Dynamic spectrum access under partial observations: A restless bandit approach

Nima Akbarzadeh, Aditya Mahajan

McGill University, Electrical and Computer Engineering Department

$$
\text { June 3, } 2019
$$

Restless Bandits Example

Channel Scheduling Problem

At which time, which channel and which resource should be used?

Features:

- Time-varying channels
- Partially-observable environment
- Resource Allocation

Examples:

- Cognitive radio networks
- Resource constraint jamming

Model (Channel)

- n finite state Markov channels, $\mathcal{N}=\{1, \ldots, n\}$.
- State space is finite ordered set $\mathcal{S}^{i}, i \in \mathcal{N}$
- Markov state process: $\left\{S_{t}^{i}\right\}_{t \geq 0}$
- Transition Probability Matrix: P^{i}
- Resource: rate, power, bandwidth, etc., $\mathcal{R}=\left\{\emptyset, r_{1}, \ldots, r_{k}\right\}$
- Payoff: $\rho^{i}(s, r), s \in \mathcal{S}^{i}, r \in \mathcal{R}$
- $\rho^{i}(s, r)=0$ if $r=\emptyset$

Example: $\mathcal{S}^{i}=\left\{s_{\text {bad }}, s_{\text {good }}\right\}, \mathcal{R}=\left\{r_{\text {low }}, r_{\text {high }}\right\}$

Model (Channel)

- n finite state Markov channels, $\mathcal{N}=\{1, \ldots, n\}$.
- State space is finite ordered set $\mathcal{S}^{i}, i \in \mathcal{N}$
- Markov state process: $\left\{S_{t}^{i}\right\}_{t \geq 0}$
- Transition Probability Matrix: P^{i}
- Resource: rate, power, bandwidth, etc., $\mathcal{R}=\left\{\emptyset, r_{1}, \ldots, r_{k}\right\}$
- Payoff: $\rho^{i}(s, r), s \in \mathcal{S}^{i}, r \in \mathcal{R}$

$$
\text { - } \rho^{i}(s, r)=0 \text { if } r=\emptyset
$$

Example: $\mathcal{S}^{i}=\left\{s_{\text {bad }}, s_{\text {good }}\right\}, \mathcal{R}=\left\{r_{\text {low }}, r_{\text {high }}\right\}$

$$
\rho^{i}(s, r)= \begin{cases}r_{\text {low }}, & \text { if } r=r_{\text {low }} \\ r_{\text {high }}, & \text { if } r=r_{\text {high }} \text { and } s=s_{\text {good }} \\ 0, & \text { if } r=r_{\text {high }} \text { and } s=s_{\text {bad }}\end{cases}
$$

Model (Transmitter)

Two decisions to make at each time t :

- Select L channels indexed by \mathcal{L}_{t} $A_{t}^{i}=1$ if $i \in \mathcal{L}_{t}$ and 0 otherwise
- Select resources denoted by R_{t}^{i} $R_{t}^{i}=\emptyset$ if $i \notin \mathcal{L}_{t}$

Observation Process:

Strategies:

$$
\begin{aligned}
& \mathbf{A}_{t}=f_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}\right) \\
& \mathbf{R}_{t}=g_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}, \mathbf{A}_{t}\right) .
\end{aligned}
$$

Model (Transmitter)

Two decisions to make at each time t :

- Select L channels indexed by \mathcal{L}_{t} $A_{t}^{i}=1$ if $i \in \mathcal{L}_{t}$ and 0 otherwise
- Select resources denoted by R_{t}^{i}

$$
R_{t}^{i}=\emptyset \text { if } i \notin \mathcal{L}_{t}
$$

Observation Process:

$$
Y_{t}^{i}= \begin{cases}S_{t}^{i}, & \text { if } A_{t}^{i}=1 \\ \mathfrak{E}, & \text { if } A_{t}^{i}=0\end{cases}
$$

Strategies:
$\mathbf{A}_{t}=f_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}\right)$,
$\mathbf{R}_{t}=g_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}, \mathbf{A}_{t}\right)$.

Model (Transmitter)

Two decisions to make at each time t :

- Select L channels indexed by \mathcal{L}_{t} $A_{t}^{i}=1$ if $i \in \mathcal{L}_{t}$ and 0 otherwise
- Select resources denoted by R_{t}^{i} $R_{t}^{i}=\emptyset$ if $i \notin \mathcal{L}_{t}$
Observation Process:

$$
Y_{t}^{i}= \begin{cases}S_{t}^{i}, & \text { if } A_{t}^{i}=1 \\ E, & \text { if } A_{t}^{i}=0\end{cases}
$$

Strategies:

$$
\begin{aligned}
& \mathbf{A}_{t}=f_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}\right) \\
& \mathbf{R}_{t}=g_{t}\left(\mathbf{Y}_{0: t-1}, \mathbf{R}_{0: t-1}, \mathbf{A}_{0: t-1}, \mathbf{A}_{t}\right)
\end{aligned}
$$

Model (Optimization Problem)

Problem

Given a discount factor $\beta \in(0,1)$, a set of resources \mathcal{R}, and the state space, transition probability, and reward function $\left(\mathcal{S}^{i}, P^{i}, \rho^{i}\right)_{i \in \mathcal{N}}$ for all channels, choose a communication strategy (\mathbf{f}, \mathbf{g}) to maximize

$$
J(\mathbf{f}, \mathbf{g})=\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} \sum_{i \in \mathcal{N}} \rho^{i}\left(S_{t}^{i}, R_{t}^{i}\right) A_{t}^{i}\right] .
$$

Literature Review and Approaches

Partially Observable Markov Decision Process (POMDP).

- POMDP models suffer from curse of dimensionality:
- The state space size is exponential in the number of channels
- Simplified modelling assumptions:
- Two state Gilbert-Elliot channels
- Multi-state channels but identical
- Fully-observable Markov Decision Process (MDP)

Our contributions

- Multi-state non-identical channels
- Restless Bandit approach
- Convert the POMDP into a countable MDP
- Finite-state Approximation of the MDP

POMDP (Belief State)

Belief state:

$$
\Pi_{t}^{i}(s)=\mathbb{P}\left(S_{t}^{i}=s \mid Y_{0: t-1}^{i}, R_{0: t-1}^{i}, A_{0: t-1}^{i}\right)
$$

Proposition

Let Π_{t} denote $\left(\Pi_{t}^{1}, \ldots, \Pi_{t}^{n}\right)$. Then, without loss of optimality,

$$
\begin{aligned}
\mathbf{A}_{t} & =f_{t}\left(\boldsymbol{\Pi}_{t}\right) \\
\mathbf{R}_{t} & =g_{t}\left(\boldsymbol{\Pi}_{t}, \mathbf{A}_{t}\right)
\end{aligned}
$$

Recall: \mathbf{f} is chennel selection policy and \mathbf{g} is resource selection policy.

Optimal Resource Allocation Strategy

No need for joint optimization of (\mathbf{f}, \mathbf{g}).
Let

$$
\begin{aligned}
\bar{\rho}^{i}(\pi) & :=\max _{r \in \mathcal{R}} \sum_{s \in \mathcal{S}^{i}} \pi(s) \rho^{i}(s, r) \\
r^{i, *}(\pi) & :=\underset{r \in \mathcal{R}}{\arg \max } \sum_{s \in \mathcal{S}^{i}} \pi(s) \rho^{i}(s, r) .
\end{aligned}
$$

Proposition

Define $g^{i, *}: \Delta\left(\mathcal{S}^{i}\right) \times\{0,1\} \rightarrow \mathcal{R}$ as follows

$$
\begin{aligned}
& g^{i, *}(\pi, 0)=\emptyset \\
& g^{i, *}(\pi, 1)=r^{i, *}(\pi) .
\end{aligned}
$$

For any channel selection policy, $\left(\mathbf{g}^{*}, \mathbf{g}^{*}, \ldots\right)$ is an optimal resource allocation strategy.

Restless Bandit Model

(1) Each $\left\{\Pi_{t}^{i}\right\}_{t \geq 0}, i \in \mathcal{N}$, is a bandit process.
(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

(4) Expected reward:

$$
\rho_{t}^{i}= \begin{cases}\bar{\rho}^{i}\left(\Pi_{t}^{i}\right), & \text { if process } i \text { is activated, } A_{t}^{i}=1, \\ 0, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

Process:

Restless Bandit Model

(1) Each $\left\{\Pi_{t}^{i}\right\}_{t \geq 0}, i \in \mathcal{N}$, is a bandit process.
(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

(4) Expected reward:

Process:

Restless Bandit Model

(1) Each $\left\{\Pi_{t}^{i}\right\}_{t \geq 0}, i \in \mathcal{N}$, is a bandit process.
(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

$$
\Pi_{t+1}^{i}= \begin{cases}\delta_{S_{t}^{i}}, & \text { if process } i \text { is activated, } A_{t}^{i}=1 \\ \Pi_{t}^{i} \cdot P^{i}, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

(4) Expected reward:

Dynamics:

Restless Bandit Model

(1) Each $\left\{\Pi_{t}^{i}\right\}_{t \geq 0}, i \in \mathcal{N}$, is a bandit process.
(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

$$
\Pi_{t+1}^{i}= \begin{cases}\delta_{S_{t}^{i}}, & \text { if process } i \text { is activated, } A_{t}^{i}=1 \\ \Pi_{t}^{i} \cdot P^{i}, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

(4) Expected reward:

$$
\rho_{t}^{i}= \begin{cases}\bar{\rho}^{i}\left(\Pi_{t}^{i}\right), & \text { if process } i \text { is activated, } A_{t}^{i}=1 \\ 0, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

Dynamics:

Restless Bandit Model

(1) Each $\left\{\Pi_{t}^{i}\right\}_{t \geq 0}, i \in \mathcal{N}$, is a bandit process.
(2) The transmitter can activate L of these processes.
(3) Belief state evolution:

$$
\Pi_{t+1}^{i}= \begin{cases}\delta_{S_{t}^{i}}, & \text { if process } i \text { is activated, } A_{t}^{i}=1 \\ \Pi_{t}^{i} \cdot P^{i}, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

(4) Expected reward:

$$
\rho_{t}^{i}= \begin{cases}\bar{\rho}^{i}\left(\Pi_{t}^{i}\right), & \text { if process } i \text { is activated, } A_{t}^{i}=1 \\ 0, & \text { if process } i \text { is passive, } A_{t}^{i}=0\end{cases}
$$

Dynamics:

Process:

Restless Bandit Solution

- The main idea is to decompose the coupled n-channel optimization problem to n independent one-channel problems.
- When the Whittle indexability is satisfied, then one may propose a Whittle index policy.
- The channels with minimum indices are selected.
- The index strategy performs close-to-optimal for many applications in the state-of-arts works.

Goal:

We provide an efficient algorithm to check the indexability and compute the Whittle index.

Problem Decomposition

Modified per-step reward: $\left(\bar{\rho}^{i}(\pi)-\lambda\right) a^{i}$ where λ can be viewed as the cost for transmitting over channel i.

Problem

Given channel $i \in \mathcal{N}$, the discount factor $\beta \in(0,1)$, the $\operatorname{cost} \lambda \in \mathbb{R}$, and the belief state space, transition probability, reward function tuple $\left(\Delta\left(\mathcal{S}^{i}\right), P^{i}, \rho^{i}\right)$, choose a policy $f^{i}: \Delta\left(\mathcal{S}^{i}\right) \rightarrow\{0,1\}$ to maximize

$$
J_{\lambda}^{i}\left(f^{i}\right):=\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t}\left(\bar{\rho}^{i}\left(\Pi_{t}^{i}\right)-\lambda\right) A_{t}^{i}\right]
$$

Dynamic Programming (Belief State)

Theorem
Let $V_{\lambda}^{i}: \Delta\left(\mathcal{S}^{i}\right) \rightarrow \mathbb{R}$ be the unique fixed point of equation

$$
V_{\lambda}^{i}(\pi)=\max _{a \in\{0,1\}} Q_{\lambda}^{i}(\pi, a)
$$

where

$$
\begin{aligned}
& Q_{\lambda}^{i}(\pi, 0)=\beta V_{\lambda}^{i}\left(\pi \cdot P^{i}\right) \\
& Q_{\lambda}^{i}(\pi, 1)=\bar{\rho}_{\lambda}^{i}(\pi)-\lambda+\beta \sum_{s \in \mathcal{S}^{i}} \pi(s) V_{\lambda}^{i}\left(\delta_{s}\right) .
\end{aligned}
$$

Let $f_{\lambda}^{i}(\pi)=1$ if $Q_{\lambda}^{i}(\pi, 1) \geq Q_{\lambda}^{i}(\pi, 0)$, and $f_{\lambda}^{i}(\pi)=0$ otherwise. Then, f_{λ}^{i} is optimal for Problem 2.

Dynamic Programming (Belief State)

Theorem

Let $V_{\lambda}^{i}: \Delta\left(\mathcal{S}^{i}\right) \rightarrow \mathbb{R}$ be the unique fixed point of equation

$$
V_{\lambda}^{i}(\pi)=\max _{a \in\{0,1\}} Q_{\lambda}^{i}(\pi, a)
$$

where

$$
\begin{aligned}
& Q_{\lambda}^{i}(\pi, 0)=\beta V_{\lambda}^{i}\left(\pi \cdot P^{i}\right) \\
& Q_{\lambda}^{i}(\pi, 1)=\bar{\rho}_{\lambda}^{i}(\pi)-\lambda+\beta \sum_{s \in \mathcal{S}^{i}} \pi(s) V_{\lambda}^{i}\left(\delta_{s}\right) .
\end{aligned}
$$

Let $f_{\lambda}^{i}(\pi)=1$ if $Q_{\lambda}^{i}(\pi, 1) \geq Q_{\lambda}^{i}(\pi, 0)$, and $f_{\lambda}^{i}(\pi)=0$ otherwise. Then, f_{λ}^{i} is optimal for Problem 2.

Challenge: Continuous state space!

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.
Example:

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

$\left(\begin{array}{l}0.5 \\ 0.25 \\ 0.25\end{array}\right.$

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

$$
\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

$$
(1,0,0)=(1,0,0) \cdot\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)^{0}
$$

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

$$
\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

$$
(1,0,0) \cdot\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)^{1}
$$

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

$$
\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

$$
(1,0,0) \cdot\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)^{2}
$$

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

$$
\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

$$
(1,0,0) \cdot\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)^{3}
$$

Information State

Let $O_{t}^{i} \in \mathcal{S}^{i}$ denote the last observed state of channel i and $K_{t}^{i} \in \mathbb{Z}_{\geq 0}$ denote the time since the last observation. Then, we have

$$
\left(O_{t+1}^{i}, K_{t+1}^{i}\right)= \begin{cases}\left(S_{t}^{i}, 0\right) & \text { if } A_{t}^{i}=1 \\ \left(O_{t}^{i}, K_{t}^{i}+1\right) & \text { if } A_{t}^{i}=0\end{cases}
$$

Lemma

At any time $t, \Pi_{t}^{i}=\delta_{O_{t}^{i}} \cdot\left(P^{i}\right)^{K_{t}^{i}}$ almost surely.

Example:

$$
\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)
$$

$$
(0,1,0) \cdot\left(\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.25 & 0.5 & 0.25 \\
0.25 & 0.25 & 0.5
\end{array}\right)^{0}
$$

Dynamic Programming (Information State)

- Difficult to solve dynamic programming based on belief state π^{i} as the state space is $\Delta\left(\mathcal{S}^{i}\right)$.
- A new dynamic programming can be written considering the information state $\left(o^{i}, k^{i}\right)$ where the state space is $\mathcal{S}^{i} \times \mathbb{Z}_{\geq 0}$.

Pros and cons:
The state space is countable but still dynamic programming is computationally infeasible.

Finite-State Approximation

Dynamic Programming (Finite state space \& Computable!)

Given $m \in \mathbb{N}$, let $\mathbb{N}_{m}:=\{0, \ldots, m\}$ and $V_{\lambda, m}^{i}: \mathcal{S}^{i} \times \mathbb{N}_{m} \rightarrow \mathbb{R}$ denote the unique fixed point of

$$
\begin{aligned}
V_{\lambda, m}^{i}(o, k) & =\max _{a \in\{0,1\}}\left\{Q_{\lambda, m}^{i}(o, k, a)\right\} \\
Q_{\lambda, m}^{i}(o, k, 0) & =\beta V_{\lambda, m}^{i}(o, k+1 \wedge m) \\
Q_{\lambda, m}^{i}(o, k, 1) & =\bar{\rho}^{i}(o, k)-\lambda+\beta \sum_{s \in \mathcal{S}^{i}}\left(P^{i}\right)_{o s}^{k} V_{\lambda, m}^{i}(s, 0) .
\end{aligned}
$$

Let $f_{\lambda, m}^{i}(o, k)=1$ if $Q_{\lambda, m}^{i}(o, k, 1) \geq Q_{\lambda, m}^{i}(o, k, 0)$, and $f_{\lambda, m}^{i}(o, k)=0$ o.w.

Finite-State Approximation

Approximation Limits

(i) $\lim _{m \rightarrow \infty} V_{\lambda, m}^{i}(o, k)=V_{\lambda}^{i}(o, k), \forall(o, k) \in \mathcal{S}^{i} \times \mathbb{Z}_{\geq 0}$.
(ii) Let $f_{\lambda}^{i, *}(o, k)$ be any fixed point of $\left\{f_{\lambda, m}^{i}(o, k)\right\}_{m \geq 1}$. Then, the policy $f_{\lambda}^{i, *}(o, k)$ is optimal for sub-problem i.

Indexability

Let passive set for process i be

$$
\mathcal{P}_{\lambda}^{i}=\left\{(o, k) \in \mathcal{S}^{i} \times \mathbb{N}_{m}: f_{\lambda, m}^{i}(o, k)=0\right\} .
$$

Recall: $f_{\lambda, m}^{i}$ is the policy obtained by dynamic programming.
Definition (Indexability)
For any $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ process i is indexable if

$$
\lambda_{1} \leq \lambda_{2} \Longrightarrow \mathcal{P}_{\lambda_{1}}^{i} \subseteq \mathcal{P}_{\lambda_{2}}^{i}
$$

Definition (Whittle index)

The Whittle index of information state (o, k) of process i is defined as

$$
w^{i}(o, k)=\inf \left\{\lambda \in \mathbb{R}:(o, k) \notin \mathcal{P}_{\lambda}^{i}\right\} .
$$

Algorithms

Procedure:

Algorithms

Procedure:

Algorithms

Procedure:

Algorithms

Procedure:

Algorithms

Procedure:

Algorithms

Whittle Index Policy:
At each time,

- Obtain the Whittle index corresponding to current information state of all channels.
- Transmit over the L channels with the smallest Whittle indices.

Conclusion

- Dynamic spectrum access problem for transmitting over multiple channels with partially observed channel state.
- Resource allocation strategy can be computed offline and is not affecting the channel selection strategy.
- To circumvent the curse of dimensionality, we considered the problem as a restless bandit and use the Whittle index heuristic.
- By reachable set of beliefs, the problem is converted from the belief-valued processes into a countable-state process.
- We developed low-complexity algorithms to check whether each channel is indexable and if so, compute the Whittle index for each information state.

Q\&A

Thank you!

