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• Design	space	exploration	(DSE)	is	often	used	for	MPSoCs

• Design	spaces	are	large	(on	the	orders	of	billions	of	alternatives)

• Design	evaluation	can	be	complex	(requiring	multiple	metrics)

• Exhaustive	search	is	usually	intractable

• Goals	of	DSE:
1. Differentiate	poor	solutions	from	good	ones

2. Identify	the	Pareto-optimal	set

3. Do	so	quickly	and	efficiently

Design	Differentiation	in	DSE
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• Semiconductor	scaling	has	reduced	integrated	circuit	lifetime

• Many	strategies	have	been	developed	to	address	failure:

• Redundancy	(at	different	granularities)	or	slack	allocation

• Thermal	management	and	task	migration

• System-level	optimization	seeks	to	maximize	mean	time	to	
failure under	other	constraints	(e.g.,	performance,	power,	cost)

System	Lifetime	Optimization	for	MPSoC
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Electromigration Thermal	Cycling Stress	migration

[Source:	JEDEC]



• Failure	mechanisms	are	modeled	mathematically

• Historically,	with	the	exponential	distribution:	easy	to	work	with	

• Recently,	with	log-normal	and	Weibull	distributions:	more	accurate	

• There	is	no	straightforward	closed-form	solution	for	systems	of	
log-normal	and	Weibull	distributions

• Therefore,	Monte	Carlo	Simulation	(MCS)!

• Use	failure	distributions	to	generate	a	random	system	instance	(sample)	

• Determine	when	that	instance	fails	through	simulation

• Capture	statistics,	and	repeat!

Evaluating	System	Lifetime
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• Monte	Carlo	Simulation	is	needlessly computationally	expensive

• Samples	are	distributed	evenly	to	estimate	lifetime

• Poor designs	are	sampled	as	much	as	good	designs

• Multi-armed	Bandits	(MAB)	are	smarter

• Samples	are	incrementally	distributed	in	order	to	differentiate	systems

• E.g.,	to	find	the	best, the	best	k,	etc.

• Hypothesis:	MAB	can	achieve	DSE	goals	with	fewer	evaluations	
than	MCS	by	differentiating	systems,	not	estimating	lifetime

Multi-armed	Bandits	for	Smarter	Estimation
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• Multi-armed	Bandits

• Successive	Accept	Reject

• Gap-based	Exploration	with	Variance

• Lifetime	Differentiation	Experiments	and	Results

• Conclusions	and	Future	Work

Outline
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• Which	slot	machine	is	the	best?

• Monte	Carlo	Simulation	is	systematic

• Try	every	slot	machine	equally

• In	the	end,	compare	average	payout

• Multi-armed	Bandits	algorithms	gamble	
intelligently

• Try	every	slot	machine,	but	stay	away	from	bad	ones

• Do	so	by	managing	expected	payout	from	next	trial

Multi-armed	Bandits	Algorithms
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Simple	MAB	Example
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• Assume	Bernoulli-distributed	
systems	with	different	p

• UCB1	plays	(samples)	the	arm	
(system)	that	maximizes

• Explore,	but	favor	better	arms

• Eventually,	the	best system	is	
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• Conventional	MAB	formulations	assume	that

• The	player never	stops	playing

• The	reward	is	incrementally	obtained	after	each	arm	pull

• A	single	best	arm is	identified

• For	DSE,	we	relax	these	assumptions

• Assume	a	fixed	sample	budget	used	to	explore	designs

• The	reward	is	associated	with	the	final	choice

• Find	the	best	m arms

• Two	MAB	algorithms	can	be	applied	in	this	context

MAB	for	Lifetime	Differentiation
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• SAR	divides	the	sample	budget	into	n phases	to	compare	n arms

• Each	phase,	the	allocated	budget	is	divided	across	active	arms

• After	sampling,	calculate	the	distance	from	boundary	between	
the	m good	designs	and	n –m	bad	ones

• Top	m designs:	

• Bottom	n –m	designs:	

• Remove	from	consideration	the	design	with	the	biggest	gap

Successive	Accept	Reject	(SAR)
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∆i = µ̂i − µ̂i∗

∆i = µ̂i∗ − µ̂i



• Sample	all	designs	initially

• Samples	per	design	grows	
as	designs	are	removed

• Many	samples	used	to	
differentiate	mth and	
m+1th	designs

Successive	Accept	Reject	Example
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Successive	Accept	Reject	Example
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• GapE-V	never	removes	a	design	from	consideration

• Instead,	pick	the	design	that	minimizes	the	empirical	gap	with	
the	boundary,	plus	an	exploration	factor

• Effort	is	focused	near	the	boundary

• High	variance,	or	a	limited	number	of	samples,	increase	
likelihood	a	design	is	sampled

Gap-based	Exploration	with	Variance	(GapE-V)
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GapE-V	Example
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• NoC-based	MPSoC lifetime	optimization	with	slack allocation

• Slack	is	spare	compute	and	storage	capacity

• Add	slack	to	components	s.t. remapping	mitigates	one	or	more	failures

• Two	applications,	two	architectures	each

• Component	library	of	processors,	SRAMs

Experimental	Setup
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• We	compare	SAR,	GapE-V,	and	MCS

• Optimal	set	determined	with	MCS	using	1M	samples	per	design

• How	likely	is	it	that	an	approach	picks	the	wrong	set?
• Compare	the	aggregate	MTTF	using	policy	J	and	the	optimal	set

• is	the	probability	of	identification	error,	the	chance	a	subset	of	
m differs	significantly	from	the	optimal	set

Evaluating	the	Chosen	m
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Picking	the	Top	50,	MWD
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Picking	the	Top	50,	MPEG-4
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Comparison	with	MCS	after	500	samples

m=20 m=30

Benchmark δ SAR GapE-V δ SAR GapE-V

MWD3S 0.002 1.92x 1.72x 0.003 1.72x 1.71x

MWD4S 0.071 3.33x 2.13x 0.112 2.96x 2.07x

MPEG4S 0.120 3.57x 2.70x 0.101 3.52x 2.48x

MPEG5S 0.052 5.26x 3.57x 0.083 4.07x 3.05x

m=40 m=50

Benchmark δ SAR GapE-V δ SAR GapE-V

MWD3S 0.009 1.79x 1.67x 0.021 1.49x 1.45x

MWD4S 0.180 2.54x 2.01x 0.148 2.44x 1.92x

MPEG4S 0.202 3.60x 2.43x 0.115 3.33x 2.27x

MPEG5S 0.292 3.70x 3.07x 0.162 3.57x 2.86x



• No;	MAB
wins!

Does	Error	Tolerance	Matter?
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• Complexity	is	a	function	of	sampling	and	selection

• Sampling	time	ND	x	Tsample is	fixed	across	approaches

• MCS	performs	no	selection:	all	designs	are	sampled	equally

• SAR	(GapE-V)	additional	sorts	the	design	list	D (ND)	times

What	About	Complexity?
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Algorithm Run Time (Upper Bound)

MCS ND × Tsample

SAR ND × Tsample + D × Tsort(D)
GapE-V ND × Tsample + ND × Tsort(D)



• 500	samples	per	design,	Intel	E5-2670,	96GB	RAM	averaged	
over	10	trials,	or	<1	ms per	trial

• When	sampling	complexity	is	low,	MAB	loses	as	the	population	
grows	(sorting	dominates)

MAB	When	Sampling	is	Expensive
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Algorithm Number of Designs

50 100 200 400

MCS 4.41s 8.52s 16.86s 34.54s

SAR 4.48s 10.41s 27.22s 95.26s

GapE 5.33s 11.46s 34.31s 108.64s



• The	objective	of	DSE	is	to	differentiate	designs

• MCS	is	poorly	suited	for	this:	why	evaluate	bad	designs?

• MAB	spends	samples	to	efficiently	separate	metric	estimates

• Estimating	system	lifetime,	MAB	uses	33-81%	fewer	samples

• Next	step:	apply	in	population-based	design	space	exploration

Conclusions	and	Future	Work
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Questions?

Thank	you!
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Lifetime	Distributions,	MWD
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Lifetime	Distributions,	MPEG-4
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