Restless bandits with controlled restarts: Indexability and computation of Whittle index

Nima Akbarzadeh, Aditya Mahajan

McGill University, Electrical and Computer Engineering Department

Dec. 13, 2019
Whack a Mole
Applications: queueing, channel scheduling, machine maintenance and clinical care.

1. A repairman is responsible for maintaining several machines. Each machine stochastically deteriorates. There is a state-dependent cost associated with running and repairing the machine. He can repair one machine at a time.

2. Scheduling multiple data queues over a shared communication channels, there is a cost associated with holding packets or transmitting it. A fixed number of data queues can be selected at a time.

The machine/queue restarts upon being repaired/selected.

Goal: Find an optimal/near-optimal policy to optimize scheduling!
Applications

Applications: queueing, channel scheduling, machine maintenance and clinical care.

1. A repairman is responsible for maintaining several machines. Each machine stochastically deteriorates. There is a state-dependent cost associated with running and repairing the machine. He can repair one machine at a time.

2. Scheduling multiple data queues over a shared communication channels, there is a cost associated with holding packets or transmitting it. A fixed number of data queues can be selected at a time.

The machine/queue restarts upon being repaired/selected.

Goal: Find an optimal/near-optimal policy to optimize scheduling!
Model

- n available arms (controlled Markov processes), $\mathcal{N} = \{1, \ldots, n\}$.
- m arms have to be selected. ($m < n$)
- State space of each arm \mathcal{X}^i, $i \in \mathcal{N}$
- Action space for each arm $\{0, 1\}$
- Passive action: $a^i_t = 0 \rightarrow$ Markov chain matrix P_{xy}^i
- Active action: $a^i_t = 1 \rightarrow$ Reset PMF Q^i_y
- Cost: $c^i(x^i_t, a^i_t)$
Objective

Problem

Given the discount factor β, the total number n of arms, the number m of active arms, the state space $\{\mathcal{X}^i\}_{i \in \mathcal{N}}$, the transition matrices $\{P^i\}_{i \in \mathcal{N}}$, the reset pmfs $\{Q^i\}_{i \in \mathcal{N}}$, and the cost functions $\{c^i(\cdot, \cdot)\}_{i \in \mathcal{N}}$, choose a time-homogeneous Markov policy g,

$$A_t = g(X_t) \text{ such that } \sum_{i \in \mathcal{N}} A^i_t = m$$

that minimizes

$$J(g) := (1 - \beta) \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t \sum_{i \in \mathcal{N}} c^i(X^i_t, A^i_t) \right].$$
Challenge & Solution

Challenge: The dynamic program suffers from curse of dimensionality! The size of the state space is $|\mathcal{X}|^n$.

Example: 100 machines with 3 states each results in a system with $3^{100} \approx 5.15 \times 10^{47}$ states!

Solution: Index-based heuristic policy (Whittle index [1988])

Drawback: Suboptimal!

Advantage: Problem decomposition \Rightarrow 100 problems with 3 states.
Challenge: The dynamic program suffers from curse of dimensionality! The size of the state space is $|\mathcal{X}|^n$.

Example: 100 machines with 3 states each results in a system with $3^{100} \approx 5.15 \times 10^{47}$ states!

Solution: Index-based heuristic policy (Whittle index [1988])

Drawback: Suboptimal!

Advantage: Problem decomposition \Rightarrow 100 problems with 3 states.
Whittle Index policy

- Whittle index heuristic provides a dynamic index for each arm and select the arm with the smallest index at each time.
- Whittle index exists if indexability condition is satisfied for all arms.
- Whittle index policy performs close-to-optimal for many applications in the state-of-arts works.
- There is no general framework to check indexability and correspondingly, obtain the Whittle indices.

Objectives:
- Prove our problem is indexable.
- Provide a closed-form solution for the Whittle index.
Whittle Index policy

- Whittle index heuristic provides a dynamic index for each arm and select the arm with the smallest index at each time.
- Whittle index exists if indexability condition is satisfied for all arms.
- Whittle index policy performs close-to-optimal for many applications in the state-of-arts works.
- There is no general framework to check indexability and correspondingly, obtain the Whittle indices.

Objectives:
- Prove our problem is indexable.
- Provide a closed-form solution for the Whittle index.
Problem Decomposition

Define

\[c_\lambda(x^i_t, a^i_t) := c^i(x^i, a^i_t) + \lambda a^i_t, \quad a^i_t \in \{0, 1\} \]

for arm \(i \).

Problem

Given an arm \(i \in \mathcal{N} \), discount factor \(\beta \), the state space \(\mathcal{X}^i \), the transition probability matrix \(P^i \), the reset probability mass function \(Q^i \), the cost function \(c^i(\cdot, \cdot) \) and the penalty \(\lambda \in \mathbb{R} \), choose a policy \(g^i : \mathcal{X}^i \to \{0, 1\} \) to minimize

\[J^i(g^i) := (1 - \beta)\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^t c_\lambda(x^i_t, A^i_t) \right]. \]
Dynamic Programming

Theorem

Let $V^i_\lambda : \mathcal{X}^i \to \mathbb{R}$ be the unique fixed point of the following:

$$V^i_\lambda(x) = \min\{ H^i_\lambda(x, 0), H^i_\lambda(x, 1) \}, \quad \forall x \in \mathcal{X}^i.$$

where

$$H^i_\lambda(x, 0) = (1 - \beta)c^i(x, 0) + \beta \sum_{y \in \mathcal{X}^i} P^i_{xy} V^i_\lambda(y),$$

$$H^i_\lambda(x, 1) = (1 - \beta)(c^i(x, 1) + \lambda) + \beta \sum_{y \in \mathcal{X}^i} Q^i_y V^i_\lambda(y).$$

Let $g^i_\lambda(x)$ denote the minimizer of the right hand side. Then, g^i_λ is optimal for arm i.
Indexability

Let passive set for arm i be

$$
\Pi_i^\lambda := \{ x^i \in \mathcal{X}^i : g_i^\lambda(x) = 0 \}.
$$

Definition (Indexability)

For any $\lambda_1, \lambda_2 \in \mathbb{R}$ arm i is indexable if

$$
\lambda_1 < \lambda_2 \implies \Pi_i^{\lambda_1} \subseteq \Pi_i^{\lambda_2}.
$$

Definition (Whittle index)

The Whittle index of state x of arm i is defined as

$$
w^i(x) = \inf \{ \lambda \in \mathbb{R} : x \in \Pi_i^\lambda \}.
$$
Indexability Proof Sketch

Theorem

Each arm is indexable.

Lemma

\[\Pi_{\lambda} = \left\{ x \in \mathcal{X} : (1 - \beta) \inf_{\tau} \frac{L(x, \tau) - c(x, 1)}{1 - \beta^\tau} < W_{\lambda} \right\} \]

Lemma

\[W_{\lambda} = \lambda + \beta \sum_{y \in \mathcal{X}} Q_y V_\lambda(y) \text{ is increasing in } \lambda. \]
Whittle index

By definition,

\[w^i(x) = \inf \left\{ \lambda \in \mathbb{R} : \frac{1 - \beta}{1 - \beta \tau} \inf_{\tau} \frac{L(x, \tau) - c(x, 1)}{1 - \beta \tau} < \right. \]

\[\left. \lambda + \beta \sum_{y \in X^i} Q_y^i V_{\lambda}^i(y) \right\} . \]

Challenge: Obtaining a closed form solution for Whittle index is inefficient.

Solution: To provide a closed-form solution we consider threshold-based policies.
Threshold Policies

The optimal policy for each subproblem is a threshold-based policy, i.e.,

\[g^{(k)}(x) := \begin{cases} 0, & \text{if } x < k \\ 1, & \text{otherwise.} \end{cases} \]

\[C^{(k)} := (1 - \beta) \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t c(X_t, g^{(k)}(X_t)) \ \middle| \ X_0 \sim Q \right] = D^{(k)} + \lambda N^{(k)}. \]

where

\[D^{(k)} := (1 - \beta) \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t c(X_t, g^{(k)}(X_t)) \ \middle| \ X_0 \sim Q \right], \]

\[N^{(k)} := (1 - \beta) \mathbb{E} \left[\sum_{t=0}^{\infty} \beta^t g^{(k)}(X_t) \ \middle| \ X_0 \sim Q \right]. \]
Computation of $D^{(k)}$ and $N^{(k)}$

Let

$$L^{(k)} := \mathbb{E} \left[\sum_{t=0}^{\tau_k-1} \beta^t c(X_t, 0) + \beta^{\tau_k} c(X_{\tau_k}, 1) \mid X_0 \sim Q \right]$$

$$M^{(k)} := \mathbb{E} \left[\sum_{t=0}^{\tau_k} \beta^t \mid X_0 \sim Q \right].$$

Theorem

For all threshold k,

$$D^{(k)} = \frac{L^{(k)}}{M^{(k)}} \quad \text{and} \quad N^{(k)} = \frac{1}{\beta M^{(k)}} - \frac{1 - \beta}{\beta}.$$
Property

Lemma

\[k_\lambda := \arg \min_{k \in \mathcal{X}} C^{(k)}_\lambda \] is increasing in \(\lambda \).

Figure: \(k_\lambda \) as a function of \(\lambda \).
The Whittle index for threshold-policies at state $k \in \mathcal{X}$ is

$$w(k) = \frac{D^{(k+1)} - D^{(k)}}{N^{(k)} - N^{(k+1)}}.$$
Whittle Index policy

- Compute Whittle indices offline.
- At each time instance, observe the state of each arm and select the arm with the lowest Whittle index.
Experiment Setup

- **Deterministic restart:** $Q = [1, 0, \ldots, 0]$
- $c(x, 0) = (x - 1)^2$ and $c(x, 1) = 0.5(|\mathcal{X}| - 1)^2$, $\beta = 0.9$
- We consider structured and randomly generated stochastic monotone matrices for P.
- **Monte-Carlo simulations:** 5000 iterations with 250 time steps in each one.
Experiments (1) & (2)

Comparison with Optimal Policy for small-scale models:

\[\alpha_{\text{OPT}} = \frac{J(\text{OPT})}{J(\text{WIP})} \times 100 \]

For \(|\mathcal{X}| = 5, n = 5, m \in \{1, 2\} \rightarrow \alpha_{\text{OPT}} \in [95.5\% - 100\%] \).

Figure: 100 randomly generated stochastic monotone matrices with \(m = 1 \).
Experiments (3) & (4)

Comparison with **Myopic Policy** for large-scale models:

\[
\varepsilon_{\text{MYP}} = \left(\frac{J(\text{MYP}) - J(\text{WIP})}{J(\text{MYP})} \right) \times 100.
\]

For \(|\mathcal{X}| = 25\), \(n \in \{25, 50, 75\}\), \(m \in \{1, 2, 5\}\)

\(\rightarrow \varepsilon_{\text{MYP}} \in [0\% - 12\%].\)

Figure: 100 randomly generated stochastic monotone matrices with \(n = 75\), \(m = 2\).
Conclusion

- A model for restless bandit with controlled restarts.
- An indexable model.
- A closed form expression to compute the Whittle indices when the optimal policy is threshold-based.
- Numerical experiments shows the Whittle index policy performs very close to the optimal policy and better than a myopic policy.
Thank you!
Q&A