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The Multi-Armed Bandit (MAB) Problem

At each step a Decision Maker (DM) faces the following sequential
allocation problem:

must allocate a unit resource between several competing
actions/projects.
obtains a random reward with unkown probability distribution.

The DM must design a policy to maximize the cumulative expected
reward asymptotically in time.
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Stylized model to understand exploration-exploitation

trade-off

Imagined slot machine with multiple arms.

The gambler must choose one arm to pull at each time instant.

He/she wins a random reward following some unknown probability
distribution.

His/her objective is to choose a policy to maximize the cumulative
expected reward over the long term.
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Real examples

In Internet routing:

Sequential transmission of packets between a source and a destination.
The DM must choose one route among several alternatives.
Reward = transmission time or transmission cost of the packet.

In cognitive radio communications:

The DM must choose which channel to use in different time slots
among several alternatives.
Reward = Number of bits sent at each slot

In advertisement placement:

The DM must choose which advertisement to show to the next visitor
of a web-page among a finite set of alternatives.
Reward = Number of click-outs.
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Literature Overview

i.i.d. rewards

Lai and Robbins (1985) constructed a policy that achieves the
asymptotically optimal regret of O(logT).

Agrawal (1995) constructed index type policies that depend on the
sample mean of the reward process, and they achieve asymptotically
optimal regret of O(logT).

Auer et. al. (2002), constructed an index type policy, called UCB1,
which whose regret is O(logT) uniformly in time.

Markov rewards

Tekin et. al. (2010) proposed an index-based policy that achieves an
asymptotically optimal regret of O(logT).
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The Reward Process and the Regret

Reward processes
for each machine

{Y k
n }

∞
n=1; k = 1, . . . ,K , defined on a common mea-

surable space (Ω,A).

Set of probability
measures

{Pk
θ ; θ ∈ Θk}, where Θk is a known finite set, for

which:

f k
θ denotes probability density,

µk
θ denotes mean.

Best machine k∗ , argmax
k∈{1,...,K}

{µk
θ∗
k

}.

true parameter for machine k is denoted θ∗k .
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Allocation policy and Expected Regret

Allocation policy

A mapping φt : R
t−1 → {1, . . . ,K} that indicates the arm to be selected

at the instant t

ut = φt(Z1, . . . ,Zt−1),

where Z1, . . . ,Zt−1 denote the rewards gained up until t − 1.

Expected Regret

RT (φ) =

K
∑

k=1

(

µk∗

θ∗
k∗

− µk
θ∗
k

)

E(nk
T ),

where

nk
t =

{

nk
t−1 + 1 if ut = k ,

nk
t−1 if ut 6= k .
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The Multi-Armed Bandit Problem

Definition

The MAB problem is to define a policy

φ = {φt ; t ∈ Z>0}

in order to minimize the rate of growth of

RT (φ) as T → ∞.
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Index policies and Upper Confidence Bounds

Index policy φg

A policy that depends on a set g of indices for each arm and chooses the
arm with the highest index at each time.

Upper Confidence Bounds (UCB) [Agrawal (1985)]

A set g of indices is a UCB, if it satisfies the following conditions:

1 gt,n is non-decreasing in t ≥ n, for each fixed n ∈ Z>0 .

2 Let yk
1 , y

k
2 , . . . , y

k
n be a sequence of observations from machine k .

Then, for any z < µk
t ,

Pθ∗
k

{

gt,n

(

yk
1 , . . . , y

k
n

)

< z , for some n ≤ t
}

= o(t−1)
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The Proposed Allocation (UCB) policy

Consider a set of index functions g with

gk
t,n

(

yk
1 , . . . , y

k
n

)

, µ̂k
n +

t/C

n
,

where t ∈ Z>0, n , nk
t ∈ {1, . . . , t}, C ∈ R and k ∈ {1, . . . ,K}, and µ̂k

n

is the maximum likelihood estimate of the mean of Y k .

Then,

if t ≤ K : φg samples from each process Y k once

if t > K : φg samples from Y ut , where

ut = argmax{gk
t,nk

t

; k ∈ {1, . . . ,K}}
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The main results

Theorem

Under suitable technical assumptions, the regret of the proposed policy
satisfies

RT (φ
g ) = o(T 1+δ)

for some δ > 0.

The proposed index policy works when the rewards processes are
ARMA processes with unknown means and variance.
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Preliminaries on MLE

Definition

A sequence of estimates {θ̂n}
∞
n=1 is called a maximum likelihood estimate if

f
θ̂n
(y1, . . . , yn) ≥ max

θ∈Θ
{fθ(y1, . . . , yn)} , Pθ∗ a.s.

Definition

{θ̂n}
∞
n=1 is called a (strongly) consistent estimator if θ̂n 6= θ∗ finitely often,

Pθ∗ a.s.

Assumption 1

Let Pθ,n denote the restriction of Pθ to the σ-field An, n ≥ 0. Then, for all
θ ∈ Θ and n ≥ 0, Pθ,n is absolutely continuous with respect to Pθ∗,n.
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Preliminaries on MLE

Assumption 2

For every θ ∈ Θ, let fθ,n be the density function associated with Pθ,n.
Define

hθ,n(yn|y
n−1) =

fθ,n(yn|y
n−1)

fθ∗,n(yn|yn−1)
,

where yn , (y1, . . . , yn).
Then, for every ε > 0, there exists α(ε) > 1, such that

Pθ∗
{

0 ≤ h
θ̂n−1

(yn|y
n−1) ≤ α, for all n > |Θ|

}

< ε,

where θ̂n ∈ Θ.

Theorem 1 (PEC, 1975)

Under Assumptions 1 and 2, the sequence of the maximum likelihood
estimates is (strongly) consistent.
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Assumptions on the model

Assumption 3

For every arm k , there is a consistent estimator ϑ̂k = {ϑ̂k
1 , ϑ̂

k
2 , . . .}.

Assumption 4 (The summable Wrong and Corrected Condition
(SWAC))

For all machines k ∈ {1, . . . ,K}, the sequence of estimates θ̂k
1 , . . . , θ̂

k
n , . . .

satisfies the following condition:

P
k
θ∗
k

(θ̂k
n−1 6= θ∗k , θ̂

k
m = θ∗k , ∀m ≥ n) <

C

n3+β
,

for some C ∈ R>0, β ∈ R>0, and for all n ∈ Z>0.
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The Lock-on time

Definition

For a consistent sequence of estimates θ̂k
1 , . . . , θ̂

k
n , . . ., the lock-on time

refers to the least N such that for all n ≥ N, θ̂n = θ∗, Pθ∗ a.s.

Lemma 1

Let Nk be the lock-on time for estimator θ̂k . Then, under Assumption 4,

E{N2+α
k

} < ∞, ∀k ∈ {1, . . . ,K}, 0 < α < β,

where β appears in Assumption 4.
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Performance of φg

Theorem 2

If Assumptions 3 and 4 hold, then for each k ∈ {1, . . . ,K}, the proposed
index function

gk
t,n

(

yk
1 , . . . , y

k
n

)

, µ̂k
t +

t/C

n
,

is an Upper Confidence Bound (UCB)

Theorem 3

If Assumptions 3 and 4 hold, then the regret of the proposed policy φg

satisfies
RT (φ

g ) = o(T 1+δ),

for some δ > 0.
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A MAB Problem for ARMA Processes

Consider a bandit system with reward process generated by the following
ARMA process

S :
xk
n+1 = λkxk

n + wk
n

yk
n = xk

n

∀n ∈ Z≥0, k ∈ {1, 2}

where xk
n , y

k
n ,w

k
n ∈ R, n ∈ Z≥0, and wk is i.i.d. ∼ N (0, σk

2) |= x
k
0 .

Assumptions:

The parameter space of the system contains two alternatives:

Θk = {θ∗k , θk}; θk , (λk , σk), k ∈ {1, 2}.

For each system |λ| < 1 and each process yk
n is stationary.
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A MAB Problem for ARMA Processes

Problem Description

At each step t,

the player chooses to observe a sample from machine k ∈ {1, 2}

pays a cost υk
t equal to the squared minimum one step prediction error

of the next observation yk
nk
t

given the past observations yk
1 , . . . , y

k
nk
t −1

.

The Expected Regret

RT (φ
g ) = −

T
∑

i=1

( min
k∈{1,2}

Eυk
nk

i

2
− Eυui

n
ui

i

2
),

where ui denotes the arm that is needed to be chosen at time i , specified
by the proposed index policy φg .
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Preliminary results for ARMA Processes

The negative logarithmic likelihood function of the reward process can be
described as follows:

− log f (yn;λ) =
n

2
log 2π +

1

2
log (

σ2n

1 − λ2
) +

1

2
y2
1 (

σ2

1 − λ2
)−1

+
1

2

n
∑

i=2

(yi − yi |i−1)
2σ−2

where

yi |i−1 , E(yi |y
i−i ) = λyi−1, and

yi − yi |i−1 is the prediction error process.
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Preliminary results for ARMA Processes

Prediction error process the true parameter under θ∗

νn = yn − yi |i−1 = wn−1, wn−1 ∼ N (0, σ∗2).

The prediction error process under the incorrect parameter θ

en = yn − yi |i−1 = νn + (λ∗ − λ)
n

∑

j=1

λ∗j−1νn−j ,

Remarks:

νn is called the innovations process of yn, and it is i.i.d.

en is called the pseudo-innovations process of yn, and it is a dependent
process.
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Verification of Assumptions 1,2, and 4

Concerning Assumption 1

Assuming that θ∗ 6= θ for each linear system, Assumption 1 follows in each
case.

Concerning Assumption 2

We make the conjecture that for the set of likelihood functions specified by
the parameter set Θ, Assumption 2 is satisfied.

PP, PEC, AM (McGill University) May 6, 2015 21 / 29



Verification of Assumptions 1,2, and 4

Assumption 4

Consider each machine separately.

Define

An , n log
( σ2

σ∗2

)

+ log
(1 − λ∗2

1 − λ2

)

+ y2

1

( σ2

1 − λ2

)

−1

− y2

1

( σ∗2

1 − λ∗2

)

−1

+

n
∑

i=2

e2

i

σ2
.

Let Vn =
∑

n

i=2

ν
2

i

σ
∗2 .

Define

En , {θ̂n 6= θ∗, θ̂m = θ∗, ∀m ≥ n}

=
{

n
∑

i=2

ν2

i

σ∗2
> An

}

∩ {An+1 ≥ Vn+1} ∩ {An+2 ≥ Vn+2} ∩ . . . ,
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Verification of Assumptions 1,2, and 4

Assumption 4

Conjecture: there exists a, β ∈ R>0 such that for all n ∈ Z>0,

P {En} <
a

n3+β
.

and hence Assumption 4 is satisfied.
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The index functions

Definition

gk
T ,nk

T

=
2

σ̂2
k

+
T

Cnk
T

, k ∈ {1, 2}

where σ̂2
k is the ML estimate of the innovations process variance of

machine k .

Computation of σ̂k
T at stage T

σ̂k
T = argmax

ψk∈Θk

fψk (yk
1 , . . . , y

k
T )

fθk0
(yk

1 , . . . , y
k
T )

.

where θk
0 is arbitrary.
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The Asymptotic Behaviour of the Expected Regret

Theorem 4

For the ARMA problem under consideration, subject to Assumptions 2 and
4, the index policy φg specified by

ut =

{

sample from each process once if t ≤ K ,

argmax{gk
t,nk

t

; k ∈ {1, . . . ,K}} if t > K ,

is a UCB, and hence

RT (φ
g ) = −

T
∑

i=1

( min
k∈{1,2}

Eυk
nk

i

2
− Eυui

n
ui

i

2
) = o(T 1+δ)

is obtained, for some δ > 0.
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Simulation of 10000 realizations for System 1

for 3 values of C

System 1 (S1)

Θ1 =
{

θ1

1
= (0.145, 8), θ2

1
= (0.09, 10)

}

θ∗
1
= θ1

1

Θ2 =
{

θ1

2
= (0.2, 5), θ2

2
= (0.19, 15)

}

θ∗
2
= θ2

2
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Figure : C = 100
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Figure : C = 1000
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Time [t]
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Figure : C = 10000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Simulation of 10000 realizations for System 2

for 3 values of C

System 2 (S2)

Θ1 =
{

θ1

1
= (0.145, 8), θ2

1
= (0.09, 10)

}

θ∗
1
= θ1

1

Θ2 =
{

θ1

2
= (0.2, 5), θ2

2
= (0.19, 8.1)

}

θ∗
2
= θ2

2
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The regret for S2 with C=100
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Figure : C = 100
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Figure : C = 1000
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mean regret

realizations of the regret

Figure : C = 10000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Simulation of 10000 realizations for System 3

for 3 values of C

System 3 (S3)

Θ1 =
{

θ1

1
= (0.145, 8.09), θ2

1
= (0.09, 8.1)

}

θ∗
1
= θ1

1

Θ2 =
{

θ1

2
= (0.2, 8.11), θ2

2
= (0.19, 8.1)

}

θ∗
2
= θ2

2
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Figure : C = 1000
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Figure : C = 10000
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Figure : C = 100000

The regret resulted from each realization is plotted in blue, and the regret
over all realizations in red.
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Conclusion

We consider the MAB problem with time-dependent rewards that
depend on single parameters which lie in a known, finite parameter
space.

We propose the allocation rule φg that depends on consistent
estimators of the unknown parameters.

Under some assumptions, we have shown that φg is a UCB and
RT (φ

g ) ∈ o(T 1+δ) for some δ > 0.

This result is suboptimal compared to other results in the literature,
but there an i.i.d. rewards condition is imposed.

φg is more flexible because it can be applied to a more general class of
MAB problems, including those with stochastically dependent and
time dependent reward processes.
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