
Structure-aware reinforcement learning for
node-overload protection in mobile edge computing

Anirudha Jitani∗‡, Aditya Mahajan†‡, Zhongwen Zhu§, Hatem Abou-zeid¶,
Emmanuel Thepie Fapi§, and Hakimeh Purmehdi§

∗ School of Computer Science, McGill Univeristy, Montreal, Canada
† Electrical and Computer Engineering, McGill Univeristy, Montreal, Canada

‡ Montreal Institute of Learning Algorithms, Montreal, Canada
§ Global AI Accelerator, Ericsson, Montreal, Canada, ¶ Ericsson, Ottawa, Canada

Abstract—Mobile Edge Computing (MEC) refers to the con-
cept of placing computational capability at the edge of the
network to reduce the latency in handling the client requests.
The performance of an edge server is adversely affected when
it is overloaded, especially if it crashes due to overload and
causes service failures. In this paper, a solution to prevent
node from getting overloaded is analyzed by introducing an
admission control policy. An adaptive admission control policy
based low complexity RL (Reinforcement Learning) SALMUT
(Structure-Aware Learning for Multiple Thresholds) is validated
using several scenarios mimicking real world deployments. This
approach performs as well as to the state-of-the-art deep RL
algorithms such as PPO (Proximal Policy Optimization) and A2C
(Advantage Actor Critic), but requires an order of magnitude less
time to train, and outputs easily interpretable policy.

Index Terms—Reinforcement Learning, Structure-aware Re-
inforcement Learning, Markov Decision Process, Mobile Edge
Computing, Node Overload Protection.

I. INTRODUCTION

In recent years, there has been a proliferation of compu-
tationally intensive smartphone applications such as Video-
On-Demand, real-time online gaming, augmented reality, and
virtual reality applications. There are several advantages of mov-
ing such computationally intensive tasks to a cloud computing
platform but doing so runs the risk of increased latency. One
option to minimize such latency is to place the computational
capabilities close to the edge of the network using the paradigm
known as Mobile Edge Computing (MEC) [1].

Various aspects of MEC from the point of view of the mobile
user have been investigated in the literature. For example, the
questions of when to offload to a mobile server, to which
mobile server to offload, and how to offload have been studied
extensively. See, [2]–[6] and references therein.

However, the design questions at the server level have not
been investigated extensively. When an edge server receives
a large number of requests in a short period of time (for
example be due to a sporting event), the edge server can get
overloaded, which can lead to service degradation or even node
failure. When such service degradation occurs, edge servers
are configured to offload requests to other nodes in the cluster
in order to avoid the node crash. However, performing this
migration takes extra time and reduces the resources available

for other services provided by the cluster. Therefore, it is
paramount to design pro-active mechanisms that prevent a node
from getting overloaded using dynamic offloading policies that
can adapt to service request dynamics.

In this paper, we study the problem of node-overload
protection for a single edge node. We first model the problem
to incorporate practical considerations of server holding,
processing and offloading costs. Then we develop an offloading
policy that will reject and offload new requests to balance the
overall running cost of the system. In the simplest case, when
the request arrival process is time-homogeneous, we model the
system as a continuous-time Markov decision process (MDP)
and use the uniformization technique [7], [8] to convert the
continuous-time MDP to a discrete-time MDP, which can then
be solved using standard dynamic programming algorithms [9].

However, solving a dynamic program requires the knowledge
of the system parameters, which are not typically known and
also vary with time. In such time-varying environments, the
offloading policy must adapt to the environment. Reinforcement
learning (RL) [10] is a natural choice to design such adaptive
policies and has already been successfully applied in various
optimization problems arising in MEC [11]–[13].

Although RL has achieved considerable success in various
application domains including communication networks, this
success is generally achieved by using deep neural networks
to model the policy and the value function. Such deep RL
algorithms require considerable computational power and time
to train, are notoriously brittle to the choice of hyper-parameters,
may not transfer well from simulation to the real-world, and
give policies which are difficult to interpret. These features
make them impractical to be deployed on the edge nodes to
continuously adapt to the changing network conditions.

For the aforementioned reasons, rather than using general
purpose deep RL algorithms, in this paper we design a node-
overload protection scheme that uses a recently proposed low-
complexity RL algorithm called SALMUT (Structure-Aware
Learning for Multiple Thresholds) [14]. SALMUT exploits the
structure of the optimal policy, requires considerably fewer
computational resources to train and provides policies which
are easy to interpret. We compare the performance of deep RL
algorithms with SALMUT in a variety of scenarios which are

motivated by real world deployments. Our experiments show
that SALMUT performs as well as the state-of-the-art deep
RL algorithms such as PPO [15] and A2C [16] but requires
an order of magnitude less time to train and provides policies
which are easy to interpret.

The rest of the paper is organized as follows. We present the
system model and problem formulation in Sec. II. Then, we
present a dynamic programming decomposition for the case of
time-homogeneous statistics for the arrival process in Sec. III.
Then, we present the structure aware RL algorithm (SALMUT)
proposed in [14] for our model in Sec. IV. Finally we conduct
a detailed experimental study to compare the performance of
SALMUT with other state-of-the-art RL algorithms in Sec. V.

II. MODEL AND PROBLEM FORMULATION

A. System model

A simplified mobile edge computing (MEC) system consists
of an edge server and several mobile users accessing that server.
Mobile users independently generate service requests according
to a Poisson process. The rate of requests and the number of
users may also change with time. The edge server takes CPU
resources to serve each request from mobile users. The request
is buffered in a queue before it is served. When a new request
comes, the server has the option to offload the request. The
mathematical model of the edge server and the mobile users
is presented below.

1) Edge server: Let Xt ∈ {0, 1, . . . ,X} denote the number
of service requests buffered in the queue, where X denotes the
size of the buffer. Let Lt ∈ {0, 1, . . . , L} denote the CPU load
at the server where L is the capacity of the CPU. We assume
that the CPU has k cores.

We assume that the requests arrive according to a (potentially
time-varying) Poisson process with rate λ. If a new request
arrives when the buffer is full, the request is offloaded to
another server. If a new request arrives when the buffer is not
full, the server has the option to either accept or offload the
request.

The server can process up to a maximum of k requests
from the head of the queue. Processing each request requires
CPU resources for the duration for which the request is being
served. The required CPU resources is a random variable R ∈
{1, . . . ,R} with probability mass function P . The realization
of R is not revealed until the server starts working on the
request. The duration of service is exponentially distributed
random variable with rate µ.

Let A = {0, 1} denote the action set. Here At = 1 means
that the server decides to offload the request while At = 0
means that the server accepts the request.

2) Traffic model for mobile users: We consider multiple
models for traffic. Let N denote the total number of users
accessing the server.
• Scenario 1: All users generate requests according to the

same rate λ and the rate does not change over time.
• Scenario 2: All users generate requests according rate
λMt , where Mt is a global state which changes over time.

• Scenario 3: Each user n has a state Mn
t ∈ {1, . . . ,M}.

When the user n is in state m, it generates requests
according to rate λm. The state Mn

t changes over time.
• Time-varying users: In each of the scenarios above, we

can consider the case when the number of users is not
fixed and changes over time. We call them Scenario 4, 5,
and 6 respectively.

3) Cost and the optimization framework: The system incurs
three types of a cost:
• a holding cost of h per unit time when a request is buffered

in the queue but is not being served.
• a running cost of c(`) per unit time for running the CPU

at a load of `.
• a penalty of p(`) for offloading a packet at CPU load `.

We combine all these costs in a cost function

ρ(x, `, a) = h[x− k]+ + c(`) + p(`)1{a = 1}, (1)

where [x]+ is a short-hand for max{x, 0} and 1{·} is the
indicator function. Note that to simplify the analysis, we have
assumed that the server always serves min{Xt, k} requests. It
is assumed that c(`) and c(`) + p(`) are increasing in `.

Whenever a new request arrives, the server uses a mem-
oryless policy π : {0, 1, . . . ,X} × {0, 1, . . . , L} → {0, 1} to
choose an action

At = πt(Xt, Lt).

The performance of a policy π starting from initial state
(x, `) is given by

V π(x, `) = E

[∫ ∞
0

e−αtρ(Xt, Lt, At)dt

∣∣∣∣ X0 = x, L0 = `

]
,

(2)
where α > 0 is the discount rate and the expectation is with
respect to the arrival process, CPU utilization, and service
completions.

The objective is to minimize the performance (2) for the
different traffic scenarios listed above. We are particularly
interested in the setting where the arrival rate and potentially
other components of the model such as the resource distribution
are not known to the system designer and change during the
operation of the system.

B. Solution framework
When the model parameters (λ,N, µ, P, k) are known and

time-homogeneous, the optimal policy π can be computed
using dynamic programming. However, in a real system,
these parameters may not be known, so we are interested
in developing a reinforcement learning algorithm which can
learn the optimal policy based on the observed per-step cost.

In principle, when the model parameters are known, Scenar-
ios 2 and 3 can also be solved using dynamic programming.
However, the state of such dynamic programs will include the
state Mt of the system (for Scenario 2) or the states (Mn

t)Nn=1

of all users (for Scenario 3). Typically, these states change at
a slow time-scale. So, we will consider reinforcement learning
algorithms which do not explicitly keep track of the states of
the user and check if the algorithm can adapt quickly whenever
the arrival rates change.

III. DYNAMIC PROGRAMMING TO IDENTIFY OPTIMAL
ADMISSION CONTROL POLICY

When the arrival process is time-homogeneous, the process
{Xt, Lt}t≥0 is a finite-state continuous-time Markov decision
process (MDP) controlled through {At}t≥0. To specify the
controlled transition probability of this MDP, we consider the
following two cases.

First, if there is a new arrival at time t, then

P(Xt = x′, Lt = `′ | Xt− = x, Lt− = `, At = a)

=

P (`′ − `), if x′ = x+ 1 and a = 0

1, if x′ = x, `′ = `, and a = 1

0, otherwise.
(3)

We denote this transition function by q+(x′, `′|x, `, a). Note
that the first term P (`′ − `) denotes the probability that the
accepted request required (`′ − `) CPU resources.

Second, if there is a departure at time t,

P(Xt = x′, Lt = `′ | Xt− = x, Lt− = `)

=

{
P (`− `′), if x′ = [x− 1]+

0, otherwise.
(4)

We denote this transition function by q−(x′, `′|x, `). Note that
there is no decision to be taken at the completion of a request,
so the above transition does not depend on the action. In
general, the reduction in CPU utilization will correspond to
the resources requested by the request whose service was
completed. However, keeping track of those resources would
mean that we would need to expand the state and include
(R1, . . . , Rk) as part of the state, where Ri denotes the
resources required by the request which is being processed by
CPU i. In order to avoid such an increase in state dimension,
we assume that when a request is completed, CPU utilization
reduces by amount `− `′ with probability P (`− `′).

We combine (3) and (4) into a single controlled transition
probability function from state (x, `) to state (x′, `′) given by

p(x′, `′ | x, `, a) =
λ

λ+ min{x, k}µ
q+(x′, `′ | x, `, a)

+
min{x, k}µ

λ+ min{x, k}µ
q−(x′, `′ | x, `). (5)

Let ν = λ + kµ denote the uniform upper bound on the
transition rate at the states. Then, using the uniformization
technique [7], [8], we can convert the above continuous time
discounted cost MDP into a discrete time discounted cost MDP
with discount factor β = ν/(α + ν), transition probability
matrix p(x′, `′|x, `, a) and per-step cost

ρ̄(x, `, a) =
1

α+ ν
ρ(x, `, a)

Therefore, we have the following.

Theorem 1 Consider the following dynamic program

V (x, `) = min{Q(x, `, 0), Q(x, `, 1)} (6)

where

Q(x,`, 0) =
1

α+ ν

[
h[x− k]+ + c(`)

]
+ β

[
λ

λ+ min{x, k}µ

R∑
r=1

P (r)V ([x+ 1]X, [`+ r]L)

+
min{x, k}µ

λ+ min{x, k}µ

R∑
r=1

P (r)V ([x− 1]+, [`− r]+)

]
and

Q(x,`, 1) =
1

α+ ν

[
h[x− k]+ + c(`) + p(`)

]
+ β

min{x, k}µ
λ+ min{x, k}µ

R∑
r=1

P (r)V ([x− 1]+, [`− r]+)

where [x]B denotes min{x,B}.
Let π(x, `) ∈ A denote the argmin the right hand side of (6).

Then, the time-homogeneous policy π(x, `) is optimal for the
original continuous-time optimization problem.

PROOF The equivalence between the continuous and discrete
time MDPs follows from the uniformization technique [7], [8].
The optimality of the time-homogeneous policy π follows from
the standard results for MDPs [9]. �

Thus, for all practical purposes, the decision maker has to
solve a discrete-time MDP, where he has to take decisions at
the instances when a new request arrives. In the sequel, we
will ignore the 1/(α + ν) term in front of the per-step cost
and assume that it has been absorbed in the constant h, and
the functions c(·), p(·).

When the system parameters are known, the above dynamic
program can be solved using standard techniques such as value
iteration, policy iteration, or linear programming. However,
in practice, the system parameters may slowly change over
time. Therefore, instead of pursuing a planning solution, we
consider reinforcement learning solutions which can adapt to
time-varying environments.

IV. STRUCTURE-AWARE REINFORCEMENT LEARNING

Although, in principle, the optimal admission control prob-
lem formulated above can be solved using deep RL algorithms,
such algorithms require significant computational resources
to train, are brittle to the choice of hyperparameters, and
generate policies which are difficult to interpret. For these
reasons, we investigate an alternate class of RL algorithms
which circumvents these limitations.

A. Structure of the optimal policy

We first establish basic monotonicity properties of the value
function and the optimal policy.

Proposition 1 The value function satisfies the following:
• For a fixed queue length x, the value function is weakly

increasing in the CPU utilization `.
• For k = 1 and a fixed CPU utilization `, the value function

is weakly increasing in the queue length x.

Proposition 2 The optimal policy π satisfies the following:

• For a fixed queue length x, if it is optimal to reject a
request at CPU utilization `, then it is optimal to reject a
request at all CPU utilizations `′ > `.

• For k = 1 and for a fixed CPU utilization `, if it is
optimal to reject a request at queue length x ≥ k, then it
is optimal to reject a request at all queue lengths x′ > x.

Both results follow from standard monotonicity arguments
for MDPs [9]. The details are omitted due to limited space.

Remark 1 We are able to establish monotonicity in the queue
length in Proposition 1 under the restriction that k = 1. Since
Proposition 2 depends on Proposition 1, a similar restriction
applies in that case as well. When k > 1, we are unable to use
the standard monotonicity arguments of [9] because for a fixed
`, the transition matrix p is not stochastically monotone in x.
However, simulations suggest that both Propositions 1 and 2
continue to hold for k > 1. So, we believe that the restriction
k = 1 is a limitation of our proof technique and conjecture
that the result will hold in general as well.

B. The SALMUT algorithm

Proposition 2 shows that the optimal policy can be repre-
sented by a threshold vector τ = (τ(x))Xx=0, where τ(x) ∈
{0, . . . , L} is the smallest value of the CPU utilization such
that it is optimal to accept the packet for CPU utilization less
than or equal to τ(x) and reject it for utilization greater than
τ(x). Furthermore, (for k = 1 and also for general k as per the
conjecture in Remark 1), the thresholds τ(x) are decreasing
in x.

The SALMUT algorithm was proposed in [14] to exploit a
similar structure in admission control for multi-class queues.
It was proposed for the average cost setting but, as explained
below, it generalizes to the discounted cost setting as well.

A threshold-based policy πτ is a parameterized policy with
the parameters (τ(x))Xx=0 taking values in {0, . . . , L}X+1. The
key idea behind SALMUT is that, instead of deterministic
threshold-based policies, we consider a random policy pa-
rameterized with parameters taking value in the compact set
[0, L]X+1. Then, for any state (x, `), the randomized policy
πτ chooses action a = 0 with probability f(τ(x), `) and
chooses action a = 1 with probability 1− f(τ(x), `), where
f(τ(x), `) is any continuous decreasing function w.r.t `, which
is differentiable in its first argument, e.g., the sigmoid function

f(τ(x), `) =
exp((τ(x)− `)/T)

1 + exp((τ(x)− `)/T)
, (7)

where T > 0 is a hyper-parameter (often called “temperature”).
Let p(τ)(x′, `′|x, `) denote the transition probability matrix
under policy πτ , i.e.,

p(τ)(x′, `′|x, `) = f(τ(x), `)p(x′, `′|x, `, 0)

+ (1− f(τ(x), `))p(x′, `′|x, `, 1). (8)

Since ∇p(τ)(x′, `′|x, `) = ∇f(τ(x), `)[p(x′, `′|x, `, 0) −
p(x′, `′|x, `, 1)], where the gradients are with respect to τ ,
an unbiased estimator of ∇p(τ)(·|x, `) is given by

(−1)a∇f(x, τ(`)), where a ∼ πτ (·|x, `). (9)

Fix an initial state (x0, `0) and let J(τ) denote the perfor-
mance of policy πτ when starting from the initial state (x0, `0).
Now, from the policy gradient theorem [10], we know that

∇J(τ) =

X∑
x=0

L∑
`=0

µ(x, `)∇Q(x, `; τ)

where µ(x, `) is the occupancy measure on the states starting
from the initial state (x0, `0) and

∇Q(x, `; τ) =

X∑
x′=0

L∑
`′=0

∇p(τ)(x′, `′|x, `)
×
∑
a∈A

πτ (a|x, `)Q(x, `, a).

Therefore, an unbiased estimator of ∇J(τ) is given by

∇p(τ)(x′, `′|x, `)Q(x, `, a), where a ∼ πτ (·|x, `). (10)

Combining (9) with (10), we get that

(−1)a∇f(τ(x), `)
[
ρ̄(x, `, a) + βV (x′, `′)

]
, (11)

where a ∼ πτ (·|x, `) is an unbiased estimator of ∇J(τ).
Thus, we can use the standard two time-scale Actor-Critic

algorithm [10] to simultaneously learn the policy parameters
τ and the action-value function Q as follows. We start with
an initial guess Q0 and τ0 for the action-value function and
the optimal policy. Then, we update the action-value function
using temporal difference learning:

Qn+1(x, `, a) = Qn(x, `, a) + b1n
[
ρ̄(x, `, a)

+ β min
a′∈A

Qn(x′, `′, a′)−Qn(x, `, a)
]
, (12)

and update the policy parameters using stochastic gradient
descent while using (11) as the unbiased estimator of ∇J(τ):

τn+1(x) = Proj
[
τn(x) + b2n(−1)a∇f(τ(x), `)

[
ρ̄(x, `, a)

+ β min
a′∈A

Q(x′, `′, a′)
]]
, (13)

where Proj is a projection operator which clips the values
to the interval [0, L] and {b1n}n≥0 and {b2n}n≥0 are learning
rates which satisfy the standard conditions on two time-scale
learning:

∑
n b

k
n = ∞,

∑
n(bkn)2 < ∞, k ∈ {1, 2}, and

limn→∞ b2n/b
1
n = 0.

Note that the update of τ(x) only changes the value of the
threshold at the current queue length x which might give a
threshold vector τ which is not monotone decreasing. So, we
also update the values of other components of τ to make it
monotone decreasing as follows:

τn+1(y) =

{
max{τn+1(x), τn+1(y)}, if y ≤ x
min{τn+1(x), τn+1(y)}, if y ≥ x

(14)

where x is the queue state at the current time.

Algorithm 1: Two time-scale SALMUT algorithm
Result: τ
Initialize Q-values ∀x, ∀`,∀a, Q(x, `, a)← 0
Initialize threshold vector ∀x, τ(x)← rand(0, L)
Initialize start state (x, `)← (x0, `0)
while TRUE do

if EVENT == ARRIVAL then
Choose action a according to Eq. (8)
Update Q-value Q(x, `, a) according to Eq. (12)
Update threshold τ using Eqs. (13) and (14)
(x, `)←− (x′, `′)

end
end

The complete algorithm is presented in Algorithm 1. Similar
to [14, Theorem 2], we can show that under standard technical
assumptions [17], the two time-scale SALMUT algorithm
described above converges almost surely to a τ∗ such that
∇J(τ∗) = 0.

V. NUMERICAL EXPERIMENTS

In this section, we present detailed numerical experiments
to evaluate the proposed reinforcement learning algorithm on
various scenarios described in Sec. II-A.

We consider an edge server with buffer size X = 20, CPU
capacity L = 20, k = 2 cores, service-rate µ = 6.0 for each
core, holding cost h = 0.12. The CPU capacity is discretized
into 20 states for utilization 0−100%, with ` = 0 corresponding
to a state with CPU load ` ∈ [0%− 5%), and so on. The CPU
running cost is c(`) = 10 for ` ≥ 18, which correspond
to a high cost for an overloaded system, c(`) = −0.2 for
6 ≤ ` ≤ 17, a positive reinforcement for being in the optimal
CPU range, and c(`) = 0 otherwise. The offload penalty is
p = 1 for ` ≥ 3 and p = 10 for ` < 3 to discourage offloading
when the system is idle. The probability mass function of
resources requested per request P (r) = 0.6, when r = 1, and
P (r) = 0.4 for r = 2.

Rather than simulating the system in continuous-time, we
simulate the equivalent discrete-time MDP by generating the
next event (arrival or departure) using a Bernoulli distribution
with probabilities and costs described in Sec. III. We assume
that the parameter 1/(α+ ν) in (6) has been absorbed in the
cost function. We assume that the discrete time discount factor
β = α/(α+ ν) equals 0.95.

A. Simulation scenarios

We consider a number of traffic scenarios which are
increasing in complexity and closeness to the real-world setting.
Each scenario runs for a horizon of T = 106. The scenarios
capture variation in the transmission rate and the number of
users over time. Due to space limitations, we omit the details
on how these scenarios were generated and simply provide
their realization in Fig. 1.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Fig. 1. The evolution of λ and N for the different scenarios that we described.
In scenarios 1 and 4, λ and N overlap in the plots.

B. The RL algorithms

For each scenarios, we compare the performance of the
following policies

1) Dynamic Programming (DP), which computes the opti-
mal policy using Theorem 1.

2) SALMUT, as described in Sec. IV-B
3) PPO (Proximal Policy Optimization) [15], which is

a family of trust region policy gradient method and
optimizes a surrogate objective function using stochastic
gradient ascent.

4) A2C (Advantage Actor-Critic) [16], which is a two time-
timescale learning algorithms where the critic estimates
the value function and actor updates the policy distribu-
tion in the direction suggested by the critic.

5) Baseline, which is a fixed-threshold based policy, where
the node accepts requests when ` < 18 (non-overloaded
state) and offloads requests otherwise. Such static policies
are currently deployed in many real-world systems.

C. Results and Discussions

For each of the algorithm described above, we train
SALMUT, PPO, and A2C for 106 steps. The performance of
each algorithm is evaluated every 103 steps using independent
rollouts of length H = 1000 for 100 different random seeds.
The experiment is repeated for the 10 sample paths and the
median performance with an uncertainty band from the first to
the third quartile are plotted in Fig. 2.

For Scenario 1, all RL algorithms (SALMUT, PPO, A2C)
converge to a close-to-optimal policy relatively quickly (with
A2C being slightly slower) and remain stable after convergence.
Since all policies converge quickly, they are also able to adapt
quickly in Scenarios 2–6 and keep track of the time-varying
arrival rates and number of users. There are small differences
in the peformance of the RL algorithms, but these are minor.
Note that, in contrast, the baseline policy of offloading when
the server is overloaded performs poorly.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Fig. 2. Performance of RL algorithms for different scenarios.

The main difference among these three RL algorithms is
the training time and interpretability of policies. We ran our
experiments on a Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
server. Referring to Table I, SALMUT is about 28 times faster
to train than PPO and 17 times faster than A2C.

Fig. 3. The converged policy using
SALMUT along one of the sample
paths. The colorbar represents the prob-
ability of the offloading action.

By construction, SAL-
MUT searches for (random-
ized) threshold based poli-
cies. For example, for Sce-
nario 1, SALMUT converges
to the policy shown in Fig. 3.
It is easy for a network oper-
ator to interpret such thresh-
old based strategies and de-
cide whether to deploy them
or not. In contrast, in deep
RL algorithms such as PPO
and A2C, the policy is pa-
rameterized using a neural network and it is very difficult
to simply visualize the learned weights of such a policy and
decide whether the resultant policy is reasonable. Thus, by
leveraging on the threshold structure of the optimal policy,
SALMUT is able to learn faster and at the same time provide
threshold based policies which are easier to interpret.

VI. CONCLUSION

In this paper we considered a single node optimal policy
for overload protection on the edge server in a time varying
environment. We proposed a RL approach which exploits a
randomized policy with compact value set. We showed that
the policy based on SALMUT is completely characterized by

TABLE I
TRAINING TIME OF RL ALGORITHMS

Algorithm Mean Time (s) Std-dev (s)

SALMUT 95.67 3.29
PPO 2673.17 23.33
A2C 1677.33 9.99

the optimum value of the CPU utilization, is predictable, and
easy to interpret. It performs as well as the standard deep
RL approach but has a far better computational and storage
complexity. This algorithm can be suitably deployed in real
systems for online training. Future work can be extended to
similar problems by controlling multi-edge nodes within a
cluster or inter-cluster. Heterogeneous applications running in
the cluster might also be considered.

ACKNOWLEDGMENTS

This research was supported by Mitacs Grant IT10968.

REFERENCES

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[2] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Int. Symp. Inform.
Theory (ISIT), 2016, pp. 1451–1455.

[3] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,” IEEE
Trans. Wireless Commun., vol. 17, no. 3, pp. 1784–1797, 2017.

[4] D. Van Le and C.-K. Tham, “Quality of service aware computation
offloading in an ad-hoc mobile cloud,” IEEE Trans. Veh. Technol., vol. 67,
no. 9, pp. 8890–8904, 2018.

[5] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, 2018.

[6] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on Markov
decision process,” IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1272–1288,
Jun. 2019.

[7] A. Jensen, “Markoff chains as an aid in the study of Markoff processes,”
Scandinavian Actuarial Journal, vol. 1953, no. sup1, pp. 87–91, 1953.

[8] R. A. Howard, Dynamic Programming and Markov Processes. The
M.I.T. Press, 1960.

[9] M. Puterman, Markov decision processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, 1994.

[10] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[11] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Optimized
computation offloading performance in virtual edge computing systems
via deep reinforcement learning,” IEEE Internet Things J, vol. 6, no. 3,
pp. 4005–4018, 2018.

[12] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning for
online offloading in wireless powered mobile-edge computing networks,”
arXiv:1808.01977, 2018.

[13] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, 2019.

[14] A. Roy, V. Borkar, A. Karandikar, and P. Chaporkar, “Online rein-
forcement learning of optimal threshold policies for Markov decision
processes,” arXiv:1912.10325, 2019.

[15] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[16] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” 2017.

[17] V. S. Borkar, “Stochastic approximation with two time scales,” Systems
& Control Letters, vol. 29, no. 5, pp. 291–294, 1997.

