compare the performance of wip with myp as computing
the optimal policy is highly time-consuming.

Experiment 1) Comparison of Whittle index with the optimal policy. In this experiment,
we compare the performance of wip with opt. We assume |X | = 4, (ℓ+ 1) = 4 and
n = 3, m = 1 for both models A and B. In order to model heterogeneous machines,
we consider the following. Let (p1, . . . , pn) denote n equispaced points in the interval
[0.05, 0.95]. Then we choose Pℓ(pi) as the transition matrix of machine i. We denote
the accumulated discounted cost of wip and opt by J(wip) and J(opt), respectively.
In order to have a better prospective of the performances, we compute the relative
performance of wip with respect to opt by computing

αopt = 100× J(opt)

J(wip)
. (22)

The closer α is to 100, the closer wip is to opt. The results of αopt for different choice
of the parameters are shown in Table 1.

Experiment 2) Comparison of Whittle index with the myopic policy for structured
models. In this experiment, we increase the state space size to |X | = 20 and we set
(ℓ + 1) = 40, we select n from the set {20, 40, 60} and m from the set {1, 5}. We
denote the accumulated discounted cost of myp by J(myp). In order to have a better
prospective of the performances, we compute the relative improvement of wip with
respect to myp by computing

εmyp = 100× J(myp)− J(wip)

J(myp)
. (23)

Note that εmyp > 0 means that wip performs better than myp. We generate structured
transition matrices, similar to Experiment 1, and apply the same procedure to build
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Table 2: εmyp for different choice of parameters of Model A in Experiment 2.

(a) Model A, m = 1

εmyp
ℓ

1 2 3 4

n
20 1.42 3.20 2.04 6.47
40 2.45 5.62 4.82 7.09
60 2.68 4.40 4.33 5.30

(b) Model A, m = 5

εmyp
ℓ

1 2 3 4

n
20 0.15 0.27 0.22 1.59
40 1.09 1.28 1.13 3.79
60 1.38 2.17 2.14 7.27

Table 3: εmyp for different choice of parameters of Model B in Experiment 2.

(a) Model B, m = 1

εmyp
ℓ

1 2 3 4

n
20 7.88 11.4 9.66 10.2
40 12.1 14.6 13.4 7.19
60 14.5 12.9 11.8 6.06

(b) Model B, m = 5

εmyp
ℓ

1 2 3 4

n
20 0.77 1.43 0.88 3.72
40 1.49 3.96 3.76 8.59
60 4.13 5.45 4.92 8.37

heterogeneous machines. The results of εmyp for different choice of the parameters for
models A and B are shown in Tables 2 and 3, respectively.

7.3. Discussion

In Experiment 1 where wip is compared with opt, we observe αopt is very close to
100 for almost all experiments, implying that wip performs as well as opt for these
experiments. αopt in model B is less than model A as model B is more complex than
model A for a given set of parameters and hence, the difference between the performance
of the two polices is more than model A.

In Experiment 2 where wip is compared with myp, we observe εmyp ranges from
0.15 to 14.5. In a similar interpretation as Experiment 1, as model B is more complex
than model A, εmyp for model B is higher than the ones model A given the same set of
parameters.

Furthermore, we observe that as n increases, εmyp also increases overally. Also, as
m increases, εmyp decreases in general. This suggests that as m increases, there is an
overlap between the set of machines chosen according to wip and myp, and hence, the
performance of wip and myp become close to each other.

8. Conclusion

We investigated partially observable restless bandits. Unlike most of the existing
literature which restricts attention to models with binary state space, we consider
general state space models. We presented two observation models, which we call model
A and model B, and showed that the partially observable restless bandits are indexable
for both models.

To compute the Whittle index, we work with a countable space representation rather
than the belief state representation. We established certain qualitative properties of
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the auxiliary problem to compute the Whittle index. In particular, for both models we
showed that the optimal policies of the auxiliary problem satisfy threshold properties.
For model A, we used the threshold property to obtain a closed form expression to
compute the Whittle index. For model B, we used the threshold policy to present a
refinement of the adaptive greedy algorithm of [3] to compute the Whittle index.

Finally, we presented a detailed numerical study of a machine maintenance model.
We observed that for small-scale models, the Whittle index policy is close-to-optimal
and for large-scale models, the Whittle index policy outperforms the myopic policy
baseline.

Appendix A. Structured Markov chains

Consider a Markov chain with |X | states. Then a family of structured stochastic
monotone matrices which dominates the identity matrix is illustrated below.

1. Matrix P1(p): Let q1 = 1− p and q2 = 0. Then,

P1(p) =



p q1 q2 0 0 0 0 . . . 0
0 p q1 q2 0 0 0 . . . 0
0 0 p q1 q2 0 0 . . . 0
0 0 0 p q1 q2 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 p q1 q2
0 0 0 0 0 0 0 p q1 + q2
0 0 0 0 0 0 0 . . . 1


.

2. Matrix P2(p): Similar to P1(p) with q1 = (1− p)/2 and q2 = (1− p)/2.

3. Matrix P3(p): Similar to P1(p) with q1 = 2(1− p)/3 and q2 = (1− p)/3.

4. Matrix P4(p): Let qi = (1− p)/(X − i). Then,

P4(p) =


p q1 q1 . . . q1 q1
0 p q2 . . . q2 q2
...

...
...

...
...

...
0 0 0 . . . p qn−1

0 0 0 . . . 0 1

 .
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