An Estimation Based Allocation Rule with Super-linear Regret and Finite Lock-on Time for Time-dependent Multi-armed Bandit Processes

Prokopis C. Prokopiou, Peter E. Caines, and Aditya Mahajan

McGill University

May 6, 2015

- At each step a Decision Maker (DM) faces the following sequential allocation problem:
 - must allocate a unit resource between several competing actions/projects.
 - obtains a random reward with unkown probability distribution.
- The DM must design a policy to maximize the cumulative expected reward asymptotically in time.

Stylized model to understand exploration-exploitation trade-off

- Imagined slot machine with multiple arms.
- The gambler must choose one arm to pull at each time instant.
- He/she wins a random reward following some unknown probability distribution.
- His/her objective is to choose a policy to maximize the cumulative expected reward over the long term.

In Internet routing:

- Sequential transmission of packets between a source and a destination.
- The DM must choose one route among several alternatives.
- Reward = transmission time or transmission cost of the packet.
- In cognitive radio communications:
 - The DM must choose which channel to use in different time slots among several alternatives.
 - Reward = Number of bits sent at each slot
- In advertisement placement:
 - The DM must choose which advertisement to show to the next visitor of a web-page among a finite set of alternatives.
 - Reward = Number of click-outs.

Literature Overview

i.i.d. rewards

- Lai and Robbins (1985) constructed a policy that achieves the asymptotically optimal regret of O(logT).
- Agrawal (1995) constructed index type policies that depend on the sample mean of the reward process, and they achieve asymptotically optimal regret of O(logT).
- Auer et. al. (2002), constructed an index type policy, called UCB1, which whose regret is O(logT) uniformly in time.

Markov rewards

• Tekin et. al. (2010) proposed an index-based policy that achieves an asymptotically optimal regret of O(logT).

Reward processes $\{Y_n^k\}_{n=1}^{\infty}$; $k = 1, \dots, K$, defined on a common meafor each machine surable space (Ω, \mathcal{A}) .

measures

Set of probability $\{\mathbb{P}^k_{\theta}; \theta \in \Theta_k\}$, where Θ_k is a known finite set, for which:

- f_{θ}^{k} denotes probability density,
- μ_{ρ}^{k} denotes mean.

Best machine

$$k^* \triangleq \operatorname*{argmax}_{k \in \{1, \dots, K\}} \{ \mu^k_{\theta^*_k} \}.$$

• true parameter for machine k is denoted θ_k^* .

Allocation policy

A mapping $\phi_t : \mathbb{R}^{t-1} \to \{1, \dots, K\}$ that indicates the arm to be selected at the instant t

$$u_t = \phi_t(Z_1,\ldots,Z_{t-1}),$$

where Z_1, \ldots, Z_{t-1} denote the rewards gained up until t-1.

Expected Regret

$$R_{T}(\phi) = \sum_{k=1}^{K} \left(\mu_{\theta_{k^*}}^{k^*} - \mu_{\theta_{k}}^{k} \right) \mathbb{E}(n_{T}^k),$$

where

$$n_t^k = \begin{cases} n_{t-1}^k + 1 & \text{if } u_t = k, \\ n_{t-1}^k & \text{if } u_t \neq k. \end{cases}$$

Definition

The MAB problem is to define a policy

$$\phi = \{\phi_t; t \in \mathbb{Z}_{>0}\}$$

in order to minimize the rate of growth of

 $R_T(\phi)$ as $T \to \infty$.

May 6, 2015

8 / 29

PP, PEC, AM (McGill University)

Index policy ϕ^{g}

A policy that depends on a set g of indices for each arm and chooses the arm with the highest index at each time.

Upper Confidence Bounds (UCB) [Agrawal (1985)]

A set g of indices is a UCB, if it satisfies the following conditions:

- **(**) $g_{t,n}$ is non-decreasing in $t \ge n$, for each fixed $n \in \mathbb{Z}_{>0}$.
- 2 Let $y_1^k, y_2^k, \ldots, y_n^k$ be a sequence of observations from machine k. Then, for any $z < \mu_t^k$,

$$\mathbb{P}_{ heta_k^*}\left\{g_{t,n}\left(y_1^k,\ldots,y_n^k
ight) < z, ext{ for some } n \leq t
ight\} = \mathbf{O}(t^{-1})$$

The Proposed Allocation (UCB) policy

Consider a set of index functions g with

$$g_{t,n}^k\left(y_1^k,\ldots,y_n^k\right)\triangleq\hat{\mu}_n^k+\frac{t/C}{n},$$

where $t \in \mathbb{Z}_{>0}$, $n \triangleq n_t^k \in \{1, \ldots, t\}$, $C \in \mathbb{R}$ and $k \in \{1, \ldots, K\}$, and $\hat{\mu}_n^k$ is the maximum likelihood estimate of the mean of Y^k .

Then,

if t ≤ K: φ^g samples from each process Y^k once
if t > K: φ^g samples from Y^{ut}, where

$$u_t = \operatorname{argmax} \{ g_{t,n_t^k}^k; \; k \in \{1,\ldots,K\} \}$$

Theorem

Under suitable technical assumptions, the regret of the proposed policy satisfies

$$R_T(\phi^g) = \mathbf{O}(T^{1+\delta})$$

for some $\delta > 0$.

• The proposed index policy works when the rewards processes are ARMA processes with unknown means and variance.

Definition

A sequence of estimates $\{\hat{\theta}_n\}_{n=1}^{\infty}$ is called a maximum likelihood estimate if

$$f_{\hat{ heta}_n}(y_1,\ldots,y_n)\geq \max_{ heta\in\Theta}\left\{f_{ heta}(y_1,\ldots,y_n)
ight\}, \quad \mathbb{P}_{ heta^*} \, a.s.$$

Definition

 $\{\hat{\theta}_n\}_{n=1}^{\infty}$ is called a (strongly) consistent estimator if $\hat{\theta}_n \neq \theta^*$ finitely often, \mathbb{P}_{θ^*} a.s.

Assumption 1

Let $\mathbb{P}_{\theta,n}$ denote the restriction of \mathbb{P}_{θ} to the σ -field $\mathcal{A}_n, n \geq 0$. Then, for all $\theta \in \Theta$ and $n \geq 0$, $\mathbb{P}_{\theta,n}$ is absolutely continuous with respect to $\mathbb{P}_{\theta^*,n}$.

Preliminaries on MLE

Assumption 2

For every $\theta \in \Theta$, let $f_{\theta,n}$ be the density function associated with $\mathbb{P}_{\theta,n}$. Define

$$h_{\theta,n}(y_n|y^{n-1}) = rac{f_{\theta,n}(y_n|y^{n-1})}{f_{\theta^*,n}(y_n|y^{n-1})},$$

where $y^n \triangleq (y_1, \ldots, y_n)$. Then, for every $\varepsilon > 0$, there exists $\alpha(\varepsilon) > 1$, such that

$$P_{\theta^*}\left\{0 \leq h_{\hat{\theta}_{n-1}}(y_n|y^{n-1}) \leq \alpha, \text{ for all } n > |\Theta|\right\} < \varepsilon$$

where $\hat{\theta_n} \in \Theta$.

Theorem 1 (PEC, 1975)

Under Assumptions 1 and 2, the sequence of the maximum likelihood estimates is (strongly) consistent.

Assumption 3

For every arm k, there is a consistent estimator $\hat{\vartheta}^k = \{\hat{\vartheta}_1^k, \hat{\vartheta}_2^k, \ldots\}$.

Assumption 4 (The summable Wrong and Corrected Condition (SWAC))

For all machines $k \in \{1, \ldots, K\}$, the sequence of estimates $\hat{\theta}_1^k, \ldots, \hat{\theta}_n^k, \ldots$ satisfies the following condition:

$$\mathbb{P}^{k}_{\theta^{k}_{k}}(\hat{\theta}^{k}_{n-1}\neq\theta^{*}_{k},\hat{\theta}^{k}_{m}=\theta^{*}_{k}, \ \forall m\geq n)<\frac{c}{n^{3+\beta}},$$

for some $C \in \mathbb{R}_{>0}, \ \beta \in \mathbb{R}_{>0}$, and for all $n \in \mathbb{Z}_{>0}$.

Definition

For a consistent sequence of estimates $\hat{\theta}_1^k, \ldots, \hat{\theta}_n^k, \ldots$, the *lock-on time* refers to the least N such that for all $n \ge N$, $\hat{\theta}_n = \theta^*$, \mathbb{P}_{θ^*} a.s.

Lemma 1

Let N_k be the lock-on time for estimator $\hat{\theta}^k$. Then, under Assumption 4,

$$\mathbb{E}\{N_k^{2+\alpha}\} < \infty, \qquad \forall k \in \{1, \dots, K\}, \ \mathbf{0} < \alpha < \beta,$$

May 6, 2015

15 / 29

where β appears in Assumption 4.

Theorem 2

If Assumptions 3 and 4 hold, then for each $k \in \{1, ..., K\}$, the proposed index function

$$g_{t,n}^k\left(y_1^k,\ldots,y_n^k\right)\triangleq\hat{\mu}_t^k+\frac{t/C}{n},$$

is an Upper Confidence Bound (UCB)

Theorem 3

If Assumptions 3 and 4 hold, then the regret of the proposed policy $\phi^{\rm g}$ satisfies

$$R_T(\phi^g) = \mathbf{O}(T^{1+\delta}),$$

for some $\delta > 0$.

Consider a bandit system with reward process generated by the following ARMA process

$$S: \qquad \begin{aligned} x_{n+1}^k &= \lambda_k x_n^k + w_n^k \\ y_n^k &= x_n^k \end{aligned} \qquad \forall n \in \mathbb{Z}_{\geq 0}, k \in \{1, 2\} \end{aligned}$$

where $x_n^k, y_n^k, w_n^k \in \mathbb{R}$, $n \in \mathbb{Z}_{\geq 0}$, and w^k is i.i.d. $\sim \mathcal{N}(0, \sigma_k^2) \perp \!\!\! \perp x_0^k$.

Assumptions:

• The parameter space of the system contains two alternatives:

$$\Theta_k = \{\theta_k^*, \theta_k\}; \ \theta_k \triangleq (\lambda_k, \sigma_k), \ k \in \{1, 2\}.$$

• For each system $|\lambda| < 1$ and each process y_n^k is stationary.

Problem Description

At each step t,

- ullet the player chooses to observe a sample from machine $k\in\{1,2\}$
- pays a cost v_t^k equal to the squared minimum one step prediction error of the next observation y_n^k given the past observations y₁^k,..., y_n^k_{n-1}.

The Expected Regret

$$R_{T}(\phi^{g}) = -\sum_{i=1}^{T} (\min_{k \in \{1,2\}} \mathbb{E} v_{n_{i}^{k}}^{k^{2}} - \mathbb{E} v_{n_{i}^{u_{i}}}^{u_{i}^{2}}),$$

where u_i denotes the arm that is needed to be chosen at time *i*, specified by the proposed index policy ϕ^g .

The negative logarithmic likelihood function of the reward process can be described as follows:

$$-\log f(y^{n};\lambda) = \frac{n}{2}\log 2\pi + \frac{1}{2}\log\left(\frac{\sigma^{2n}}{1-\lambda^{2}}\right) + \frac{1}{2}y_{1}^{2}\left(\frac{\sigma^{2}}{1-\lambda^{2}}\right)^{-1} + \frac{1}{2}\sum_{i=2}^{n}(y_{i}-y_{i|i-1})^{2}\sigma^{-2}$$

where

•
$$y_{i|i-1} \triangleq \mathbb{E}(y_i|y^{i-i}) = \lambda y_{i-1}$$
, and

Prediction error process the true parameter under θ^*

$$u_n = y_n - y_{i|i-1} = w_{n-1}, \quad w_{n-1} \sim \mathcal{N}(0, \sigma^{*2}).$$

The prediction error process under the incorrect parameter θ

$$e_n = y_n - y_{i|i-1} = \nu_n + (\lambda^* - \lambda) \sum_{j=1}^n \lambda^{*j-1} \nu_{n-j},$$

Remarks:

- ν_n is called the innovations process of y_n , and it is i.i.d.
- e_n is called the pseudo-innovations process of y_n , and it is a dependent process.

Concerning Assumption 1

Assuming that $\theta^* \neq \theta$ for each linear system, Assumption 1 follows in each case.

Concerning Assumption 2

We make the conjecture that for the set of likelihood functions specified by the parameter set Θ , Assumption 2 is satisfied.

Verification of Assumptions 1,2, and 4

Assumption 4

- Consider each machine separately.
- Define

$$\begin{split} A_n &\triangleq n \log \left(\frac{\sigma^2}{\sigma^{*2}}\right) + \log \left(\frac{1-\lambda^{*2}}{1-\lambda^2}\right) + y_1^2 \left(\frac{\sigma^2}{1-\lambda^2}\right)^{-1} \\ &- y_1^2 \left(\frac{\sigma^{*2}}{1-\lambda^{*2}}\right)^{-1} + \sum_{i=2}^n \frac{e_i^2}{\sigma^2}. \end{split}$$

• Let
$$V_n = \sum_{i=2}^n \frac{\nu_i^2}{\sigma^{*2}}$$
.

Define

$$E_n \triangleq \{\hat{\theta}_n \neq \theta^*, \hat{\theta}_m = \theta^*, \forall m \ge n\}$$

= $\left\{\sum_{i=2}^n \frac{\nu_i^2}{\sigma^{*2}} > A_n\right\} \cap \{A_{n+1} \ge V_{n+1}\} \cap \{A_{n+2} \ge V_{n+2}\} \cap \dots,$

Assumption 4

• Conjecture: there exists $a, \beta \in \mathbb{R}_{>0}$ such that for all $n \in \mathbb{Z}_{>0}$,

$$\mathbb{P}\left\{E_n\right\} < \frac{a}{n^{3+\beta}}.$$

and hence Assumption 4 is satisfied.

Definition

$$g^k_{T,n^k_T} = rac{2}{\hat{\sigma}^2_k} + rac{T}{Cn^k_T}, \ k \in \{1,2\}$$

where $\hat{\sigma}_k^2$ is the ML estimate of the innovations process variance of machine k.

Computation of $\hat{\sigma}_T^k$ at stage T

$$\hat{\sigma}^k_{\mathcal{T}} = \operatorname*{argmax}_{\psi^k \in \Theta_k} rac{f_{\psi^k}(y^k_1, \dots, y^k_{\mathcal{T}})}{f_{ heta^k_0}(y^k_1, \dots, y^k_{\mathcal{T}})}.$$

where θ_0^k is arbitrary.

Theorem 4

For the ARMA problem under consideration, subject to Assumptions 2 and 4, the index policy $\phi^{\rm g}$ specified by

$$u_t = \begin{cases} \text{ sample from each process once } & \text{if } t \leq K, \\ \arg\max\{g_{t,n_t^k}^k; \ k \in \{1,\ldots,K\}\} & \text{if } t > K, \end{cases}$$

is a UCB, and hence

$$R_{T}(\phi^{g}) = -\sum_{i=1}^{T} (\min_{k \in \{1,2\}} \mathbb{E} v_{n_{i}^{k}}^{k^{2}} - \mathbb{E} v_{n_{i}^{u_{i}}}^{u_{i}^{2}}) = \mathbf{O}(T^{1+\delta})$$

is obtained, for some $\delta > 0$.

Simulation of 10000 realizations for System 1 for 3 values of C

$$\begin{array}{c} \text{System 1 (S1)} \\ \Theta_1 = \left\{ \theta_1^1 = (0.145, 8), \theta_1^2 = (0.09, 10) \right\} & \theta_1^* = \theta_1^1 \\ \Theta_2 = \left\{ \theta_2^1 = (0.2, 5), \theta_2^2 = (0.19, 15) \right\} & \theta_2^* = \theta_2^2 \end{array}$$

The regret resulted from each realization is plotted in blue, and the regret over all realizations in red.

3

< □ > < □ > < □ > < □ > < □ > < □ >

Simulation of 10000 realizations for System 2 for 3 values of C

System 2 (S2)

$$\Theta_1 = \{\theta_1^1 = (0.145, 8), \theta_1^2 = (0.09, 10)\} \quad \theta_1^* = \theta_1^1$$

$$\Theta_2 = \{\theta_2^1 = (0.2, 5), \theta_2^2 = (0.19, 8.1)\} \quad \theta_2^* = \theta_2^2$$

Figure : C = 100 Figure : C = 1000 Figure : C = 10000

The regret resulted from each realization is plotted in blue, and the regret over all realizations in red.

Simulation of 10000 realizations for System 3 for 3 values of C

System 3 (S3)

$$\begin{split} \Theta_1 &= \left\{ \theta_1^1 = (0.145, 8.09), \theta_1^2 = (0.09, 8.1) \right\} \quad \theta_1^* = \theta_1^1 \\ \Theta_2 &= \left\{ \theta_2^1 = (0.2, 8.11), \theta_2^2 = (0.19, 8.1) \right\} \quad \theta_2^* = \theta_2^2 \end{split}$$

 Figure : C = 1000 Figure : C = 10000 Figure : C = 100000

The regret resulted from each realization is plotted in blue, and the regret over all realizations in red.

< □ > < □ > < □ > < □ > < □ > < □ >

- We consider the MAB problem with time-dependent rewards that depend on single parameters which lie in a known, finite parameter space.
- We propose the allocation rule ϕ^g that depends on consistent estimators of the unknown parameters.
- Under some assumptions, we have shown that ϕ^{g} is a UCB and $R_{\mathcal{T}}(\phi^{g}) \in \mathbf{O}(\mathcal{T}^{1+\delta})$ for some $\delta > 0$.
- This result is suboptimal compared to other results in the literature, but there an i.i.d. rewards condition is imposed.
- ϕ^g is more flexible because it can be applied to a more general class of MAB problems, including those with stochastically dependent and time dependent reward processes.