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On learning Whittle index policy for restless
bandits with scalable regret

Nima Akbarzadeh, Aditya Mahajan

Abstract— Reinforcement learning is an attractive ap-
proach to learn good resource allocation and scheduling
policies based on data when the system model is unknown.
However, the cumulative regret of most RL algorithms
scales as Õ(S

√
AT), where S is the size of the state space,

A is the size of the action space, T is the horizon, and
the Õ(·) notation hides logarithmic terms. Due to the linear
dependence on the size of the state space, these regret
bounds are prohibitively large for resource allocation and
scheduling problems. In this paper, we present a model-
based RL algorithm for such problems which has scalable
regret. In particular, we consider a restless bandit model,
and propose a Thompson-sampling based learning algo-
rithm which is tuned to the underlying structure of the
model. We present two characterizations of the regret of the
proposed algorithm with respect to the Whittle index policy.
First, we show that for a restless bandit with n arms and at
most m activations at each time, the regret scales either as
Õ(mn

√
T) or Õ(n2

√
T) depending on the reward model. Sec-

ond, under an additional technical assumption, we show
that the regret scales as Õ(n1.5

√
T) or Õ(max{m

√
n, n}

√
T).

We present numerical examples to illustrate the salient
features of the algorithm.

Index Terms— Restless bandits, Thompson sampling, re-
inforcement learning, Whittle index

I. INTRODUCTION

Resource allocation and scheduling problems arise in con-
trol of networked systems. Examples include opportunistic
scheduling in networks [1]–[3], link scheduling in machine
type communication [4], user allocation in mmWave net-
works [5], channel allocation in networks [6], source se-
lection in peer-to-peer networks [7], opportunistic spectrum
access [8]–[10], demand response in smart grids [11], [12],
dynamic routing in multi-UAVs [13], operator allocation in
multi-robot systems [14], etc.

Due to the curse of dimensionality, finding an optimal
solution in such resource allocation and scheduling problems is
computationally prohibitive [15]. Restless bandits (RBs) [16]
have emerged as a popular solution heuristic for such prob-
lems. The RB framework is motivated by the rested multi-
armed bandit problem considered in the seminar work of
Gittins [17], who showed that the optimal strategy for the
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rested multi-armed bandit problem is of the index type: one
can compute an index for each state of each alternative (also
called an arm), and choose the alternative with the highest
index. In general, such index-type policies are not optimal for
RBs. In fact, computing the optimal policy for RBs is PSPACE
hard [15]. However, as argued in [16], an index-type policy
(now known as the Whittle index) can be a useful heuristic if
a technical condition known as indexability is satisfied. The
Whittle index policy is optimal for some specific models [6],
[17], [18]. There is also a strong empirical evidence to suggest
that the Whittle index policy performs close to optimal in
various settings [19]–[24]. For these reasons, the RB frame-
work has been applied in a variety of resource allocation and
scheduling applications referenced above.

In all the above references, it is assumed that the system
model is known perfectly. In many real-world applications,
there is often uncertainty about the system model. In such situ-
ations, RL (reinforcement learning) is an attractive alternative.
In recent years, there are many papers which investigate RL for
RBs [25]–[29]. Most of these learn the Q-function associated
with the average reward/cost optimality equation parameter-
ized by the activation cost λ and use it to asymptotically learn
the Whittle index.

A common measure of performance of an RL algorithm
is regret, which measures the difference in performance of
the learning algorithm that doesn’t a priori know the system
model with the performance of a baseline policy that knows the
model. However, the regret is not characterized in the existing
literature on RL for RBs [25]–[29].

There are some results on characterizing regret for some
specific instances of RBs: a model of multi-class queues
arising in mobile edge computing [30] and a model for
scheduling when to observe uncontrolled Markov chains aris-
ing in opportunistic spectrum access in cognitive radios [31]–
[36]. However, the regret analyses in these papers exploit
specific features of the model and are not applicable to general
models. The main contribution of this paper is to characterize
the regret of a general RL algorithm for general RBs.

It is not possible to directly use existing RL algorithms that
achieve near optimal regret in RBs. To explain why this is the
case, we provide a short overview of characterizing regret in
RL. Consider a general MDP (Markov decision process) with
finite state space of size S and finite action space of size A.
It is shown in [37] that no learning algorithm can achieve a
regret of less than Ω̃(

√
SADT ), where D is the diameter of

the underlying MDP and T is the time horizon for which the
system runs. Several classes of algorithms have been proposed
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TABLE I: A comparison of the regret bounds of various
algorithms

Algorithm Algorithm Type Regreta Regret Type

UCRL2 [37] OUU Õ(DS
√
AT ) Frequentist

REGAL [38] OUU Õ(HS
√
AT ) Frequentist

SCAL [39] OUU Õ(H
√
ΓSAT ) Frequentist

[40] TS Õ(D
√
SAT )b Frequentist

[41] TS Õ(
√
HSAT ) Frequentist

TSDE [42] TS Õ(HS
√
AT ) Bayesian

a In the column on regret bounds, Γ is the maximum number of
states that can be reached from any state, D is the diameter
of the MDP, H is the span of the bias of the MDP. These are
related as Γ ≤ S and H ≤ D (established in [38]).

b It is pointed out in [41] that there is a mistake in the proof in
[40] and it is suggested that the bound of [40] may be loose by
a factor of

√
S.

in the literature which achieve this lower bound up to a factor
of
√
S and logarithmic terms. Broadly speaking, these regret

optimal RL algorithms fall into two classes: optimism-under-
uncertainty (OUU) and Thompson sampling (TS). Two types
of regret bounds are provided: frequentist regret, which is
a bound on the worst case regret with high probability and
Bayesian regret, which is a bound on the average regret (with
respect to a pre-specified prior). A summary of the regret
bounds for various algorithms is shown in Table I.

Each of these state-of-the-art algorithms has a regret that
scales approximately as Õ(S

√
AT ), which is prohibitively

large when translated to the RB setting for reasons explained
below. Consider a RB with n arms where at most m arms
can be activated at a time. Let Si denote the size of the state
space of arm i ∈ {1, . . . , n}. Such an RB can be modeled
as an MDP where the size of the state space is

∏n
i=1 Si

and the size of the action space is
(
n
m

)
. Thus, the regret of

using any of the algorithms described in Table I on RBs will
be Õ

(∏n
i=1 Si

√(
n
m

)
T
)
, which grows exponentially with the

number n of arms. In this paper, we provide a more nuanced
characterization of the scaling of the regret with the number
of alternatives.

In particular, in this paper we propose a Thompson-
sampling based learning algorithm for RB, which we call
as RB-TSDE. This algorithm is inspired from the TSDE
(Thompson sampling with dynamic episodes) algorithm [42].
We show that for a RB with n arms where m of them can
be chosen at a time, RB-TSDE has a Bayesian regret (with
respect to the Whittle index policy with known dynamics) of
Õ(n2

√
T ) or Õ(nm

√
T ) depending on the assumptions on

the per-step reward. Under an additional technical assumption,
we obtain an alternative regret bound of Õ(n1.5

√
T ) or

Õ(max{m
√
n, n}

√
T ).

The rest of the paper is organized as follows. In Sec. II,
we formulate the learning problem for RB when the state
transition probabilities of all arms are unknown and present the
main results. In Sec. III, we present the Thompson sampling
with dynamic episodes for RB and provide an upper bound
on the regret. In Sec. IV, we provide the proof outline and
defer the details to the Appendix. In Sec. V, we demonstrate
a numerical example of the regret of our algorithm. In Sec. VI,

we discuss relaxation and sufficient conditions of some of
the assumptions, in addition to comparison with the optimal
policy. Finally, we conclude in Sec. VII.

Notation.: We use upper case variables S, A, etc., to
denote random variables, the corresponding lower variables
(s, a, etc.) to denote their realizations, and corresponding
calligraphic letters (S, A, etc.) to denote set of realizations.
Subscripts denote time and superscript denotes arm. Thus Si

t

is the state of arm i at time t. Bold letters denote collection
of variables across all arms. Thus, St = (S1

t , . . . , S
n
t ) is the

set of states of all arms at time t. S0:t is a shorthand for
(S0, . . . , St). We use E[·] to denote expectation of a random
variable, P(·) to denote probability of an event and 1(·) to
denote the indicator of an event.

For a given function f : X → R, the span-norm of f is
defined as span(f) = maxx∈X f(x) − minx∈X f(x). Given
two metric spaces (X , dX) and (Y, dY ), the Lipschitz constant
of function f : X → Y is defined by

Lf = sup
x1,x2∈X
x1 ̸=x2

dY (f(x1), f(x2))

dX(x1, x2)
.

Let ζ1 and ζ2 denote probability measures on (X , dX). Then,
the Kantorovich distance between them is defined as

K(ζ1, ζ2) = sup
f :Lf≤1

∣∣∣∣ ∑
x∈X

f(x)ζ1(x)−
∑
x∈X

f(x)ζ2(x)

∣∣∣∣.
Given a metric space (X , dX), diam(X ) = sup{dX(x1, x2) :
x1, x2 ∈ X} denotes the diameter of the set X .

II. MODEL, PROBLEM FORMULATION AND RESULTS

A. Restless Bandits
Restless bandits (RB) are a class of resource allocation

problems where, at each time instant, a decision maker has to
select m out of n available alternatives. Each alternative, which
is also called an arm, is a controlled Markov process ⟨Si,Ai =
{0, 1}, P i, ri⟩ where Si is the state space, Ai = {0, 1} is the
action space, P i : Si×Ai → ∆(Si) is the controlled transition
matrix, and ri : Si × Ai → [0, Rmax] is the per-step reward.
The action Ai

t = 1 means the decision maker selects arm i at
time t. The arms for which Ai

t = 1 are called active arms and
the arms for which Ai

t = 0 are called passive arms.
Let S = S1 × · · · × Sn denote the joint state space

and A(m) =
{
a ∈ {0, 1}n : ∥a∥1 = m

}
denote the

feasible action space. We assume that the initial state S0 =
(S1

0 , . . . , S
n
0 ) is a random variable which is independent across

arms and has a known initial distribution. Moreover, the arms
evolve independently, i.e., for any s0:t = (s10:t, . . . , s

n
0:t) and

a0:t = (a10:t, . . . , a
n
0:t), we have

P (St+1 = st+1|S0:t = s0:t,A0:t = a0:t)

=

n∏
i=1

P i
(
sit+1|sit, ait

)
:= P (st+1|st,at).

We consider two reward models:
• Model A: All arms, whether active or not, yield re-

wards, i.e., the aggregated per-step reward is given by
r(st,at) =

∑n
i=1 r

i(sit, a
i
t).
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• Model B: Only the activated arms yield rewards. The
state of the passive arms evolves, but the arms do not
yield reward. Thus, the aggregated per-step reward is
given by r(st,at) =

∑n
i=1 r

i(sit, a
i
t)1({ait = 1}).

Note that Model B is same as Model A under the assumption
that ri( · , 0) = 0 for all arms i ∈ [n]. For that reason, for most
of the paper, we will take r(st,at) =

∑n
i=1 r

i(sit, a
i
t) and

assume ri( · , 0) = 0 when specializing for results of Model B.
Remark 1: Both Models A and B arise in different applica-

tions. Examples of Model A include queuing networks [2],
where all queues incur holding cost; and machine mainte-
nance [21], where all machines incur a cost when run in a
faulty state. Examples of Model B include cognitive radios [8],
where the reward depends only on the state of the selected
channels.

Let Π denote the family of all possible (potentially history
dependent and randomized) policies for the decision maker
(who observes the state of all arms). The performance of any
policy π ∈ Π is given by

J(π) := lim inf
T→∞

1

T
E

[ T∑
t=1

r(St,At)

]
, (1)

where the expectation is taken with respect to the initial state
distribution and the joint distribution induced on all system
variables.

The objective of the decision maker is to choose a policy
π ∈ Π to maximize the total expected reward J(π). This
objective is a MDP but computing an optimal policy using
dynamic program suffers from the curse of dimensionality.
For example, if |Si| = S for each i ∈ [n], then |S| = Sn

and |A(m)| =
(
n
m

)
. Then, the computational complexity

of each step of value iteration is |A(m)||S|2 =
(
n
m

)
S2n,

which is prohibitively large for even moderate values of S
and n. For this reason, most of the RB literature focuses on a
computationally tractable but sub-optimal approach known as
the Whittle index policy.

B. Whittle index policy
The Whittle index policy is motivated by the solution of

a relaxation of the original optimization problem. Instead of
the hard constraint of activating exactly m arms at a time,
consider a relaxation where m arms have to be activated on
average, i.e.,

max
π∈Π

lim inf
T→∞

1

T
E

[ T∑
t=1

r(St,At)

]
,

s.t. lim sup
T→∞

1

T
E

[ T∑
t=1

∥At∥1
]
= m. (2)

Note that this relaxation is simply used to obtain a decom-
position to define Whittle indices. The Whittle index policy,
which is stated at the end of this section, picks exactly m arms
at each time step.

The Lagrangian relaxation of (2) is given by

max
λ≥0

max
πλ∈Π

lim inf
T→∞

1

T
E

[ T∑
t=1

[
r(St,At)− λ∥At∥1

]]
. (3)

Note that the Lagrangian relaxation (3) is decoupled across
arms because the per-step reward is decoupled:

r(St,At)− λ∥At∥1 =
∑
i∈[n]

[
ri(Si

t , A
i
t)− λAi

t

]
.

Therefore, for a given λ, maximizing the Lagrangian relax-
ation (3) over π : S → {0, 1}n is equivalent to the following
n decoupled optimization problems: for all i ∈ [n],

max
πi:Si→{0,1}

lim inf
T→∞

1

T
E

[ T∑
t=1

[
ri(Si

t , A
i
t)− λAi

t

]]
. (4)

Let πi
λ denote the optimal policy for Problem (4). Define

the passive set Wi
λ as the set of states for which the optimal

policy πi
λ prescribes passive action, i.e., Wi

λ :=
{
s ∈ Si :

πi
λ(s) = 0

}
.

Definition 1 (Indexability and Whittle index): A RB is said
to be indexable if Wi

λ is non-decreasing in λ, i.e., for any
λ1, λ2 ∈ R such that λ1 ≤ λ2, we have Wi

λ1
⊆ Wi

λ2
. For an

indexable RB, the Whittle index wi(s) of state s ∈ Si is the
smallest value of λ for which state s is part of the passive set
Wi

λ, i.e.,
wi(s) = inf

{
λ ∈ R : s ∈ Wi

λ

}
.

Note that if the penalty λ = wi(s), then the policy πi
λ is

indifferent between taking passive or active actions at state s.
The Whittle index policy is a feasible policy for the original

optimization problem and is given as follows: At each time,
activate the arms with the m largest values of the Whittle
index at their current state.

As argued in [16], the Whittle index policy is meaningful
only when all arms are indexable. Various sufficient conditions
for indexability are available in the literature [21], [22], [24].
In some settings, the Whittle index policy is optimal [6],
[17], [18]. For general models, there is also strong evidence
to suggest that the Whittle index policy performs close to
optimal [21], [22], [24], [43], [44]. Algorithms to efficiently
compute Whittle indices are presented in [24], [45].

C. The learning problem

Let µ denote the Whittle index policy and J(µ) denote its
performance. We are interested in a setting where the transition
matrices {P i}i∈[n] of the arms are unknown but the decision
maker has a prior on them. In this setting, the performance
of a policy π operating for horizon T is characterized by the
Bayesian regret given by

R(T ;π) = Eπ

[
TJ(µ)−

T∑
t=1

r(St,At)

]
, (5)

where the expectation is taken with respect to the prior
distribution on {P i}i∈[n], the initial condition, and the po-
tential randomization done by the policy π. Bayesian regret
is a well-known metric used in various setting [42], [46]–
[48]. An alternative method to quantify the performance is
the frequentist regret but we focus on Bayesian regret for a
comparison of the two notions of the regret, we refer the reader
to [49], [50].
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Remark 2: We measure the regret with respect to the Whit-
tle index policy. In contrast, in most of the existing research,
regret is defined with reference to the optimal policy. In
principle, the results presented in this paper are also applicable
to regret defined with respect to the optimal policy provided it
is possible to compute the optimal policy for a given model.
See Sec. VI-C for details.

Remark 3: The rested multi-armed bandit problem is a
special case of Model B where passive arms are frozen, i.e.,
P i(s+|s, 0) = 1({s+ = s}) for all arms i ∈ [n]. For this
model, the Whittle index policy reduces to what is called
the Gittins index policy and is optimal [17]. Thus, the results
obtained in this paper are also applicable to the rested multi-
armed bandits.

D. The main results
Our main result is to propose a Thompson-sampling based

algorithm, which we call RB-TSDE, and characterize its
regret. In particular, let Si = |Si| denote the size of the state
space of arm i and S̄n =

∑
i∈[n] S

i denote the sum of the sizes
of the state space of all arms. Then, we show the following.

Main Result : The regret of RB-TSDE is bounded by

R(T ; RB− TSDE) ≤ O
(
αS̄n

√
T log T

)
,

where α = n for Model A and α = m for Model B. Under
additional assumptions, the bound for both models can be
tightened to

R(T ; RB− TSDE) ≤ O
(
max{αS̄n, S̄n}

√
T log T

)
.

The detailed characterization of the constants in the O(·) terms
is given in Theorem 1 and Theorem 2 later.

III. LEARNING ALGORITHM FOR RB

A. Assumptions on the unknown parameters.
Let θi⋆ denote the unknown parameters of the transition

matrices [P i(·|·, 0) P i(·|·, 1)], i ∈ [n]. We assume that θi⋆
belongs to a compact set Θi. We impose the following
assumptions on the model.

Assumption 1: For any i ∈ [n] and θi ∈ Θi, the RB
⟨Si,Ai = {0, 1}, P i(θi), ri⟩ is indexable.

Assumption 2: Let µθ denote the Whittle index policy cor-
responding to model θ. Let P θ denote the controlled transition
matrix under policy µθ and Jθ denote the average reward of
policy µθ. We assume that for every θ ∈ Θ, Jθ does not
depend on the initial state and also assume that there exists
a bounded differential value function V θ such that (Jθ,V θ)
satisfy the average reward Bellman equation:

Jθ + V θ(s) = r(s,µθ(s)) +
[
P θV θ

]
(s), ∀s ∈ S. (6)

Assumption 1 is necessary for the Whittle index heuristic to
be meaningful. Assumption 2 ensures that the average reward
of the Whittle index policy is well defined for all models.
There are various sufficient conditions for Assumption 2 in
the literature. See [51] for an overview.

The average reward Bellman equation (6) has an infinite
number of solutions. In particular, if (Jθ,V θ) satisfies (6),
then so does (Jθ,V θ + constant). Assumption 2 implies that

span(V θ) is bounded. A bound on span(V θ) under a different
set of assumptions is presented in [38] but this bound does not
suffice for our analysis. See Remark 7 for details. As we want
to capture the scaling of span(V θ) with n and m, so we
impose an additional assumption on the model.

The ergodicity coefficient of P θ is defined as

λP θ
= 1− min

s,s′∈S

∑
z∈S

min{P θ(z|s),P θ(z|s′)}.

We impose the following assumption on the model.
Assumption 3: We assume there exists λ∗ < 1 such that

supθ∈Θ λP θ
≤ λ∗.

See [51, Sec. 5] for various equivalent characterizations of
λP θ

< 1. Assumption 3 is used while analyzing the rate
of convergence of relative value iteration [52] to bound the
span of the value function. A relaxation of Assumption 3 is
presented in Sec. VI-A.

The ergodicity coefficient of P θ depends on the Whittle
index policy µθ. A policy independent upper bound of the
ergodicity coefficient is given by the contraction factor, which
is defined as:

λ′ = 1− min
s,s′∈S,

a∈A(m),a′∈A(m)

∑
z∈S

min{P (z|s,a),P (z|s′,a′)}

Since the dynamics of the arms are independent, the definition
of contraction factor implies that a sufficient condition for
Assumption 3 is that for every arm, and every pair of state-
action pairs, there exists a next state that can be reached from
both state-action pairs with positive probability in one step.
Moreover, if for every arm there is a distinguished state which
can be reached from all state-action pairs with probability at
least ε, then the ergodicity coefficient is less than 1− ε.

B. Priors and posterior updates.
We assume that {θi⋆}i∈[n] are independent random variables

and use ϕi
1 to denote the prior on θi for each arm i ∈ [n]. At

time t, let hi
t = (si1, a

i
1, . . . , s

i
t−1, a

i
t−1, s

i
t) denote the history

of states and actions at arm i. Let ϕi
t denote the posterior

distribution on θi⋆ given hi
t. Then, upon applying action ait

and observing the next state sit+1, the posterior distribution
ϕi
t+1 can be computed using Bayes rule as

ϕi
t+1(dθ) =

P i(sit+1|sit, ait; θ)ϕi
t(dθ)∫

P i(sit+1|sit, ait; θ̃)ϕi
t(dθ̃)

. (7)

If the prior is a conjugate distribution on Θi, then the posterior
can be updated in closed form. Note that the exact form of
the prior and the posterior update rule are not important for
the description of the algorithm or its regret analysis.

C. RB-TSDE Algorithm (Distributed implementation)
We propose a Thompson-sampling based algorithm, which

we call RB-TSDE. Our algorithm is inspired by the TSDE
(Thompson Sampling with Dynamic Episodes) algorithm
of [42].

The RB-TSDE algorithm consists of a coordinator and n
actors, one for each arm. The coordinators and the actors
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Algorithm 1 RB-TSDE

1: Input: {(Θi, ϕi
1)}i∈[n].

2: Initialize t ← 1, t1 ← 0, T0 ← 0, k ← 0, N i(si, ai) =
0,∀ai ∈ {0, 1}, si ∈ Si,∀i ∈ [n], θ0, µθ0 .

3: for t = 1, 2, . . . do
4: if tk + Tk−1 < t or 2N i

tk
(s, a) < N i

t (s, a) for any
s ∈ Si, a ∈ {0, 1}, i ∈ [n] then

5: Set k ← k + 1, Tk−1 ← t− tk−1, tk ← t.
6: Actor i ∈ [n] samples θik ∼ ϕi

tk
and compute wi

tk
.

7: end if
8: Actor i ∈ [n] sends the Whittle index wi

tk
(sit) to the

coordinator.
9: The coordinator sends ait = 1 to the arms with the m-

highest Whittle index and sends ait = 0 to others.
10: Actor i ∈ [n] updates ϕi

t+1 according to (7).
11: end for

require synchronized communication as described below. The
whole algorithm is described in Alg. 1.

As the name suggests, RB-TSDE operates in episodes of
dynamic length. The episodes are synchronized for all actors
and the coordinator signals the start of episodes to all actors.
The actor at arm i maintains a posterior ϕi

t distribution on
the dynamics of arm i according to (7) and keep track of
N i

t (s
i, ai) =

∑t−1
τ=1 1({(Si

τ , A
i
τ ) = (si, ai)}).

Let tk and Tk denote the start time and length of episode k,
respectively. The end of the episode can either be triggered by
the coordinator or any of the actors. The coordinator triggers
the end of the episode if the length of the episode is one more
than the length of the previous episode. The actor for arm i
triggers the end of the episode if the number of state-action
visits N i

t (s
i
t, a

i
t) of the current state-action pair are more than

double of their value at the beginning of the episode. Thus,

tk+1 = min
{
t > tk : t− tk > Tk−1 or

N i
t (s

i, ai) > 2Ntk(s
i, ai) for some (i, si, ai)

}
.

At the beginning of episode k, the actor for arm i ∈ [n]
samples a parameter θik from the posterior ϕi

tk
and computes

the Whittle index wi
tk

for all states. During episode k, at
each time t, the actor at arm i sends the value of wi

tk
(sit)

to the coordinator. The coordinator receives wi
tk
(sit) from all

arms, sends the active action ait = 1 to the arms with the
m-highest values of the Whittle index, and sends the passive
action ait = 0 to the remaining arms. This process continues
until a condition for ending the episode is triggered by the
coordinator or one of the actors.

D. Regret bound

Theorem 1: Under Assumptions 1–3, the regret of
RB-TSDE is upper bounded as follows:

R(T ; RB− TSDE) < 30α
Rmax

1− λ∗ S̄n
√
T log T ,

where α = n for Model A and α = m for Model B.
See Sec. IV-D for proof.

We derive a tighter regret bound under a stronger assump-
tion. We first assume that the state space of each arm Si,
i ∈ [n], is a finite subset of R and use di to denote the
Euclidean metric on R, i.e., di(s, s′) = |s− s′|. Furthermore,
let dp(s, s′) =

(∑
i∈[n] d

i(si, s′,i)p
)1/p

for any s, s′ ∈ S. We
then impose the following assumption.

Assumption 4: For each θ ∈ Θ, the value function V θ is
Lipschitz with a Lipschitz constant upper bounded by Lv .

In general, Assumption 4 depends on the specific model be-
ing considered. We present one instance where Assumption 4
is satisfied in Sec. VI-B.

Theorem 2: Under Assumptions 1–4, the regret of
RB-TSDE for both Model A and Model B is upper bounded
as follows:

R(T ; RB− TSDE)

< 12max{α
√
S̄n, S̄n}max

{ Rmax

1− λ∗ ,DmaxLv

}
√
KT log(T max{1,K ′})

where α = n for Model A and α = m for Model B, K
and K ′ are positive constants independent of n and T , and
Dmax = maxi∈[n] diam(Si).
See Sec. IV-D for proof.

Remark 4: If we directly use an existing RL algorithm
for RBs, the regret will scale as Õ(2n

√
T ) or larger. The

results of Theorems 1 and 2 show that the regret scales as
either Õ(n2

√
T ), Õ(n1.5

√
T ), or Õ(n

√
T ) depending on the

modeling assumptions. Thus, using a learning algorithm which
is adapted to the structure of the models gives a significantly
better scaling with the number of arms.

Remark 5: The exact scaling with the number of arms
depends on how m scales with n. For example, if m remains
constant, then under Assumptions 1–3, the regret for Model A
scales as Õ(n2

√
T ), while the regret for Model B scales

as Õ(n
√
T ). Under Assumption 4, the regret for Model A

scales as Õ(n1.5
√
T ), while the regret for Model B scales as

Õ(n
√
T ). On the other hand, if m scales as βn, where β < 1

is a constant1, then under Assumptions 1–3, the regret for both
models scales as Õ(n2

√
T ). Under Assumption 4, the regret

for both models scales as Õ(n1.5
√
T ). Thus, for Model A, the

regret bound of Theorem 2 is tighter than that of Theorem 1,
but for Model B, it depends on the scaling assumptions on m.

IV. REGRET ANALYSIS

The high level idea of the proof is similar to the analysis
in [42] but we exploit the properties of the RB model while
simplifying individual terms. We first start with bounds on the
average reward and the differential value function.

A. Bounds on average reward and differential value
function.

As mentioned earlier, V θ is unique only up to an additive
constant. We assume that V θ is chosen such that ξθV θ = 0,
where ξθ is the stationary distribution of P θ. This ensures that

1For this setting, it was shown in [18] that the Whittle index policy is
optimal as n → ∞.
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V θ is equal to the asymptotic bias of policy µθ and is given
by

V θ =

∞∑
t=0

P t
θ

[
r − Jθ

]
. (8)

See for example [53].
Then we have the following bounds.
Lemma 1: Under Assumption 3, for any θ ∈ Θ,

0 ≤ Jθ ≤ αRmax and span(V θ) ≤ 2αRmax/(1− λ∗),

where α = n for Model A and α = m for Model B.
Proof: Note that for Model A, r(s,a) ∈ [0, nRmax]

while for Model B, r(s,a) ∈ [0,mRmax]. Then, the bounds
for Jθ follow immediately from definition. The bounds on
span(V θ) follow from (8), span(s + y) ≤ span(s) +
span(y), Assumption 3, and the fact that for any vector v,
span(P θv) ≤ λP θ

span(v).
Remark 6: Lemma 1 shows the key difference between

Models A and B. When all arms yield rewards, the maximum
value of r(s,a) is nRmax while when only active arms yield
rewards, the maximum value of r(s,a) is mRmax. This leads
to different bounds on Jθ and V θ.

Remark 7: An alternative bound on span(V θ) is presented
in [38]. Let T s1→s2

θ denote the expected number of steps to
go from state s1 to state s2 under policy µθ for model θ.
Define Dθ = maxs1,s2 T

s1→s2

θ to be the one-way diameter.
Then, it is shown in [38] that span(V θ) ≤ JθDθ. We do not
know of an easy way to characterize the dependence of Dθ on
the number n of arms. That is why we consider an alternative
bound on span(V θ).

B. Regret decomposition.

For the ease of notation, we simply use R(T ) instead
of R(T ; RB− TSDE). We also use (J⋆, µ⋆,P ⋆,V ⋆) instead
of (Jθ⋆ , µθ⋆ ,P θ⋆ ,V θ⋆) and use (Jk, µk,P k,V k) instead of
(Jθk , µθk ,P θk ,V θk). Rearranging terms in Bellman equa-
tion (6) and adding and subtracting V k(st+1), we get:

r(st,at) = Jk + V k(st)− V k(st+1) + V k(st+1)

−
[
P kV k

]
(st). (9)

Let KT denote the number of episodes until horizon T .
Substituting (9) in (5), we get:

R(T ) = E

[
TJ⋆ −

KT∑
k=1

TkJk

]
︸ ︷︷ ︸

regret due to sampling error =: R0(T )

+ E

[KT∑
k=1

tk+1−1∑
t=tk

V k(St+1)− V k(St)

]
︸ ︷︷ ︸

regret due to time-varying policy =: R1(T )

+ E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)− V k(St+1)

]
︸ ︷︷ ︸

regret due to model mismatch =: R2(T )

.

(10)

C. Bounding individual terms.

Each term of (10) is bounded as follows.
Lemma 2: Under Assumptions 1–3, we have

1) R0(T ) ≤ 2αRmax

√
S̄nT log T .

2) R1(T ) ≤ 4
αRmax

1− λ∗

√
S̄nT log T .

3) R2(T ) ≤ 12
αRmax

1− λ∗

(
n+ S̄n

√
T log T

)
.

See the appendix for the proof steps.
We can obtain an alternative bound on R2(T ) under As-

sumption 4.
Lemma 3: Under Assumptions 1, 2, and 4, we have

R2(T ) ≤ 16DmaxLv

√
KS̄nT log(K ′T )

where K and K ′ are positive constants that do not depend on
n and T .
See the appendix for the proof steps.

Remark 8: Under Assumption 6, which will be described
later, we can establish a tighter bound on span(V θ). In par-
ticular, Lipschitz continuity of V θ implies that span(V θ) ≤
Lv diam(S). This can give us a tighter bound on the term
R1(T ), but this tighter bound does not help us in reducing
the overall regret.

D. Obtaining the final bound.

Proof: [Proof of Theorem 1] From Eq. (10) and Lemma 2,
we get

R(T ) ≤ 2αRmax

√
S̄nT log T + 4

αRmax

1− λ∗

√
S̄nT log T

+ 12
αRmax

1− λ∗

(
n+ S̄n

√
T log T

)
.

By definition, λ∗ < 1. Then,

R(T ) < 6
αRmax

1− λ∗

√
S̄nT log T + 24

αRmax

1− λ∗ S̄n
√
T log T

< (6 + 24)
αRmax

1− λ∗ S̄n
√
T log T

= 30
αRmax

1− λ∗ S̄n
√
T log T .

This completes the proof of Theorem 1.
Proof: [Proof of Theorem 2] From Eq. (10), Lemma 2,

and 3, we get

R(T ) ≤ 2αRmax

√
S̄nT log T + 4

αRmax

1− λ∗

√
S̄nT log T

+ 12S̄nDmaxLv

√
KT log(T max{1,K ′})

< 12
αRmax

1− λ∗

√
S̄nT log T

+ 12S̄nDmaxLv

√
KT log(T max{1,K ′}).

Let R̄ = max
{
Rmax/(1− λ∗),DmaxLv

}
. Then, we have

R(T ) < 12max{α
√
S̄n, S̄n}R̄

√
KT log(T max{1,K ′}).

This completes the proof of Theorem 2.
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V. NUMERICAL EXAMPLES

In this section, we demonstrate the empirical performance
of RB-TSDE. In particular, we consider two environments,
one for Model A (a model for machine maintenance) and
one for Model B (a model for link scheduling). For both
environments, we consider multiple experiments and plot the
regret as a function of time and as a function of number
of arms. Our results illustrate that the regret does indeed
scale according to our theoretical results. We also compare
the results with the empirical performance of QWI, which is
a Q-learning algorithm for RBs proposed in [26], [28], [29].
Note that only the algorithm proposed in [29] is called QWI,
but the algorithms of [26], [28] are conceptually similar, so
we collectively call them QWI.

A. Environments
We start with a description of the two environments.
1) Environment A: We consider a machine maintenance

model where a single repairman is responsible for the mainte-
nance of a set of machines, which deteriorate over time. Each
machine has multiple deterioration states sorted from pristine
to ruined. There is a cost associated with running the machine
and the cost is non-decreasing function of the state. If the
machine is left un-monitored, then the state of the machine
stochastically deteriorates over time. The repairman may visit
one of the machines and replace it with a new machine at a
fixed cost. The objective is to determine a scheduling policy
to minimize the expected discounted cost over time.

We model the above environment as an instance of Model A.
In particular, we consider n arms, where n ∈ {10, 20, . . . , 80}
where m = 1 arm can be activated at each time. The state
space of each arm is of size S = 10. Under a = 1, the state
of the arm is reset to 1 (and this fact is known to the learner).
Under a = 0, the transition matrix is stochastic monotone and
chosen as described in [24, Appendix 1.2]. The transitions
under the passive action are unknown to the learner. The per-
step reward function are given by ri(s, 0) = (S−1)2−(s−1)2,
ri(s, 1) = 0.5(S− 1)2 for all i ∈ [n] and s ∈ [S].

2) Environment B: We consider a link scheduling problem
where there are n users who can communicate over a shared
communication link. Each user has a queue, where packets
arrive according to an unknown i.i.d. process. At each time, a
controller may schedule one of the users and transmit all its
packets over the channel. The users which are not scheduled
incur a holding cost which is equal to the square of the number
of packets in the queue.

We model the above environment as an instance of Model B.
In particular, we consider n arms, where n ∈ {10, 20, . . . , 80}
where m = n − 1 arm can be activated at each time. The
state of each arm is of size S = 10. Under a = 1, the
transition matrix is upper-triangular and chosen as described
in [54, P1(p) of Appendix A] where p is set to be different for
each arm, linearly ranged from 0.05 to 0.95. The transitions
under the active action are unknown to the learner. Under
a = 0, the state of the arm is reset to 1 (and this fact is
known to the learner). The per-step reward function are given
by ri(s, 0) = 0, ri(s, 1) = (S− 1)2 − (s− 1)2 for all i ∈ [n]
and s ∈ [S].

B. Algorithms
We compare the performance of two algorithms.
1) RB-TSDE: We consider the RB-TSDE algorithm de-

scribed in Algorithm 1. We initialize the algorithm with
uninformed Dirichlet prior on the unknown parameters and
update the posterior according to the conjugate posterior for
Dirichlet priors.

2) QWI : We also consider QWI, which is a Q-learning
algorithm for RBs proposed in [26], [28], [29] as a baseline.
The algorithm has two learning rates. As recommended in
[28, Eq. (17)] we pick the step-size sequence which has a
good performance by setting parameters C and C ′ of QWI as
C = 0.03 and C ′ = 0.01, where the numerical values were
obtained by running a hyper-parameter search.

C. Experimental Results
In our experiments, we pick a horizon of T = 5, 000 and

compute the Bayesian regret averaged over 250 sample paths.
We repeat the experiment for n ∈ {10, 20, . . . , 80}. For each
environment, we plot four curves: (a) plot of R(T )/

√
T vs

T for RB-TSDE; (b) plot of R(T ) at T = 5, 000 vs n for
RB-TSDE; (c) plot of R(T )/

√
T vs T for QWI; and (d) plot

of R(T ) at T = 5, 000 vs n for QWI. For plots (b) and (d),
we also fit the points with a parametric curve of the form p0+
p1n+p2n

1.5 for Environment A and p0+p1n for Environment
B to obtain the scaling with number of arms.

The plots for Environment A is shown in Fig. 1. The sub-
plot (a) shows that the regret essentially scales as

√
T with

time. The sub-plots (b) show that the regret scales as n1.5

with the number of arms. Thus, the results are consistent with
regret bounds of Theorem 2.

The plots for Environment B is shown in Fig. 2. The behav-
ior of sub-plots (a) and (c) is the same as for Environment A.
Note that for larger values of T , the plot of R(T )/

√
T has not

yet converged to a straight line, but it is clear that these curves
are upper bounded by a constant. The sub-plot (b) shows that
the regret scales linearly with the number of arms. Note that
in this case since m = n − 1, Theorem 1 suggests that the
regret should scale as n1.5 (see Remark 5) and the result is
consistent with the theorem.

Note that even though no regret analysis of the QWI
algorithm for RBs is presented in [26], [28], [29], the above
experiment suggests that empirically the performance of QWI
has similar features as RB-TSDE. However, unlike the QWI,
RB-TSDE does not require any hyper-parameter tuning. More-
over, RB-TSDE has an order of magnitude lower regret than
QWI.

VI. DISCUSSION

A. A relaxation of Assumption 3
Assumption 3 can be relaxed as follows.
Assumption 5: For every θ, there exists a positive integer

τ∗ and a real λ∗ ∈ (0, 1) such that λP τ∗
θ
≤ λ∗.

Based on this assumption, the result of Lemmas 1 changes
as follows.

Lemma 4: Under Assumption 5, for any θ ∈ Θ,
span(V θ) ≤ 2τ∗αRmax/(1− λ∗).
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(a) R(T )/
√
T vs. T (b) R(T ) vs. n (c) R(T )/

√
T vs. T (d) R(T ) vs. n

Fig. 1: Regret analysis of RB-TSDE and QWI for Environment A. Note that RB-TSDE has an order of magnitude better regret
than QWI.

(a) R(T )/
√
T vs. T (b) R(T ) vs. n (c) R(T )/

√
T vs. T (d) R(T ) vs. n

Fig. 2: Regret analysis of RB-TSDE and QWI method for Environment B. Note that RB-TSDE has an order of magnitude
lower regret than QWI.

Consequently, we have the following changes.
Lemma 5: Under Assumptions 1, 2, and 5, we have

1) R1(T ) ≤ 4
τ∗αRmax

1− λ∗

√
S̄nT log T .

2) R2(T ) ≤ 12
τ∗αRmax

1− λ∗

(
n+ S̄n

√
T log T

)
.

Theorem 3: Under Assumptions 1, 2, and 5, the regret of
RB-TSDE is upper bounded as follows:

R(T ; RB− TSDE) < 30α
Rmax

1− λ∗ S̄n
√
T log T .

Theorem 4: Under Assumptions 1, 2, 4, and 5 the regret of
RB-TSDE for both models is upper bounded as follows:

R(T ; RB− TSDE) < 12max{α
√
S̄n, S̄n}

max
{τ∗Rmax

1− λ∗ ,DmaxLv

}√
KT log(T max{1,K ′}).

The proof steps of Lemmas 4, 5 are similar to the proof steps
of Lemmas 1, 2 and the proof steps of Theorems 3 and 4 are
similar to the proof steps of Theorems 1 and 2. See [55] for
the details.

B. A set of sufficient conditions for Assumption 4

Assumption 6: Suppose each arm i ∈ [n] is (Li
r, L

i
p)

Lipschitz, i.e.,

Li
r = sup

si
(1)

,si
(2)

,a

|ri(si(1), a)− ri(si(2), a)|
di(si(1), s

i
(2))

,

Li
p = sup

si
(1)

,si
(2)

,a

K(P i(·|si(1), a), P
i(·|si(2), a))

di(si(1), s
i
(2))

where Li
r <∞ and Li

p < 1.
Assumption 7: For all θ ∈ Θ, the Whittle index policy is

optimal.

Assumption 7 is satisfied in some instances such as: (i) the
rested multi-armed bandit setup described in Remark 3 where
only one arm can be activated at a time (i.e., m = 1) and yield
reward, and arms that are not activated remain frozen (i.e.,
P (si+|si, 0) = δsi(s

i
+), where δsi is the Dirac delta measure

centered at si) [17]; (ii) the number of arms are asymptotically
large [18]; (iii) certain queuing models [6].

Moreover, we assume that the product measure on S is
d(s, s′) =

∑
i∈[n] d

i(si, s′,i).
Lemma 6 ( [56, Lemma 2]): Under Assumption 6, the

MDP ⟨S,A(m),P ,R⟩ is (maxi∈[n] L
i
r,maxi∈[n] L

i
p)-

Lipschitz i.e.,

max
s,s′∈S
a∈A(m)

|r(s,a)− r(s′,a)|
d(s, s′)

≤ max
i∈[n]

Li
r,

max
s,s′∈S
a∈A(m)

K(P (·|s,a)− P (·|s′,a))
d(s, s′)

≤ max
i∈[n]

Li
p.

An immediate consequence of Lemma 6 is the following.
Lemma 7: Under Assumptions 6 and 7, V θ is Lipschitz

with the Lipschitz constant bounded by

Lv ≤ (max
i∈[n]

Li
r)/(1−max

i∈[n]
Li
p).

Thus, Assumptions 6 and 7 imply Assumption 4.
Proof: The result follows from Lemma 6 and [57,

Theorem 4.2].

C. Regret with respect to the optimal policy
We measure regret with respect to the Whittle index policy.

For models where Assumption 7 is satisfied, which will be
described later, the Whittle index policy is an optimal policy.
Even when the assumption is not satisfied, it is possible to
generalize the results of this paper to identify the regret with
respect to the optimal policy. In particular, let ψ∗

θ denote the
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optimal policy for model θ ∈ Θ. Then, the Bayesian regret of
a learning algorithm π with respect to the optimal policy is

R∗(T ;π) = Eπ

[
TJ(ψ∗

θ)−
T∑

t=1

r(St,At)

]
. (11)

Then, in principle, we can replace the distributed implemen-
tation presented in Algorithm 1 with a modified centralized
implementation where the learner observes the state of all
arms and maintains the posterior ϕi

t for all i ∈ [n]. At the
beginning of each episode, the learner samples θitk from ϕi

tk
,

computes the policy µtk , which is optimal for the sampled
model (θ1tk , . . . , θ

n
tk
), and plays µtk for the rest of the episode.

The regret of this variant will be the same as the bounds
in Theorems 1 and 2. However, we do not present such
an analysis here because it makes the resulting algorithm
impractical as computing the optimal policy is intractable
when there are more than a few arms.

VII. CONCLUSION

In this paper, we present a Thompson-sampling based
reinforcement learning algorithm for restless bandits. We show
that the Bayesian regret of our algorithm with respect to an
oracle that applies the Whittle index policy of the true model
is either Õ(nm

√
T ), Õ(n2

√
T ), Õ(n1.5

√
T ) or Õ(n

√
T )

depending on assumptions on the model. These are in contrast
to naively using any standard RL algorithm, which will have
a regret that scales exponentially in n. Our results are also
applicable to the rested multi-armed bandit setting, where the
Whittle index policy is the same as the Gittins index and is op-
timal. All in all, our results illustrate that a learning algorithm
which leverages the structure of the model can significantly
improve regret compared to model-agnostic algorithms.
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APPENDIX

A. Bound on R0(T) (Lemma 2.1)

We first state a basic property of Thompson sampling
algorithms.

Lemma 8 (TS Lemma [48]): Suppose the true parameters θ
and the estimated ones θk have the same distribution given the

same history H. For any H-measurable function f , we have

E[f(θ)|H] = E[f(θk)|H].
Proof: Now we consider R0(T ). Let J̃⋆ = αRmax − J⋆

and J̃k = αRmax − Jk. By Lemma 1, we have that J̃⋆, J̃k ∈
[0, Rmax]. Therefore,

R0(T ) = E

[
TJ⋆ −

KT∑
k=1

TkJk

]
= E

[KT∑
k=1

TkJ̃k − T J̃⋆

]
(a)

≤
∞∑
k=1

E

[
1({tk ≤ T})(Tk−1 + 1)J̃⋆

]
− T

[
J̃⋆
]

≤ E
[KT∑
k=1

(Tk−1 + 1)J̃⋆

]
− TE

[
J̃⋆
] (b)

≤ αRmaxE[KT ],

where (a) uses the TS Lemma and the fact that due to the first
stopping criterion, Tk ≤ Tk−1 +1; (b) uses Lemma 1 and the
fact that

∑KT

k=1 Tk−1 ≤ T .
Lemma 9: The number of episodes KT is bounded as

follows:
KT ≤ 2

√
S̄nT log(T ).

Proof: Define macro episodes with start times tnl
, l =

1, 2, . . . with tn1
= t1 and

tnl+1
= min{tk > tnl

: N i
tk
(si, ai) > 2N i

tk−1
(si, ai)

for some (i, si, ai)}. (12)

Let γ be the number of macro episodes until time T and define
n(γ+1) = KT + 1. The rest of the proof is the same as [42,
Eq. (8) in proof of Lemma 1] by which we get KT ≤

√
2γT .

For each arm-state-action tuple, define

γi(si, ai) = |{k ≤ KT |N i
tk
(si, ai) > 2N i

tk−1
(si, ai)}|.

As a result γi(si, ai) ≤ logN i
T+1(s

i, ai). Note that for any
i ∈ [n], N i

T+1(s
i, ai) ≤ T and we have 2Si state-action pairs.

Then, we have

γ ≤ 1 +
∑
i∈[n]

∑
(si,ai)

γi(si, ai) ≤ 1 +
∑
i∈[n]

∑
(si,ai)

logN i
T+1(s

i, ai)

= 1 +
∑
i∈[n]

2Si log T ≤ 2S̄n log T.

B. Bound on R1(T) (Lemma 2.2)

R1(T ) is a telescoping sum, which can be simplified as
follows:

R1(T ) = E

[ KT∑
k=1

tk+1−1∑
t=tk

[
V k(St+1)− V k(St)

]]

= E

[ KT∑
k=1

[
V k(Stk+1

)− V k(Stk)
]]
≤ 2

αRmax

1− λ∗ E[KT ]

where the last inequality uses Lemma 1. The result then
follows by substituting the value of KT from Lemma 9.
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C. Bound on R2(T) (Lemma 2.3)
1) Notation.: For any arm i ∈ [n], let N i

t (s
i, ai, si+) denote

the number of times (Sτ , Aτ , Sτ+1) is equal to (si, ai, si+) un-
til time t. Let P̂ i

t (s
i
+|si, ai) = N i

t (s
i, ai, si+)/

(
1∨N i

t (s
i, ai)

)
denote the empirical distribution based on observations up to
time t. For a given δ ∈ (0, 1), we define

ϵiδ(ℓ) =

√
2Si log(1/δ)

1 ∨ ℓ
. (13)

2) Some preliminary results.: In this section, we state some
preliminary properties.

Lemma 10: Let p, q ∈ ∆(S). Then, for any function
f : S → R, we have

∣∣〈f, p〉− 〈f, q〉∣∣ ≤ 0.5 span(f)
∥∥p− q

∥∥
1
.

Proof: Let f̄ = (max f +min f)/2. Then∣∣〈f, p〉− 〈f, q〉∣∣ = ∣∣〈f − f̄ , p− q
〉∣∣ ≤ ∥f − f̄∥∞

∣∣〈1, p− q
〉∣∣

≤ 1
2 span(f)

∥∥p− q
∥∥
1
.

Lemma 11: Consider any arm i, episode k, δ ∈ (0, 1),
ℓ > 1, and state-action pair (si, ai). Define events E iℓ =
{N i

tk
(si, ai) = ℓ}, F i = {∥P i(· |si, ai) − P̂ i

tk
(· |si, ai)∥1 ≤

ϵδ(N
i
tk
(si, ai))}, and F i

k = {∥P i
k(· |si, ai)− P̂ i

tk
(· |si, ai)∥1 ≤

ϵδ(N
i
tk
(si, ai))}. Then, we have

P
(∥∥P i − P̂ i

tk
(· |si, ai)

∥∥
1
> ϵiδ(ℓ)

∣∣∣ E iℓ) ≤ δ.

The above inequality implies that

E
[∥∥P i − P̂ i

tk
(· |si, ai)

∥∥
1

∣∣∣ F i
]
≤ E[ϵiδ(ℓ)|F i] + 2δ.

A similar bound holds if (P i,F i) is replaced by (P i
k,F i

k).
Proof: Given arm i, state si of the arm and action ai

chosen for the arm, we know from [58] that for any ε > 0, the
L1-deviation of the true and the empirical distributions over
Si with N i

tk
(si, ai) = ℓ samples is bounded by

P
(
∥P i(· |si, ai)− P̂ i

tk
(· |si, ai)∥1 ≥ ε

∣∣∣ E iℓ)
≤ 2S

i

exp

(
−ℓε2

2

)
< exp

(
Si − ℓε2

2

)
.

Let δ = exp(Si − ℓε2/2). Note that, Si ≥ 2, therefore Si +
log(1/δ) ≤ Si log(1/δ). Hence,

P

(∥∥P i(· |si, ai)− P̂ i
tk
(· |si, ai)

∥∥
1
>

√
2Si log(1/δ)

1 ∨ ℓ

∣∣∣∣∣ E iℓ
)

< δ.

The next result is driven by showing that P ((F i)c) ≤ δ and

E
[∥∥P i(· |si, ai)− P̂ i

tk
(· |si, ai)

∥∥
1

∣∣∣ F i
]

≤ 2δ + E[ϵiδ(N
i
tk
(si, ai))|F i],

See [55] for details.
Lemma 12: For any episode k, and δ ∈ (0, 1), we have

E
[∥∥P ⋆(·|s,a)− P k(·|s,a)

∥∥
1

]
≤ 4nδ +

∑
i∈[n]

∑
f∈{Fi,Fi

k}

E
[
ϵiδ(N

i
tk
(si, ai))|f

]
.

Proof: The proof is as follows:

E
[∥∥P ⋆(·|s,a)− P k(·|s,a)

∥∥
1

]
(a)
=
∑
i∈[n]

E
[∥∥P i(· |si, ai)− P i

k(· |si, ai)
∥∥
1

]
(b)

≤
∑
i∈[n]

E
[∥∥P i(· |si, ai)− P̂ i

tk
(· |si, ai)

∥∥
1

+
∥∥P i

k(· |si, ai)− P̂ i
tk
(· |si, ai)

∥∥
1

]
where (a) follows from [34, Lemma 13] and (b) follows from
triangle inequality. The result then follows from Lemma 11.

3) Bounding R2(T).: Now, consider the inner summation in
the expression for R2(T ):

E
[〈
P k(· |St,At),V k

〉
− V k(St+1)

]
(a)

≤ E
[
1
2 span(V k)

∥∥P k(·|St,At)− P ⋆(·|St,At)
∥∥
1

]
(b)

≤ αRmax

1− λ∗ E
[∥∥P k(·|St,At)− P ⋆(·|St,At)

∥∥
1

]
(14)

where (a) follows from Lemma 10 and (b) follows from
Lemma 1. Then, by Lemma 12, we have

R2(T ) = E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)− V k(St+1)

]

≤ αRmax

1− λ∗

KT∑
k=1

tk+1−1∑
t=tk

(
4nδ +

∑
(i,f)∈Dk

E
[
ϵiδ(N

i
tk
(Si

t , A
i
t))|f

])
(15)

where Dk = {(i, f) : i ∈ [n], f ∈ {F ,F i
k}}.

For the first inner term of (15), we have
KT∑
k=1

tk+1−1∑
t=tk

4nδ =

T∑
t=1

4nδ = 4nδT. (16)

For the second inner term of (15), fix (i, f) ∈ Dk and let
δ̄ =

√
2Si log(1/δ). Note

∑KT

k=1

∑tk+1−1
t=tk

=
∑T

t=1. Then,

KT∑
k=1

tk+1−1∑
t=tk

E

[
δ̄√

1 ∨N i
tk
(Si

t , A
i
t)

∣∣∣∣∣ f
]

= δ̄
∑

(si,ai)

T∑
t=1

E

[
1(Si

t = si, Ai
t = ai)

√
1

1 ∨N i
t (s

i, ai)

∣∣∣∣∣ f
]

= δ̄
∑

(si,ai)

E

[
1(N i

T+1(s
i, ai) > 0) +

Ni
T+1(s

i,ai)−1∑
j=1

1√
j

∣∣∣∣∣ f
]

≤ δ̄
∑

(si,ai)

E

[
1(N i

T+1(s
i, ai) > 0) + 2

√
N i

T+1(s
i, ai)

∣∣∣∣∣ f
]

≤ δ̄
∑

(si,ai)

3E

[√
N i

T+1(s
i, ai)

∣∣∣∣∣ f
]

(a)

≤ 3δ̄E

[√
2Si

∑
(si,ai)

N i
T+1(s

i, ai)

∣∣∣∣∣ f
]
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(b)
= 6Si

√
T log(1/δ) (17)

where (a) uses Cauchy-Schwartz inequality and (b) uses
the fact that

∑
(xi,ai) N

i
T+1(x

i, ai) = T . Adding (17) over
(i, f) ∈ Dk, we have

KT∑
k=1

tk+1−1∑
t=tk

∑
(i,f)∈Dk

E
[
ϵiδ(N

i
tk
(Si

t , A
i
t))|f

]
≤ 12S̄n

√
T log(1/δ). (18)

Finally, by setting δ = 1/T , and substituting (17) and (16)
in (15), we get the final result.

D. Bound on R2(T) (Lemma 3)
1) Some preliminary results.: For any arm i ∈ [n], let

N i
t (s

i, ai, si+) and P̂ i
t (s

i
+|si, ai) denote the same variables as

defined in Sec. C.1.
Lemma 13: For any Lipschitz function f : X → R with

Lipschitz coefficient Lf , and any probability measures ζ1 and
ζ2 on (X , dX) we have∣∣∣∣ ∑

x∈X
f(x)ζ1(x)−

∑
x∈X

f(x)ζ2(x)

∣∣∣∣ ≤ LfK(ζ1, ζ2).

Proof: The result is immediately derived from the
definition of Kantorovich distance.

Lemma 14 ( From Theorem 2 of [59] ): Let ν denote a
probability measure on (R, |·|) and let ν̂n denote the estimated
probability measure by n samples from ν. Then, for all n ≥ 1
and all ϵ > 0, there exist constants C and c which depend
on ν such that P (K(ν, ν̂n) ≥ ϵ) ≤ C exp(−cnϵ)1(ϵ ≤ 1) +
C exp(−cnϵ2)1(ϵ > 1).

Proof: The lemma follows directly by applying [59,
Theorem 2] and setting d = 1, p = 1 and α = 2 which
satisfies condition (C1) of [59].

Let ϵδ(ℓ) =
√
log(C/δ)/(c(1 ∨ ℓ)).

Lemma 15: Consider any arm i, any episode k, δ ∈
(0, 1), ℓ > 1, and state-action pair (si, ai). Define events
F i = {K(P i, P̂ i

tk
(· |si, ai)) ≤ ϵδ(N

i
tk
(si, ai))}, and F i

k =

{K(P̃ i
k, P̂

i
tk
(· |si, ai))∥1 ≤ ϵδ(N

i
tk
(si, ai))}. we have

P
(
K(P i, P̂ i

tk
(· |si, ai)) > ϵiδ(ℓ)

)
≤ δ,

Furthermore, the above inequality implies

E
[
K(P i, P̂ i

tk
(· |si, ai))

∣∣∣ E i] ≤ E[ϵiδ(ℓ) ∣∣∣ F i] + 2 diam(Si)δ.

A similar bound holds if (P i,F i) is replaced by (P i
k,F i

k).
Proof: The result follows by using Lemmas 13 and 14

and a similar approach as the proof of Lemma 11.
Lemma 16: For any episode k, and δ ∈ (0, 1), we have

E
[
K(P ⋆(·|s,a),P k(·|s,a))

]
≤ 4nDmaxδ +

∑
f∈{Fi,Fi

k}

∑
i∈[n]

E
[
ϵiδ(N

i
tk
(si, ai))

∣∣∣ f].
Proof: The proof is similar to that of Lemma 12, where

we use Kantorovich distance instead of total variation distance.
The equivalent of equality (a) (in the proof of Lemma 12)
follows from [56, Lemma 4], and the rest of the argument
follows from Lemma 15.

2) Bounding R2(T).: First, consider the inner summation in
the expression for R2(T ):

E
[〈
P k(· |St,At),V k

〉
− V k(St+1)

]
(a)

≤ LvE
[
K (P ⋆(·|St,At)− P k(·|St,At))

]
(19)

where (a) follows from Lemma 13. Then, by Lemma 16, we
have

R2(T ) = E

[KT∑
k=1

tk+1−1∑
t=tk

[
P kV k

]
(St)− V k(St+1)

]

≤ Lv

KT∑
k=1

tk+1−1∑
t=tk

(
4nDmaxδ+

∑
(i,f)∈Dk

E
[
ϵiδ(N

i
tk
(Si

t , A
i
t))
∣∣∣ f]).

(20)

where Dk = {(i, f) : i ∈ [n], f ∈ {F ,F i
k}}.

For the first inner term of (20), we have
KT∑
k=1

tk+1−1∑
t=tk

4nDmaxδ =

T∑
t=1

4nDmaxδ = 2nDmaxδT. (21)

For the second inner term of (20), we can follow an
argument similar to (18) to show that

KT∑
k=1

tk+1−1∑
t=tk

∑
(i,f)∈Dk

E
[
ϵiδ(N

i
tk
(Si

t , A
i
t))
∣∣∣ f]

≤ 12

√
S̄n log(C/δ)T

c
. (22)

See [55] for details. Finally, by setting δ = 1/T , and
substituting (22) and (21) in (20), we get the result.

Nima Akbarzadeh (S’17) is a PhD student in
the Electrical and Computer Engineering, McGill
University, Canada. He received the B.Sc. de-
gree in Electrical and Computer Engineering
from Shiraz University, Iran, in 2014, the M.Sc.
in Electrical and Electronics Engineering from
Bilkent University, Turkey, in 2017. He is a re-
cipient of 2020 FRQNT PhD Scholarship. His
research interests include stochastic control, re-
inforcement learning and multi-armed bandits.

Aditya Mahajan (S’06-M’09-SM’14) is an Asso-
ciate Professor in the department of Electrical
and Computer Engineering, McGill University,
Montreal, Canada. He received the B.Tech de-
gree in Electrical Engineering from the Indian In-
stitute of Technology, Kanpur, India and the MS
and PhD degrees in Electrical Engineering and
Computer Science from the University of Michi-
gan, Ann Arbor, USA. His principal research
interests are learning and control of centralized
and decentralized stochastic systems.


	Introduction
	Model, Problem Formulation and Results
	Restless Bandits
	Whittle index policy
	The learning problem
	The main results

	Learning Algorithm for RB
	Assumptions on the unknown parameters.
	Priors and posterior updates.
	RB-TSDE Algorithm (Distributed implementation)
	Regret bound

	Regret Analysis
	Bounds on average reward and differential value function.
	Regret decomposition.
	Bounding individual terms.
	Obtaining the final bound.

	Numerical examples
	Environments
	Environment A
	Environment B

	Algorithms
	RB-TSDE
	QWI 

	Experimental Results

	Discussion
	A relaxation of Assumption 3
	A set of sufficient conditions for Assumption 4
	Regret with respect to the optimal policy

	Conclusion
	References
	Appendix
	Bound on R0(T) (Lemma 2.1)
	Bound on R1(T) (Lemma 2.2)
	Bound on R2(T) (Lemma 2.3)
	Notation.
	Some preliminary results.
	Bounding R2(T).

	Bound on R2(T) (Lemma 3)
	Some preliminary results.
	Bounding R2(T).


	Biographies
	Nima Akbarzadeh
	Aditya Mahajan


