Restless bandits with controlled restarts: Indexability and computation of Whittle index

Nima Akbarzadeh, Aditya Mahajan

McGill University, Electrical and Computer Engineering Department

Dec. 13, 2019

Whack a Mole

Applications

Applications: queueing, channel scheduling, machine maintenance and clinical care.
(1) A repairman is responsible for maintaining several machines. Each machine stochastically deteriorates. There is a state-dependent cost associated with running and repairing the machine. He can repair one machine at a time.
(2) Scheduling multiple data queues over a shared communication channels, there is a cost associated with holding packets or transmitting it. A fixed number of data queues can be selected at a time.
The machine/queue restarts upon being repaired/selected.

Applications

Applications: queueing, channel scheduling, machine maintenance and clinical care.
(1) A repairman is responsible for maintaining several machines. Each machine stochastically deteriorates. There is a state-dependent cost associated with running and repairing the machine. He can repair one machine at a time.
(2) Scheduling multiple data queues over a shared communication channels, there is a cost associated with holding packets or transmitting it. A fixed number of data queues can be selected at a time.
The machine/queue restarts upon being repaired/selected.
Goal: Find a optimal/near-optimal policy to optimize scheduling!

Model

- n available arms (controlled Markov processes), $\mathcal{N}=\{1, \ldots, n\}$.
- m arms have to be selected. $(m<n)$
- State space of each arm $\mathcal{X}^{i}, i \in \mathcal{N}$
- Action space for each arm $\{0,1\}$
- Passive action: $a_{t}^{i}=0 \rightarrow$ Markov chain matrix $P_{x y}^{i}$
- Active action: $a_{t}^{i}=1 \rightarrow$ Reset PMF Q_{y}^{i}
- Cost: $c^{i}\left(x_{t}^{i}, a_{t}^{i}\right)$

Objective

Problem

Given the discount factor β, the total number n of arms, the number m of active arms, the state space $\left\{\mathcal{X}^{i}\right\}_{i \in \mathcal{N}}$, the transition matrices $\left\{P^{i}\right\}_{i \in \mathcal{N}}$, the reset pmfs $\left\{Q^{i}\right\}_{i \in \mathcal{N}}$, and the cost functions $\left\{c^{i}(\cdot, \cdot)\right\}_{i \in \mathcal{N}}$, choose a time-homogeneous Markov policy g,

$$
\boldsymbol{A}_{t}=\boldsymbol{g}\left(\boldsymbol{X}_{t}\right) \text { such that } \sum_{i \in \mathcal{N}} A_{t}^{i}=m
$$

that minimizes

$$
J(\boldsymbol{g}):=(1-\beta) \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} \sum_{i \in \mathcal{N}} c^{i}\left(X_{t}^{i}, A_{t}^{i}\right)\right]
$$

Challenge \& Solution

Challenge: The dynamic program suffers from curse of dimensionality! The size of the state space is $|\mathcal{X}|^{n}$.
Example: 100 machines with 3 states each results in a system with $3^{100} \approx 5.15 \times 10^{47}$ states!

Solution: Index-based heuristic policy (Whittle index [1988]) Drawback: Suboptimal!
Advantage: Problem decomposition $\Rightarrow 100$ problems with 3 states.

Challenge \& Solution

Challenge: The dynamic program suffers from curse of dimensionality! The size of the state space is $|\mathcal{X}|^{n}$.
Example: 100 machines with 3 states each results in a system with $3^{100} \approx 5.15 \times 10^{47}$ states!

Solution: Index-based heuristic policy (Whittle index [1988]) Drawback: Suboptimal!
Advantage: Problem decomposition $\Rightarrow 100$ problems with 3
states.

Whittle Index policy

- Whittle index heuristic provides a dynamic index for each arm and select the arm with the smallest index at each time.
- Whittle index exists if indexability condition is satisfied for all arms.
- Whittle index policy performs close-to-optimal for many applications in the state-of-arts works.
- There is no general framework to check indexability and correspondingly, obtain the Whittle indices.
Objectives:
- Prove our problem is indexable.
- Provide a closed-form solution for the Whittle index.

Whittle Index policy

- Whittle index heuristic provides a dynamic index for each arm and select the arm with the smallest index at each time.
- Whittle index exists if indexability condition is satisfied for all arms.
- Whittle index policy performs close-to-optimal for many applications in the state-of-arts works.
- There is no general framework to check indexability and correspondingly, obtain the Whittle indices.

Objectives:

- Prove our problem is indexable.
- Provide a closed-form solution for the Whittle index.

Problem Decomposition

Define

$$
c_{\lambda}\left(x_{t}^{i}, a_{t}^{i}\right):=c^{i}\left(x^{i}, a_{t}^{i}\right)+\lambda a_{t}^{i}, a_{t}^{i} \in\{0,1\}
$$

for arm i.

Problem

Given an arm $i \in \mathcal{N}$, discount factor β, the state space \mathcal{X}^{i}, the transition probability matrix P^{i}, the reset probability mass function Q^{i}, the cost function $c^{i}(\cdot, \cdot)$ and the penalty $\lambda \in \mathbb{R}$, choose a policy $g^{i}: \mathcal{X}^{i} \rightarrow\{0,1\}$ to minimize

$$
J^{i}\left(g^{i}\right):=(1-\beta) \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} c_{\lambda}^{i}\left(X_{t}^{i}, A_{t}^{i}\right)\right]
$$

Dynamic Programming

Theorem

Let $V_{\lambda}^{i}: \mathcal{X}^{i} \rightarrow \mathbb{R}$ be the unique fixed point of the following:

$$
V_{\lambda}^{i}(x)=\min \left\{H_{\lambda}^{i}(x, 0), H_{\lambda}^{i}(x, 1)\right\}, \forall x \in \mathcal{X}^{i} .
$$

where

$$
\begin{aligned}
& H_{\lambda}^{i}(x, 0)=(1-\beta) c^{i}(x, 0)+\beta \sum_{y \in \mathcal{X}^{i}} P_{x y}^{i} V_{\lambda}^{i}(y), \\
& H_{\lambda}^{i}(x, 1)=(1-\beta)\left(c^{i}(x, 1)+\lambda\right)+\beta \sum_{y \in \mathcal{X}^{i}} Q_{y}^{i} V_{\lambda}^{i}(y) .
\end{aligned}
$$

Let $g_{\lambda}^{i}(x)$ denote the minimizer of the right hand side. Then, g_{λ}^{i} is optimal for arm i.

Indexability

Let passive set for arm i be

$$
\Pi_{\lambda}^{i}:=\left\{x^{i} \in \mathcal{X}^{i}: g_{\lambda}^{i}(x)=0\right\}
$$

Definition (Indexability)

For any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ arm i is indexable if

$$
\lambda_{1}<\lambda_{2} \Longrightarrow \Pi_{\lambda_{1}}^{i} \subseteq \Pi_{\lambda_{2}}^{i}
$$

Definition (Whittle index)
The Whittle index of state x of arm i is defined as

$$
w^{i}(x)=\inf \left\{\lambda \in \mathbb{R}: x \in \Pi_{\lambda}^{i}\right\} .
$$

Indexability Proof Sketch

Theorem

Each arm is indexable.
Lemma

$$
\Pi_{\lambda}=\left\{x \in \mathcal{X}:(1-\beta) \inf _{\tau} \frac{L(x, \tau)-c(x, 1)}{1-\beta^{\tau}}<W_{\lambda}\right\} .
$$

Lemma
$W_{\lambda}=\lambda+\beta \sum_{y \in \mathcal{X}} Q_{y} V_{\lambda}(y)$ is increasing in λ.

Whittle index

By definition,

$$
\begin{aligned}
& w^{i}(x)=\inf \left\{\lambda \in \mathbb{R}:(1-\beta) \inf _{\tau} \frac{L(x, \tau)-c(x, 1)}{1-\beta^{\tau}}<\right. \\
& \left.\lambda+\beta \sum_{y \in \mathcal{X}^{i}} Q_{y}^{i} V_{\lambda}^{i}(y)\right\}
\end{aligned}
$$

Challenge: Obtaining a closed form solution for Whittle index is inefficient.
Solution: To provide a closed-form solution we consider threshold-based policies.

Threshold Policies

The optimal policy for each subproblem is a threshold-based policy, i.e.,

$$
g^{(k)}(x):= \begin{cases}0, & \text { if } x<k \\ 1, & \text { otherwise }\end{cases}
$$

$C_{\lambda}^{(k)}:=(1-\beta) \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} c_{\lambda}\left(X_{t}, g^{(k)}\left(X_{t}\right)\right) \mid X_{0} \sim Q\right]=D^{(k)}+\lambda N^{(k)}$.
where

$$
\begin{aligned}
& D^{(k)}:=(1-\beta) \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} c\left(X_{t}, g^{(k)}\left(X_{t}\right)\right) \mid X_{0} \sim Q\right] \\
& N^{(k)}:=(1-\beta) \mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} g^{(k)}\left(X_{t}\right) \mid X_{0} \sim Q\right] .
\end{aligned}
$$

Computation of $D^{(k)}$ and $N^{(k)}$

Let

$$
\begin{aligned}
L^{(k)} & :=\mathbb{E}\left[\sum_{t=0}^{\tau_{k}-1} \beta^{t} c\left(X_{t}, 0\right)+\beta^{\tau_{k}} c\left(X_{\tau_{k}}, 1\right) \mid X_{0} \sim Q\right] \\
M^{(k)} & :=\mathbb{E}\left[\sum_{t=0}^{\tau_{k}} \beta^{t} \mid X_{0} \sim Q\right] .
\end{aligned}
$$

Theorem

For all threshold k,

$$
D^{(k)}=\frac{L^{(k)}}{M^{(k)}} \quad \text { and } \quad N^{(k)}=\frac{1}{\beta M^{(k)}}-\frac{1-\beta}{\beta}
$$

Property

Lemma

$k_{\lambda}:=\arg \min _{k \in \mathcal{X}} C_{\lambda}^{(k)}$ is increasing in λ.

Figure: k_{λ} as a function of λ.

Whittle Index

Theorem

The Whittle index for threshold-policies at state $k \in \mathcal{X}$ is

$$
w(k)=\frac{D^{(k+1)}-D^{(k)}}{N^{(k)}-N^{(k+1)}}
$$

Proof.

Key Ideas:

- $C_{\lambda}^{(k)}$ is continuous in λ.
- $C_{w(k)}^{(k)}=C_{w(k)}^{(k+1)}$, i.e.,

$$
D^{(k)}+w(k) N^{(k)}=D^{(k+1)}+w(k) N^{(k+1)} .
$$

Whittle Index policy

- Compute Whittle indices offline.
- At each time instance, observe the state of each arm and select the arm with the lowest Whittle index.

Experiment Setup

- Deterministic restart: $Q=[1,0, \ldots, 0]$
- $c(x, 0)=(x-1)^{2}$ and $c(x, 1)=0.5(|\mathcal{X}|-1)^{2}, \beta=0.9$
- We consider structured and randomly generated stochastic monotone matrices for P.
- Monte-Carlo simulations: 5000 iterations with 250 time steps in each one.

Experiments (1) \& (2)

Comparison with Optimal Policy for small-scale models:

$$
\alpha_{\mathrm{OPT}}=\frac{J(\mathrm{OPT})}{J(\mathrm{WIP})} \times 100
$$

For $|\mathcal{X}|=5, n=5, m \in\{1,2\} \rightarrow \alpha_{\text {OPT }} \in[95.5 \%-100 \%]$.

Figure: 100 randomly generated stochastic monotone matrices with $m=1$.

Experiments (3) \& (4)

Comparison with Myopic Policy for large-scale models:

$$
\varepsilon_{\mathrm{MYP}}=\left(\frac{J(\mathrm{MYP})-J(\mathrm{WIP})}{J(\mathrm{MYP})}\right) \times 100 .
$$

For $|\mathcal{X}|=25, n \in\{25,50,75\}, m \in\{1,2,5\}$
$\rightarrow \varepsilon_{\text {MYP }} \in[0 \%-12 \%]$.

Figure: 100 randomly generated stochastic monotone matrices with $n=75, m=2$.

Conclusion

- A model for restless bandit with controlled restarts.
- An indexable model.
- A closed form expression to compute the Whittle indices when the optimal policy is threshold-based.
- Numerical experiments shows the Whittle index policy performs very close to the optimal policy and better than a myopic policy.

Q\&A

Thank you!

Q\&A

