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Abstract—Mobile Edge Computing (MEC) involves placing
computational capability and applications at the edge of the
network, providing benefits such as reduced latency, reduced
network congestion, and improved performance of applications.
The performance and reliability of MEC degrades significantly
when the edge server(s) in the cluster are overloaded. In this
work, an adaptive admission control policy to prevent edge
node from getting overloaded is presented. This approach is
based on a recently-proposed low complexity RL (Reinforcement
Learning) algorithm called SALMUT (Structure-Aware Learning
for Multiple Thresholds), which exploits the structure of the
optimal admission control policy in multi-class queues for an
average-cost setting. We extend the framework to work for node
overload-protection problem in a discounted-cost setting. The
proposed solution is validated using several scenarios mimicking
real-world deployments in two different settings — computer
simulations and a docker testbed. Our empirical evaluations show
that the total discounted cost incurred by SALMUT is similar to
state-of-the-art deep RL algorithms such as PPO (Proximal Policy
Optimization) and A2C (Advantage Actor Critic) but requires an
order of magnitude less time to train, outputs easily interpretable
policy, and can be deployed in an online manner.

Index Terms—Communication systems, Mobile communica-
tions, Markov process, Adaptive control, Traffic control (com-
munications)

I. INTRODUCTION

IN the last decade, we have seen a shift in the computing
paradigm from co-located datacenters and compute servers

to cloud computing. Due to the aggregation of resources, cloud
computing can deliver elastic computing power and storage
to customers without the overhead of setting up expensive
datacenters and networking infrastructures. It has specially
attracted small and medium-sized businesses who can leverage
the cloud infrastructure with minimal setup costs. In recent
years, the proliferation of Video-on-Demand (VoD) services,
Internet-of-Things (IoT), real-time online gaming platforms,
and Virtual Reality (VR) applications has lead to a strong
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focus on the quality of experience of the end users. The cloud
paradigm is not the ideal candidate for such latency-sensitive
applications owing to the delay between the end user and cloud
server.

This has led to a new trend in computing called Mobile Edge
Computing (MEC) [1], [2], where the compute capabilities are
moved closer to the network edges. It represents an essential
building block in the 5G vision of creating large distributed,
pervasive, heterogeneous, and multi-domain environments.
Harvesting the vast amount of the idle computation power
and storage space distributed at the network edges can yield
sufficient capacities for performing computation-intensive and
latency-critical tasks requested by the end users. However, it
is not feasible to set-up huge resourceful edge clusters along
all network edges that mimic the capabilities of the cloud due
to the sheer volume of resources that would be required, and
which would remain underutilized most of the times. Due to
the limited resources at the edge nodes and fluctuations in the
user requests, an edge cluster may not be capable of meeting
the resource and service requirements of all the users it is
serving.

Computation offloading methods have gained popularity as
they provide a simple solution to overcome the problems of
edge and mobile computing. Data and computation offloading
can potentially reduce the processing delay, improve energy
efficiency, and even enhance security for computation-intensive
applications. The critical problem in the computation offloading
is to determine the amount of computational workload, and
choose the MEC server from all available servers. Various
aspects of MEC from the point of view of the mobile user have
been investigated in the literature. For example, the questions
of when to offload to a mobile server, to which mobile server
to offload, and how to offload have been studied extensively.
See, [3]–[7] and references therein.

However, the design questions at the server side have not
been investigated as extensively.

When an edge server receives a large number of requests
in a short period of time (for example due to a sporting
event), the edge server can get overloaded, which can lead to
service degradation or even node failure. When such service
degradation occurs, edge servers are configured to offload
requests to other nodes in the cluster in order to avoid the node
crash. The crash of an edge node leads to the reduction of the
cluster capacity, which is a disaster for the platform operator
as well as the end users, who are using the services or the
applications. However, performing this migration takes extra
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Fig. 1. A Mobile Edge Computing (MEC) system. User may be mobile and
will connect to the closest edge server. The MEC servers are connected to the
backend cloud server or datacenters through the core network.

time and reduces the resources availability for other services
deployed in the cluster. Therefore, it is paramount to design pro-
active mechanisms that prevent a node from getting overloaded
using dynamic offloading policies that can adapt to service
request dynamics.

The design of an offloading policy has to take into ac-
count the time-varying channel conditions, user mobility,
energy supply, computation workload and the computational
capabilities of different MEC servers. The problem can be
modeled as a Markov Decision Process (MDP) and solved
using dynamic programming. However, solving a dynamic
program requires the knowledge of the system parameters,
which are not typically known and may also vary with time.
In such time-varying environments, the offloading policy must
adapt to the environment. Reinforcement Learning (RL) [8]
is a natural choice to design such adaptive policies as they
do not need a model of the environment and can learn the
optimal policy based on the observed per-step cost. RL has
been successfully applied for designing adaptive offloading
policies in edge and fog computing in [9]–[14] to realize one
or more objectives such as minimizing latency, minimizing
power consumption, association of users and base stations.
Although RL has achieved considerable success in the previous
work, this success is generally achieved by using deep neural
networks to model the policy and the value function. Such
deep RL algorithms require considerable computational power
and time to train, and are notoriously brittle to the choice
of hyper-parameters. They may also not transfer well from
simulation to the real-world, and output policies which are
difficult to interpret. These features make them impractical to
be deployed on the edge nodes to continuously adapt to the
changing network conditions.

In this work, we study the problem of node-overload
protection for a single edge node. Our main contributions
are as follows:

• We present a mathematical model for designing an
offloading policy for node-overload protection. The model
incorporates practical considerations of server holding,

processing and offloading costs. In the simplest case,
when the request arrival process is time-homogeneous,
we model the system as a continuous-time MDP and
use the uniformization technique [15]–[17] to convert
the continuous-time MDP to a discrete-time MDP, which
can then be solved using standard dynamic programming
algorithms [18].

• We show that for time-homogeneous arrival process,
the value function and the optimal policy are weakly
increasing in the CPU utilization.

• We design a node-overload protection scheme that
uses a recently proposed low-complexity RL algorithm
called Structure-Aware Learning for Multiple Thresholds
(SALMUT) [19]. The original SALMUT algorithm was
designed for the average cost models. We extend the
algorithm to the discounted cost setup and prove that
SALMUT converges almost surely to a locally optimal
policy.

• We compare the performance of Deep RL algorithms
with SALMUT in a variety of scenarios in a simulated
testbed which are motivated by real world deployments.
Our simulation experiments show that SALMUT performs
close to the state-of-the-art Deep RL algorithms such as
PPO [20] and A2C [21], but requires an order of magnitude
less time to train and provides optimal policies which are
easy to interpret. Our experiments also show that although
our algorithm is designed under an idealized assumption
on the arrival process, it performs well even when the
ideal assumption is not satisfied.

• We developed a docker testbed where we run actual
workloads and compare the performance of SALMUT
with the baseline policy. Our results show that SALMUT
algorithm outperforms the baseline algorithm.

A preliminary version of this paper appeared in [22], where
the monotonicity results of the optimal policy (Proposition 1
and 2) were stated without proof and the modified SALMUT
algorithm was presented with a slightly different derivation.
However, the convergence behavior of the algorithm (Theorem
2) was not analyzed. A preliminary version of the comparison
on SALMUT with state of the art RL algorithms on a
computer simulation was included in [22]. However, the
detailed behavioral analysis (Sec. V) and the results for the
docker testbed (Sec. VI) are new.

The rest of the paper is organized as follows. We present the
system model and problem formulation in Sec. II. In Sec. III,
we present a dynamic programming decomposition for the case
of time-homogeneous statistics of the arrival process. In Sec. IV,
we present the structure aware RL algorithm (SALMUT)
proposed in [19] for our model. In Sec. V, we conduct a
detailed experimental study to compare the performance of
SALMUT with other state-of-the-art RL algorithms using
computer simulations. In Sec. VI, we compare the performance
of SALMUT with baseline algorithm on the real-testbed. Finally
we conclude in Sec. VII.
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Fig. 2. System model of admission control in a single edge server.

TABLE I
LIST OF SYMBOLS USED

Symbol Description

-C Queue length at time C
!C CPU load of the system at time C
�C Offloading action taken by agent at time C
: Number of cores in the edge node
' CPU resources required by a request

% (A ) PMF of the CPU resources required
` Processing time of a single core in the edge node
_ Request arrival rate of user
ℎ Holding cost per unit time

2 (ℓ) Running cost per unit time
? (ℓ) Penalty for offloading the packet

d(G, ℓ, 0) Cost function in the continuous MDP
c Policy of the RL agent
U Discount rate in continuous MDP

+ c (G, ℓ) Performance of the policy c
? (G′, ℓ′ |G, ℓ, 0) Transition probability function

V Discount rate in discrete MDP
d̄(G, ℓ, 0) Cost function in the discrete MDP
& (G, ℓ, 0) Q-value for state (G, ℓ) and action 0

g Threshold vector
cg Optimal Threshold Policy for SALMUT

� (g) Performance of the SALMULT policy cg
5 (g (G) , ℓ) Probability of accepting new request

\ Temperature of the sigmoid function
` (G, ℓ) Occupancy measure on the states starting from

(G0, ℓ0)
11
= Fast timescale learning rate
12
= Slow timescale learning rate

�off Number of requests offloaded by edge node
�ov Number of times edge node enters an overloaded

state

II. MODEL AND PROBLEM FORMULATION

A. System model

A simplified MEC system consists of multiple edge servers
and several mobile users accessing the servers (see Fig. 1).
We consider one edge server in such a system. Mobile users
(connected to that server) independently generate service
requests according to a Poisson process. The rate of requests
and the number of users may also change with time. The edge
server takes CPU resources to serve each request from mobile
users. When a new request arrives, the edge server has the
option to serve it or offload it to other healthy edge server
in the cluster. The request is buffered in a queue before it is
served. The mathematical model of the edge server and the
mobile users is presented below.

1) Edge server: Let -C ∈ {0, 1, . . . ,X} denote the number
of service requests buffered in the queue, where X denotes the
size of the buffer. Let !C ∈ {0, 1, . . . , L} denote the CPU load

at the server where L is the capacity of the CPU. We assume
that the CPU has : cores.

We assume that the requests arrive according to a (potentially
time-varying) Poisson process with rate _. If a new request
arrives when the buffer is full, the request is offloaded to
another server. If a new request arrives when the buffer is not
full, the server has the option to either accept or offload the
request.

The server can process up to a maximum of : requests
from the head of the queue. Processing each request requires
CPU resources for the duration in which the request is being
served. The required CPU resources is a random variable ' ∈
{1, . . . ,R} with probability mass function %. The realization
of ' is not revealed until the server starts working on the
request. The duration of service is exponentially distributed
random variable with rate `.

Let A = {0, 1} denote the action set. Here �C = 1 means
that the server decides to offload the request while �C = 0
means that the server accepts the request.

2) Traffic model for mobile users: We consider multiple
models for traffic.

• Scenario 1: There are # users and all users generate
requests according to the same rate _ and the rate does
not change over time. Thus, the rate at which requests
arrive is _# .

• Scenario 2: In this scenario, we assume that there are #
users and all users generate requests according to rate _"C

,
where "C ∈ {1, . . . ,M} is a global state which changes
over time. Thus, the rate at which requests arrive in state <,
where < ∈ "C , is _<# .

• Scenario 3: As before, there are # users. User = has a
state "=

C ∈ {1, . . . ,M}. When the user = is in state <,
it generates requests according to rate _<. The state "=

C

changes over time. Thus, the rate at which requests arrive
at the server is

∑#
==1 _"=

C
.

• Time-varying user set: In each of the scenarios above,
we can consider the case when the number # of users is
not fixed and changes over time. We call them Scenario
4, 5, and 6 respectively.

All of these traffic models are point processes with increasing
degree of complexity. We will focus on theoretical analysis on
Scenario 1 but test the performance of the proposed algorithm
on all 6 scenarios to highlight its performance in real-world
settings.

3) Cost and the optimization framework: The system incurs
three types of a cost:

• A holding cost of ℎ per unit time when a request is
buffered in the queue but is not being served.

• A running cost of 2(ℓ) per unit time for running the CPU
at a load of ℓ. For example, a running cost 2(ℓ) = 2◦1{ℓ >
ℓ◦} captures the setting where the system incurs a cost 2◦
whenever the CPU load is greater than ℓ◦.

• A penalty of ?(ℓ) for offloading a packet at CPU load ℓ.
For example, a ?(ℓ) = ?◦1{ℓ < ℓ◦} captures the setting
where the system incurs a penalty ?◦ for off-loading a
packet when the CPU load is less than ℓ◦.
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We combine all these costs in a cost function

d(G, ℓ, 0) = ℎ[G − :]+ + 2(ℓ) + ?(ℓ)1{0 = 1}, (1)

where 0 denotes the action, [G]+ is a short-hand for max{G, 0}
and 1{·} is the indicator function. Note that to simplify the
analysis, we assume that the server always serves min{-C , :}
requests. It is also assumed that 2(ℓ) and 2(ℓ)+?(ℓ) are weakly
increasing in ℓ.

Whenever a new request arrives, the server uses a memory-
less policy c : {0, 1, . . . ,X} × {0, 1, . . . , L} → {0, 1} to choose
an action

�C = cC (-C , !C ).

The performance of a policy c starting from initial state
(G, ℓ) is given by

+ c (G, ℓ) = E
[∫ ∞

0
4−UC d(-C , !C , �C )3C

���� -0 = G, !0 = ℓ

]
,

(2)
where U > 0 is the discount rate and the expectation is with
respect to the arrival process, CPU utilization, and service
completions.

The objective is to minimize the performance (2) for the
different traffic scenarios listed above. We are particularly
interested in the scenarios where the arrival rate and potentially
other components of the model such as the resource distribution
are not known to the system designer and change during the
operation of the system.

B. Solution framework

When the model parameters (_, #, `, %, :) are known and
time-homogeneous, the optimal policy c can be computed
using dynamic programming. However, in a real system,
these parameters may not be known, so we are interested
in developing a RL algorithm which can learn the optimal
policy based on the observed per-step cost.

In principle, when the model parameters are known, Scenar-
ios 2 and 3 can also be solved using dynamic programming.
However, the state of such dynamic programs will include the
state "C of the system (for Scenario 2) or the states ("=

C )#==1
of all users (for Scenario 3). Typically, these states change at
a slow time-scale. So, we will consider reinforcement learning
algorithms which do not explicitly keep track of the states
of the user and verify that the algorithm can adapt quickly
whenever the arrival rates change.

III. DYNAMIC PROGRAMMING TO IDENTIFY OPTIMAL
ADMISSION CONTROL POLICY

When the arrival process is time-homogeneous, the process
{-C , !C }C≥0 is a finite-state continuous-time MDP controlled
through {�C }C≥0. To specify the controlled transition probability
of this MDP, we consider the following two cases.

First, if there is a new arrival at time C, then

P(-C = G ′, !C = ℓ′ | -C− = G, !C− = ℓ, �C = 0)

=


%(ℓ′ − ℓ), if G ′ = G + 1 and 0 = 0
1, if G ′ = G, ℓ′ = ℓ, and 0 = 1
0, otherwise.

(3)

We denote this transition function by @+ (G ′, ℓ′ |G, ℓ, 0). Note
that the first term %(ℓ′ − ℓ) denotes the probability that the
accepted request required (ℓ′ − ℓ) CPU resources.

Second, if there is a departure at time C,

P(-C = G ′, !C = ℓ′ | -C− = G, !C− = ℓ)

=

{
%(ℓ − ℓ′), if G ′ = [G − 1]+

0, otherwise.
(4)

We denote this transition function by @− (G ′, ℓ′ |G, ℓ). Note that
there is no decision to be taken at the completion of a request,
so the above transition does not depend on the action.

We combine (3) and (4) into a single controlled transition
probability function from state (G, ℓ) to state (G ′, ℓ′) given by

?(G ′, ℓ′ | G, ℓ, 0) = _

_ +min{G, :}` @+ (G
′, ℓ′ | G, ℓ, 0)

+ min{G, :}`
_ +min{G, :}` @− (G

′, ℓ′ | G, ℓ). (5)

Let a = _ + :` denote the uniform upper bound on the
transition rate at the states. Then, using the uniformization
technique [15], [16], we can convert the above continuous time
discounted cost MDP into a discrete time discounted cost MDP
with discount factor V = a/(U+a), transition probability matrix

?̄(G ′, ℓ′ | G, ℓ, 0) = _
a
@+ (G ′, ℓ′ | G, ℓ, 0)

+ min{G, :}`
a

@− (G ′, ℓ′ | G, ℓ)

+
[
1 − _ +min{G, :}`

a

]
1{(G ′, ℓ′) = (G, ℓ)}, (6)

and per-step cost

d̄(G, ℓ, 0) = 1
U + a d(G, ℓ, 0).

Therefore, we have the following.

Theorem 1 Consider the following dynamic program

+ (G, ℓ) = min{&(G, ℓ, 0), &(G, ℓ, 1)} (7)

where + is called the value function and

&(G,ℓ, 0) = 1
U + a

[
ℎ[G − :]+ + 2(ℓ)

]
+ V

[
_

a

R∑
A=1

%(A)+ ( [G + 1]X, [ℓ + A]L)

+ min{G, :}`
a

R∑
A=1

%(A)+ ( [G − 1]+, [ℓ − A]+)

+
[
1 − _ +min{G, :}`

a

]
+ (G, ℓ)

]
and

&(G,ℓ, 1) = 1
U + a

[
ℎ[G − :]+ + 2(ℓ) + ?(ℓ)

]
+ V

[
min{G, :}`

_ +min{G, :}`

R∑
A=1

%(A)+ ( [G − 1]+, [ℓ − A]+)

+
[
1 − _ +min{G, :}`

a

]
+ (G, ℓ)

]
,
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where [G]B denotes min{G,B}.
Let c(G, ℓ) ∈ A denote the argmin the right hand side of (7).

Then, the time-homogeneous policy c(G, ℓ) is optimal for the
original continuous-time optimization problem.

PROOF The proof is present in Appendix A. �

Thus, for all practical purposes, the decision maker has to
solve a discrete-time MDP, where he has to take decisions at
the instances when a new request arrives. In the sequel, the
per-step cost has been scaled by 1/(U + a) and we will not
write it explicitly.

When the system parameters are known, the above dynamic
program can be solved using standard techniques such as value
iteration, policy iteration, or linear programming. However,
in practice, the system parameters may slowly change over
time. Therefore, instead of pursuing a planning solution, we
consider reinforcement learning solutions which can adapt to
time-varying environments.

IV. STRUCTURE-AWARE REINFORCEMENT LEARNING

Although, in principle, the optimal admission control prob-
lem formulated above can be solved using deep RL algorithms,
such algorithms require significant computational resources to
train, are brittle to the choice of hyperparameters, and generate
policies which are difficult to interpret. For the aforementioned
reasons, we investigate an alternate class of RL algorithms
which circumvents these limitations.

A. Structure of the optimal policy

We first establish basic monotonicity properties of the value
function and the optimal policy.

Proposition 1 For a fixed queue length G, the value function
is weakly increasing in the CPU utilization ℓ.

PROOF The proof is present in Appendix B. �

Proposition 2 For a fixed queue length G, if it is optimal to
reject a request at CPU utilization ℓ, then it is optimal to reject
a request at all CPU utilizations ℓ′ > ℓ.

PROOF The proof is present in Appendix C. �

B. The SALMUT algorithm

Proposition 2 shows that the optimal policy can be repre-
sented by a threshold vector g = (g(G))X

G=0, where g(G) ∈
{0, . . . , L} is the smallest value of the CPU utilization such
that it is optimal to accept the packet for CPU utilization less
than or equal to g(G) and reject it for utilization greater than
g(G).

The SALMUT algorithm was proposed in [19] to exploit a
similar structure in admission control for multi-class queues.
It was originally proposed for the average cost setting. In the
remainder of this section, we present a generalization to the
discounted-time setting.

We use cg to denote a threshold-based policy with the
parameters (g(G))X

G=0 taking values in {0, . . . , L}X+1. The key
idea behind SALMUT is that, instead of deterministic threshold-
based policies, we consider a random policy parameterized

with parameters taking value in the compact set [0, L]X+1.
Then, for any state (G, ℓ), the randomized policy cg chooses
action 0 = 0 with probability 5 (g(G), ℓ) and chooses action
0 = 1 with probability 1 − 5 (g(G), ℓ), where 5 (g(G), ℓ) is any
continuous decreasing function w.r.t ℓ, which is differentiable
in its first argument, e.g., the sigmoid function

5 (g(G), ℓ) = exp((g(G) − ℓ)/\)
1 + exp((g(G) − ℓ)/\) , (8)

where \ > 0 is a hyper-parameter (often called “temperature”).
Let ?g (G ′, ℓ′ |G, ℓ) denote the transition function under policy

cg , i.e.

?g (G ′, ℓ′ |G, ℓ) = 5 (g(G), ℓ) ?̄(G ′, ℓ′ |G, ℓ, 0)
+ (1 − 5 (g(G), ℓ)) ?̄(G ′, ℓ′ |G, ℓ, 1) (9)

Similarly, let d̄g (G, ℓ) denote the expected per-step cost under
policy cg , i.e.,

d̄g (G, ℓ) = 5 (g(G), ℓ) d̄(G, ℓ, 0) + (1− 5 (g(G), ℓ)) d̄(G, ℓ, 1).
(10)

Let ∇ denote the gradient with respect to g.
If the initial state (G0, ℓ0) is known, we consider � (g) as

the performance of policy cg . From Performance Derivative
formula [23, Eq. 2.44], we know that

∇� (g) = 1
1 − V

X∑
G=0

L∑
ℓ=0

`(G, ℓ)
[
∇d̄g (G, ℓ)

+ V
X∑
G′=0

L∑
ℓ′=0
∇?g (G ′, ℓ′ |G, ℓ)+g (G ′, ℓ′)] (11)

where `(G, ℓ) is the occupancy measure on the states starting
from the initial state (G0, ℓ0).

From (9), we get that

∇?g (G ′, ℓ′ |G, ℓ) = ( ?̄(G ′, ℓ′ |G, ℓ, 0) − ?̄(G ′, ℓ′ |G, ℓ, 1))
∇ 5 (g(G), ℓ). (12)

Similarly, from (10), we get that

∇d̄g (G, ℓ) = ( d̄(G, ℓ, 0) − d̄(G, ℓ, 1))∇ 5 (g(G), ℓ). (13)

Substituting (9) and (10) in (11) and simplifying, we get

∇� (g) = 1
1 − V

X∑
G=0

L∑
ℓ=0

`(G, ℓ) [Δ&(G, ℓ)]∇ 5 (g(G), ℓ), (14)

where Δ&(G, ℓ) = &(G, ℓ, 0) −&(G, ℓ, 1).
Therefore, when (G, ℓ) is sampled from the stationary

distribution `, an unbiased estimator of ∇� (g) is proportional
to Δ&(G, ℓ)∇ 5 (g(G), ℓ).

Thus, we can use the standard two time-scale Actor-Critic
algorithm [8] to simultaneously learn the policy parameters g
and the action-value function & as follows. We start with an
initial guess &0 and g0 for the action-value function and the
optimal policy parameters. Then, we update the action-value
function using temporal difference learning:
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Fig. 3. Illustration of the two-timescale SALMUT algorithm.

&=+1 (G, ℓ, 0) = &= (G, ℓ, 0) + 11
=

[
d̄(G, ℓ, 0)

+ V min
0′∈�

&= (G ′, ℓ′, 0′) −&= (G, ℓ, 0)
]
, (15)

and update the policy parameters using stochastic gradient
descent while using the unbiased estimator of ∇� (g):

g=+1 (G) = Proj
[
g= (G) + 12

=∇ 5 (g(G), ℓ)Δ&(G, ℓ)], (16)

where Proj is a projection operator which clips the values to
the interval [0, L] and {11

=}=≥0 and {12
=}=≥0 are learning rates

which satisfy the standard conditions on two time-scale learning:∑
= 1

:
= = ∞,

∑
= (1:=)2 < ∞, : ∈ {1, 2}, and lim=→∞ 12

=/11
= = 0.

Algorithm 1: Two time-scale SALMUT algorithm
Result: g
Initialize action-value function ∀G,∀ℓ, &(G, ℓ, 0) ← 0
Initialize threshold vector ∀G, g(G) ← rand(0, L)
Initialize start state (G, ℓ) ← (G0, ℓ0)
while TRUE do

if EVENT == ARRIVAL then
Choose action 0 according to Eq. (8)
Observe next state (G ′, ℓ′)
Update &(G, ℓ, 0) according to Eq. (15)
Update threshold g using Eq. (16)
(G, ℓ) ←− (G ′, ℓ′)

end
end

The complete algorithm is presented in Algorithm 1 and
illustrated in Fig. 3.

Theorem 2 The two time-scale SALMUT algorithm described
above converges almost surely and lim=→∞ ∇� (g=) = 0.

PROOF The proof is present in Appendix D. �

Remark 1 The idea of replacing the “hard” threshold g(G) ∈
{0, . . . , L}X+1 with a “soft” threshold g(G) ∈ [0, L]X+1 is
same as that of the SALMUT algorithm [19]. However, our
simplification of the performance derivative (11) given by
(14) is conceptually different from the simplification presented

in [19]. The simplification in [19] is based on viewing∑X
G′=0

∑L
ℓ′=0 ∇?g (G ′, ℓ′ |G, ℓ)+g (G ′, ℓ′) term in (11) as

2E
[
(−1) X∇ 5 (g(G), ℓ)+g (Ĝ, ℓ̂)]

where X ∼ Unif{0, 1} is an independent binary random variable
and (Ĝ, ℓ̂) ∼ X?(·|G, ℓ, 0) + (1 − X)?(·|G, ℓ, 1). In contrast, our
simplification is based on a different algebric simplification
that directly simplifies (11) without requiring any additional
sampling. Therefore, the algorithm presented here will have
less variance compared to the algorithm in [19].

Remark 2 The update of the Q-function in (15) is standard
temporal difference learning. At each step, a single state (G, ℓ) is
updated and the update requires a maximization over 2 actions.
Therefore, the computational complexity of implementing (15)
is O(1). The update of the policy parameters in (16) requires
O(1) operations. Therefore, the computation complexity of
implementing (16) is also O(1). Therefore, the per-iteration
complexity of the Algorithm 1 is O(1). The policy of SALMUT
is completely characterized by the threshold vector g. In
addition to the vector g, we need to store the Q-value function
of every state-action pair. This results in a storage complexity
of $ (2XL).

V. NUMERICAL EXPERIMENTS - COMPUTER SIMULATIONS

In this section, we present detailed numerical experiments
to evaluate the proposed reinforcement learning algorithm on
various scenarios described in Sec. II-A.

We consider an edge server with buffer size X = 20, CPU
capacity L = 20, : = 2 cores, service-rate ` = 3.0 for each core,
holding cost ℎ = 0.12. The CPU capacity is discretized into
20 states for utilization 0 − 100%, with ℓ = 0 corresponding to
a state with CPU load ℓ ∈ [0% − 5%), and so on.

The CPU running cost is modelled such that it incurs a
positive reinforcement for being in the optimal CPU range,
and a high cost for an overloaded system.

2(ℓ) =


0 for ℓ ≤ 5
−0.2 for 6 ≤ ℓ ≤ 17
10 for ℓ ≥ 18

The offload penalty is modelled such that it incurs a small
fixed cost to enable the offloading behavior only when the
system is loaded. It also incurs a very high cost when the
system is idle to discourage offloading in such scenarios.

?(ℓ) =
{

1 for ℓ ≥ 3
10 for ℓ ≤ 3

The probability mass function of resources requested per
request is as follows

%(A) =
{

0.6 if A = 1
0.4 if A = 2

.

Rather than simulating the system in continuous-time, we
simulate the equivalent discrete-time MDP by generating the
next event (arrival or departure) using a Bernoulli distribution
with probabilities and costs described in Sec. III. See Sec. V-C
for details. We assume that the discrete time discount factor
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V = U/(U + a) equals 0.95 and assume it has been scaled by
1/(U + a) and do not write it explicitly.

A. Simulation scenarios

We consider a number of traffic scenarios which are
increasing in complexity and closeness to the real-world setting.
Each scenario runs for a ) = 106 events. The scenarios capture
variation in the transmission rate and the number of users over
time, their realization can be seen in Fig. 4.

(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

(e) Scenario 5 (f) Scenario 6

Fig. 4. The evolution of _ and # for the different scenarios that we described.
In scenarios 1 and 4, _ and # overlap in the plots.

The evolution of the arrival rate _ and the number of users
# for the more dynamic environments is shown in Fig. 4.

a) Scenario 1: This scenario tests how the learning
algorithms perform in the time-homogeneous setting. We
consider a system with # = 24 users with arrival rate _8 = 0.25.
Thus, the overall arrival rate _ = #_8 = 6.

b) Scenario 2: This scenario tests how the learning
algorithms adapt to occasional but significant changes to arrival
rates. We consider a system with # = 24 users, where each
user generates requests at rate _low = 0.25 for the interval
(0, 3.33 × 105], then generates requests at rate _high = 0.375
for the interval (3.34 × 105, 6.66 × 105], and then generates
requests at rate _low again for the interval (6.67 × 105, 106].

c) Scenario 3: This scenario tests how the learning
algorithms adapt to frequent but small changes to the arrival
rates. We consider a system with # = 24 users, where each user
generates requests according to rate _ ∈ {_low, _high} where
_low = 0.25 and _high = 0.375. We assume that each user
starts with a rate _low or _high with equal probability. At time
intervals < × 104, each user toggles its transmission rate with
probability ? = 0.1.

d) Scenario 4: This scenario tests how the learning
algorithm adapts to change in the number of users. In particular,
we consider a setting where the system starts with #1 = 24 user.

At every 105 time steps, a user may leave the network, stay in
the network or add another mobile device to the network with
probabilities 0.05, 0.9, and 0.05, respectively. Each new user
generates requests at rate _.

e) Scenario 5: This scenario tests how the learning
algorithm adapts to large but occasional change in the arrival
rates and small changes in the number of users. In particular,
we consider the setup of Scenario 2, where the number of
users change as in Scenario 4.

f) Scenario 6: This scenario tests how the learning
algorithm adapts to small but frequent change in the arrival
rates and small changes in the number of users. In particular,
we consider the setup of Scenario 3, where the number of
users change as in Scenario 4.

B. The RL algorithms

For each scenarios, we compare the performance of the
following policies

1) Dynamic Programming (DP), which computes the opti-
mal policy using Theorem 1.

2) SALMUT, as described in Sec. IV-B.
3) Q-Learning (QL), a model-free reinforcement learning

algorithm to learn the value of an action in a particular
state using (15) and chooses an action using n-greedy
policy with n = 0.001.

4) PPO [20], which is a family of trust region policy gradient
method and optimizes a surrogate objective function
using stochastic gradient ascent.

5) A2C [21], which is a two time-timescale learning
algorithms where the critic estimates the value function
and actor updates the policy distribution in the direction
suggested by the critic.

6) Baseline, which is a fixed-threshold based policy, where
the node accepts requests when ℓ < 17 and offloads
requests otherwise. We ran the baseline policy for
multiple thresholds ranging from ℓ = 14 to ℓ = 19 and
observed that ℓ = 17 gives us the best performance. Such
static policies are currently deployed in many real-world
systems.

For SALMUT, we use ADAM [24] optimizer with initial
learning rates (11 = 0.03, 12 = 0.002). For Q-learning, we
use Stochastic Gradient Descent with 11 = 0.01. We used the
stable-baselines [25] implementation of PPO and A2C with
learning rates 0.0003 and 0.001 respectively.

C. Simulation Details

We train each RL algorithm described above for ) = 106

events. To simulate the continuous time system in discrete
time, we generate events corresponding to the arrival or the
completion of requests as described in the dynamic program
of Theorem 1. In particular, we generate a sequence {IC })C=1
of independent Unif[0, 1] random variables. At discrete-time C,
we set the event to be an arrival event if IC is less than or
equal to _C/(_C + :`); we set the event to be a departure event
if IC is greater than _C/(_C + :`) but less than or equal to
(_C +min{GC , :}`)/(_ + :`); otherwise, we set the event to be
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 5. Performance of RL algorithms for different scenarios. The legend shown in (a) applies to all subfigures.

a null event (so that the state does not change). We train all
RL algorithms on the same sequence {IC })C−1.

We store the policy parameters obtained during training and
evaluate their performance every 103 events as follows: for
each evaluation, we do 100 independent rollouts of � = 1000
events (generated in the same manner as above), compute the
(discrete-time) expected discounted cost over horizon � for
each rollout, and use the median across the 100 rollouts as an
estimate for the performance.

We then repeat the end-to-end training (i.e., generating the
sequence {IC })C=1, training all RL algorithms, and estimating
the performance after 103 events) for 10 random seeds and
generate summary statistics of the performance estimated at
each evaluation step. The summary statistic consists of the
median and the uncertainty band from the first to the third
quartile (for the 10 random seeds). The plot of the median and
the uncertainty band versus the number of events is shown in
Fig. 5.

D. Analysis of the Results

For Scenario 1, all RL algorithms (SALMUT, Q-learning,
PPO, A2C) converge to a close-to-optimal policy and remain
stable after convergence. Since all policies converge quickly,
SALMUT, PPO, and A2C are also able to adapt quickly
in Scenarios 2–6 and keep track of the time-varying arrival
rates and number of users. There are small differences in the
performance of the RL algorithms, but these are minor. Note
that, in contrast, Q-learning policy does not perform well when
the dynamics of the requests changes drastically, whereas the
baseline policy performs poorly when the server is overloaded.

The plots for Scenario 1 (Fig. 5a) show that PPO converges to
the optimal policy in less than 105 events, SALMUT and A2C
takes around 2 × 105 events, whereas Q-learning takes around
5 × 105 events to converge. The policies for all the algorithms
remain stable after convergence. Upon further analysis on the

structure of the optimal policy, we observe that the structure of
the optimal policy of SALMUT (Fig. 6b) differs from that of the
optimal policy computed using DP (Fig. 6a). There is a slight
difference in the structure of these policies when buffer size (G)
is low and CPU load (ℓ) is high, which occurs because these
states are reachable with a very low probability and hence
SALMUT doesn’t encounter these states in the simulation
often to be able to learn the optimal policy in these states. The
plots from Scenario 2 (Fig. 5b) show similar behavior in the
intervals where _ is constant. When _ changes significantly, we
observe all RL algorithms except Q-learning are able to adapt
to the drastic but stable changes in the environment. Once the
load stabilizes, all the algorithms are able to readjust to the
changes and perform close to the optimal policy. The plots
from Scenario 3 (Fig. 5c) show similar behavior to Scenario
1, i.e., small but frequent changes in the environment do not
impact the learning performance of reinforcement learning
algorithms.

The plots from Scenario 4-6 (Fig. 5d-5f) show consistent
performance with varying users. The RL algorithms including
Q-learning show similar performance for most of the time-steps
except in Scenario 5, which is similar to the behavior observed
in Scenario 2. The Q-learning algorithm also performs poorly
when the load suddenly changes in Scenarios 4 and 6. This
could be due to the fact that Q-learning takes longer to adjust
to a more aggressive offloading policy.

Remark 3 Only scenario 1 satisfies the Poisson arrival as-
sumptions of our model. Scenario 2 is a Cox process, and
the other scenarios may be viewed as general point processes.
Nonetheless, the results show that the SALMUT algorithm
performs competitively against the more general reinforcement
learning algorithms.
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(a) DP _ = 6 (b) SALMUT _ = 6

Fig. 6. Comparing the optimal policy and converged policy of SALMUT
along one of the sample paths. The colorbar represents the probability of the
offloading action.

E. Analysis of Training Time and Policy Interpretability

The main difference among these four RL algorithms is
the training time and interpretability of policies. We ran our
experiments on a server with Intel(R) Xeon(R) Gold 6148
CPU @ 2.40GHz processor. The training time of all the RL
algoirthms is shown in Table II. The mean training time is
computed based on a single scenario over different runs and
averaged across all the six scenarios. SALMUT is about 28
times faster to train than PPO and 17 times faster than A2C.
SALMUT does not require a non-linear function approximator
such as Neural Networks (NN) to represent its policy, making
the training time for SALMUT very fast. We observe that
Q-learning is around 1.5 times faster than SALMUT as it
does not need to update its policy parameters separately. Even
though Q-learning is faster than SALMUT, Q-learning does
not converge quickly to an optimal policy when the request
distribution changes.

TABLE II
TRAINING TIME OF RL ALGORITHMS

Algorithm Mean Time (s) Std-dev (s)

SALMUT 98.23 4.86
Q-learning 62.73 1.57

PPO 2673.17 23.33
A2C 1677.33 9.99

By construction, SALMUT searches for (randomized) thresh-
old based policies. For example, for Scenario 1, SALMUT
converges to the policy shown in Fig. 6b.

It is easy for a network operator to interpret such threshold
based strategies and decide whether to deploy them or not. In
contrast, in deep RL algorithms such as PPO and A2C, the
policy is parameterized using a neural network and it is difficult
to visualize the learned weights of such a policy and decide
whether the resultant policy is reasonable. Thus, by leveraging
on the threshold structure of the optimal policy, SALMUT is
able to learn faster and at the same time provide threshold
based policies which are easier to interpret.

The policy of SALMUT is completely characterized by
the threshold vector g, making it storage efficient too. The
threshold-nature of the optimal policy computed by SALMUT,
can be easily interpreted by just looking at the threshold
vector g (see Fig. 6b), making it easy to debug and estimate

the behavior of the system operating under such policies.
However, the policies learned by A2C and PPO are the learned
weights of the NN, which are undecipherable and may lead
to unpredictable results occasionally. It is very important
that the performance of real-time systems be predictable and
reliable, which has hindered the adoption of NNs in real-time
deployments.

F. Behavioral Analysis of Policies

We performed further analysis on the behavior of the learned
policy by observing the number of times the system enters into
an overloaded state and offloads incoming request. For each
training run (i.e., random seed), we divide the 106 training
events into intervals of size 1000. For each interval we count
the number �ov of times the system enters into an overload
state and the number �off of times the system offloads new
requests. We repeat these calculations for each of the 10 random
seeds and compute the summary statistics of �ov and �off . The
median and the uncertainty band from the first to the third
quartile is plotted in Figs. 8 and 7.

We observe in Fig. 7, that all algorithms learn not to enter
into the overloaded state. As seen in the case of total discounted
cost (Fig. 5), PPO learns it instantly, followed by SALMUT,
and A2C. The policy learned by A2C is such that it enters
the overloaded states many times during the initial stages of
training and learns a good policy after 0.8 × 106, the policy is
drastically improved and we can see the behavior similar to
other RL algorithms. On the other hand, Q-learning policy tend
to perform more offloading initially and eventually learns a
good balance between the two actions. The observation is valid
for all the different scenarios we tested. We observe that for
Scenario-4, PPO enters the overloaded state at around 0.8×106

which is due to the fact the
∑
8 _8 increases drastically at that

point (seen in Fig. 4d) and we also see its effect on the cost
in Fig. 5d at that time. We also observe that SALMUT enters
into overloaded states when the request distribution changes
drastically in Scenario 2 and 5. It is able to recover quickly
and adapt its threshold policy to a more aggressive offloading
policy. The baseline algorithms, on the other hand, enters into
the overloaded state quiet often, whereas Q-learning enters
overloaded state but not as often as the baseline algorithm.

We observe in Fig. 8, that all RL algorithms learn to adjust
their offloading rate to avoid overloaded state. The number of
times requests have been offloaded is directly proportional to
the total arrival rate of all the users at that time. When the
arrival rate increases, the number of times the offloading occurs
also increases in the interval. We perform further analysis of
this behavior for the docker-testbed (see Fig. 13) and the results
are similar for the simulations too.

VI. TESTBED IMPLEMENTATION AND RESULTS

We test our proposed algorithm on a testbed resembling
the MEC architecture in Fig. 1, but without the core network
and backend cloud server for simplicity. We consider an edge
node which serves a single application. Both the edge nodes
and clients are implemented as containerized environments in
a virtual machine. The overview of the testbed is shown in
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 7. Comparing the number of times the system goes into the overloaded state at each evaluation step. The trajectory of event arrival and departure is fixed
for all evaluation steps and across all algorithms for the same arrival distribution. The �ov for A2C algorithm reach upto 140 during initial stages and have
been cut off from the figures to have a better clarity on the rest of the results. The legend shown in (a) applies to all subfigures.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 8. Comparing the number of times the system performs offloading at each evaluation step. The trajectory of event arrival and departure is fixed for all
evaluation steps and across all algorithms for the same arrival distribution.The legend shown in (a) applies to all subfigures.

Fig. 9. The load generator generates requests for each client
independently according to a time-varying Poisson process.
The requests at the edge node are handled by the controller
which decides either to accept the request or offload the request
based on the policy for the current state of the edge node. If
the action is "accept", the request is added to the request
queue of the edge node, otherwise the request is offloaded to
another healthy edge node via the proxy network. The Key
Performance Indicator (KPI) collector copies the KPI metrics
into a database at regular intervals. The RL modules uses
these metrics to update its policies. The Subscriber/Notification
(Sub/Notify) module notifies the controller about the updated
policy. The controller now uses the updated policy to serve all
future requests.

We consider an edge server with buffer size X = 20, CPU
capacity L = 20, : = 2 cores, service-rate ` = 3.0 for each
core, holding cost ℎ = 0.12. The CPU capacity is discretized
into 20 states for utilization 0 − 100%, similar to the previous
experiment. The CPU running cost is 2(ℓ) = 30 for ℓ ≥ 18,
2(ℓ) = −0.2 for 6 ≤ ℓ ≤ 17, and 2(ℓ) = 0 otherwise. The
offload penalty is ? = 1 for ℓ ≥ 3 and ? = 10 for ℓ < 3. The
baseline algorithm accepts request when ℓ < 18 and offloads
otherwise. We did not perform a hyperparamater search over
the baseline thresholds as it is too expensive. We assume that
the discrete time discount factor V = U/(U + a) equals 0.99.

We simulate the system for 105 seconds (approx 27 hours
46 minutes). We divided the total time into 1000 steps of 100
seconds each. In Scenarios 2 − 6, we do not change the arrival
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Fig. 9. The overview of the docker-testbed environment.

rate in the middle of the 100 second interval.
We generate the service requests using continuous time point

process where the arrival rate _C changes as per Fig. 4. Each
request runs a workload on the edge node and consumes CPU
resources ', where ' is a random variable. The states, actions,
costs, next states for each step are stored in a buffer in the edge
node. After the completion of a step, the KPI collector copies
these buffers into a database. The RL module is then invoked,
which loads its most recent policy and other parameters, and
trains on this new data to update its policy. Once the updated
policy is generated, it is copied in the edge node and is used
by the controller for serving the requests for the next step.

We do not run neural network based RL algorithms in
our testbed as these algorithms cannot be trained in real-
time because the time they require to process each sample
is more than the sampling interval. So, we only compare
with the baseline algorithm. For SALMUT, we store the
policy parameters every step and evaluate their performance
by running 10 independent rollouts for 100 seconds. The
experiment is repeated for 5 random seeds and the median
performance with an uncertainty band from the first to the
third quartile are plotted in Fig. 10 along with the total request
arrival rate (

∑
8 _8) in gray dotted lines.

A. Analysis of the Results

For Scenario 1 (Fig. 10a), we observe that the SALMUT
algorithm outperforms the baseline algorithm right from the
start, indicating that SALMUT updates its policy swiftly at
the start and slowly converges towards optimal performance,
whereas the baseline incurs high cost throughout. Since
SALMUT policies converge towards optimal performance after
some time, they are also able to adapt quickly in Scenarios 2–6
(Fig. 10b-10f) and keep track of the time-varying arrival rates
and number of users. We observe that SALMUT takes some
time to learn a good policy, but once it learns the policy, it
adjusts to frequent but small changes in _ and # very well
(see Fig. 10c and 10d). If the request rate changes drastically,
the performance decreases a little (which is bound to happen
as the total requests to process are much larger than the
server’s capacity) but the magnitude of the performance drop is
much lesser in SALMUT as compared to the baseline, seen in
Fig. 10b, 10e and 10f. It is because the baseline algorithms incur

high overloading cost for these requests whereas SALMUT
incurs offloading costs for the same requests. Further analysis
on this is present in Section 4.2.2.

B. Behavioral Analysis

We perform behavior analysis of the learned policy by
observing the number of times the system enters into an
overloaded state (denoted by �ov) and the number of incoming
request offloaded by the edge node (denoted by �off) in a
window of size 100. These plots are shown in Fig. 11 & 12.

We observe from Fig. 11 that the number of times the
edge node goes into an overload state while following policy
executed by SALMUT is much less than the baseline algorithm.
Even when the system goes into an overloaded state, it is
able to recover quickly and does not suffer from performance
deterioration. From Fig. 12b and 12e we can observe that in
Scenarios 2 and 5, when the request load increases drastically
(at around 340 steps), �off increases and its effects can also be
seen in the overall discounted cost in Fig. 10b and 10e at around
the same time. SALMUT is able to adapt its policy quickly and
recover quickly. We observe in Fig. 12 that SALMUT performs
more offloading as compared to the baseline algorithm.

A policy that offloads often and does not go into an
overloaded state may not necessarily minimize the total cost.
We did some further investigation by visualizing the scatter-
plot (Fig. 13) of the overload count (�ov) on the y-axis and
the offload count (�off) on the x-axis for both SALMUT and
the baseline algorithm for all the scenarios described in Fig. 4.
We observe that SALMUT keeps �ov much lower than the
baseline algorithm at the cost of increased �off . We observe
from Fig. 13 that the slope for the plot is linear for baseline
algorithms because they are offloading reactively. SALMUT,
on the other hand, learns a behavior that is analogous to pro-
active offloading, where it benefits from the offloading action
it takes by minimizing �ov.

VII. CONCLUSION

In this paper we considered a single node optimal policy
for overload protection on the edge server in a time varying
environment. We proposed a RL-based adaptive low-complexity
admission control policy that exploits the structure of the
optimal policy and finds a policy that is easy to interpret. Our
proposed algorithm performs as well as the standard deep
RL algorithms but has a better computational and storage
complexity, thereby significantly reducing the total training
time. Therefore, our proposed algorithm is more suitable for
deployment in real systems for online training.

The results presented in this paper can be extended in several
directions. In addition to CPU overload, one could consider
other resource bottlenecks such as disk I/O, RAM utilization,
etc. It may be desirable to simultaneously consider multiple
resource constraints. Along similar lines, one could consider
multiple applications with different resource requirements and
different priority. If it can be established that the optimal policy
in these more sophisticated setup has a threshold structure
similar to Proposition 2, then we can apply the framework
developed in this paper.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 10. Performance of RL algorithms for different scenarios in the end-to-end testbed we created. The y-axis represents the total discounted cost incurred by
the system and the x-axis represent the step described in Section VI. We also plot the total request arrival rate (

∑
8 _8) on the right-hand side of y-axis in gray

dotted lines.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 11. Comparing the number of times the system goes into the overloaded state at each step in the end-to-end testbed we created. The y-axis represents the
total discounted cost incurred by the system and the x-axis represent the step described in Section VI. We also plot the total request arrival rate (

∑
8 _8) on the

right-hand side of y-axis in gray dotted lines.

The discussion in this paper was restricted to a single node.
These results could also provide a foundation to investigate
node overload protection in multi-node clusters where addi-
tional challenges such as routing, link failures, and network
topology shall be considered.

APPENDIX A
PROOF OF THEOREM 1

The equivalence between the continuous and discrete time
MDPs follows from the uniformization technique [15]–[17].
Since the transition rates depend on the current state, we

construct a uniform version of the process by allowing fictitious
transitions from a state to itself. Specifically, in the transition
probability ?̄(G ′, ℓ′ |G, ℓ, 0), we allow allow transitions at a
faster rate of _ + :`, but with probability 1 − _+min{G,: }`

a

transitions do not lead to a change in state. Since the transition
rates of ?̄ does not depend on state, it is called the uniform
version of ?. It can be shown that for any policy c, and any
initial state (G0, ℓ0), time C, and state (G, ℓ), the probability
%c (-C = G, !C = ℓ | -0 = G0, !0 = ℓ0) is identical for the
original process and its uniform version.

Now let )= denote the time when the state (-C , !C ) jumps
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 12. Comparing the number of times the system performs offloading at each step in the end-to-end testbed we created. We also plot the total request
arrival rate (

∑
8 _8) on the right-hand side of y-axis in gray dotted lines.

(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Fig. 13. Scatter-plot of �ov Vs �off for SALMUT and baseline algorithm in the end-to-end testbed we created. The width of the points is proportional to its
frequency.

for the =-th time. Note that (-C , !C ) is constant in the interval
[)=, )=+1) and so is �C = c(-C , !C ) for any time homogeneous
Markov policy c. Thus,

+ c (G, ℓ) = E
[∫ ∞

0
4−UC d(-C , !C , �C )3C |-0 = G, !0 = ℓ

]

=

∞∑
==0
Ec

[∫ )=+1

)=

4−UC d(-C , !C , �C )3C |-0 = G, !0 = ℓ

]
(0)
=

∞∑
==0
Ec

[∫ )=+1

)=

4−UC3C

]
E

[
d(-)= , !)= , �)= )

��-0 = G, !0 = ℓ
]

(1)
=

∞∑
==0

V= (1 − V)
(U + _ + :`)E

[
d(-)= , !)= , �)= )

��-0 = G, !0 = ℓ
]

=
1

U + _ + :`E
[ ∞∑
==0

V= (1 − V)d(-)= , !)= , �)= )
]

(17)

where (a) uses the fact that in the uniform version of the process
dwell time is independent of the state (b) uses the fact that



14

the dwell time g= = )=+1 − )= has an Poisson distribution with
rate (_ + :`). Note that Eq. (17) is a discrete time controlled
Markov process. The optimality of the policy c is obtained in
Theorem 1 follows from the standard results for MDP [18].

APPENDIX B
PROOF OF PROPOSITION 1

Let X(G) = min(:, G)`. We define a sequence of value
functions {+=}=≥0 as follows: +0 (G, ℓ) = 0 and for = ≥ 0

+=+1 (G, ℓ) = min{&=+1 (G, ℓ, 0), &=+1 (G, ℓ, 1)},

where

&=+1 (G,ℓ, 0) =
1

U + a
[
ℎ[G − :]+ + 2(ℓ)

]
+ V

[
_

a

R∑
A=1

%(A)+= ( [G + 1]X, [ℓ + A]L)

+ X(G)
a

R∑
A=1

%(A)+= ( [G − 1]+, [ℓ − A]+)

+
[
1 − _ + X(G)

a

]
+= (G, ℓ)

]
and

&=+1 (G,ℓ, 1) =
1

U + a
[
ℎ[G − :]+ + 2(ℓ) + ?(ℓ)

]
+ V

[
X(G)
a

R∑
A=1

%(A)+= ( [G − 1]+, [ℓ − A]+)

+
[
1 − _ + X(G)

a

]
+= (G, ℓ)

]
where [G]B denotes min{G,B}.

Note that {+=}=≥0 denotes the iterates of the value iteration
algorithm, and from [18], we know that

lim
=→∞

+= (G, ℓ) = + (G, ℓ), ∀G, ℓ (18)

where + is the unique fixed point of (7).
We will show that (see Lemma 1 below) each += (G, ℓ)

satisfies the property of Proposition 1. Therefore, by (18) we
get that + also satisfies the property.

Lemma 1 For each = ≥ 0 and G ∈ {0, ..., -}, += (G, ℓ) is
weakly increasing in ℓ.

PROOF We prove the result by induction. Note that +0 (G, ℓ) = 0
and is trivially weakly increasing in ℓ. This forms the basis of
the induction. Now assume that += (G, ℓ) is weakly increasing
in ℓ. Consider iteration = + 1. Let G ∈ {0, ..., -} and ℓ1, ℓ2 ∈
{0, ..., !} such that ℓ1 < ℓ2. Then,

&=+1 (G,ℓ1, 0) =
1

U + a
[
ℎ[G − :]+ + 2(ℓ1)

]
+ V

[
_

a

R∑
A=1

%(A)+= ( [G + 1]X, [ℓ1 + A]L)

+ X(G)
a

R∑
A=1

%(A)+= ( [G − 1]+, [ℓ1 − A]+)

+
[
1 − _ + X(G)

a

]
+= (G, ℓ)

]

(0)
≤ 1
U + a

[
ℎ[G − :]+ + 2(ℓ2)

]
+ V

[
_

a

R∑
A=1

%(A)+= ( [G + 1]X, [ℓ2 + A]L)

+ X(G)
a

R∑
A=1

%(A)+= ( [G − 1]+, [ℓ2 − A]+)

+
[
1 − _ + X(G)

a

]
+= (G, ℓ)

]
= &=+1 (G, ℓ2, 0), (19)

where (0) follows from the fact that 2(ℓ) and += (G, ℓ) are
weakly increasing in ℓ.

By a similar argument, we can show that

&=+1 (G, ℓ1, 1) ≤ &=+1 (G, ℓ2, 1). (20)

Now,

+=+1 (G, ℓ1) = min{&=+1 (G, ℓ1, 0), &=+1 (G, ℓ1, 1)}
(1)
≤ min{&=+1 (G, ℓ2, 0), &=+1 (G, ℓ2, 1)}
= +=+1 (G, ℓ2), (21)

�

where (1) follows from (19) and (20). Eq. (21) shows that
+=+1 (G, ℓ) is weakly increasing in ℓ. This proves the induction
step. Hence, the result holds for the induction.

APPENDIX C
PROOF OF PROPOSITION 2

PROOF Let X(G) = min{G, :}`. Consider

Δ&(G, ℓ) = B &(G, ℓ, 1) −&(G, ℓ, 0)

= −V X(G)
a

R∑
A=1

%(A)+ ( [G]X, [ℓ + A]L) − ?.

For a fixed G, by Proposition 1, Δ&(G, ℓ) is weakly decreasing
in ℓ. If it is optimal to reject a request at state (G, ℓ) (i.e.,
Δ&(G, ℓ) ≤ 0), then for any ℓ′ > ℓ,

Δ&(G, ℓ′) ≤ Δ&(G, ℓ) ≤ 0; �

therefore, it is optimal to reject the request.

APPENDIX D
PROOF OF OPTIMALITY OF SALMUT

PROOF The choice of learning rates implies that there is a
separation of timescales between the updates of (15) and (16).
In particular, since 12

=/11
= → 0, iteration (15) evolves at a

faster timescale than iteration (16). Therefore, we first consider
update (16) under the assumption that the policy cg , which
updates at the slower timescale, is constant.
We first provide a preliminary result.

Lemma 2 Let &g denote the action-value function correspond-
ing to the policy cg . Then, &g is Lipscitz continuous in g.

PROOF This follows immediately from the Lipscitz continuity
of cg in g. �
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Define the operator Mg : RN → RN, where N = (X+ 1) × (L+
1) ×A, as follows:

[Mg&] (G, ℓ, 0) =
[
d̄(G, ℓ, 0) + V

∑
G′,ℓ′

?(G ′, ℓ′ |G, ℓ, 0)

min
0′∈A

&(G ′, ℓ′, 0′)] −&(G, ℓ, 0). (22)

Then, the step-size conditions on {11
=}=≥1 imply that for a

fixed cg , iteration (15) may be viewed as a noisy discretization
of the ODE (ordinary differential equation):

¤&(C) =Mg [&(C)] . (23)

Then we have the following:

Lemma 3 The ODE (23) has a unique globally asymptotically
stable equilibrium point &g .

PROOF Note that the ODE (23) may be written as

¤&(C) = Bg [&(C)] −&(C)

where the Bellman operator Bg : RN → RN is given by

Bg [&] (G, ℓ) =
[
d̄(G, ℓ, 0) + V

∑
G′,ℓ′

?(G ′, ℓ′ |G, ℓ, 0)

× min
0′∈A

&(G ′, ℓ′, 0′)] . (24)

Note that Bg is a contraction under the sup-norm. Therefore,
by Banach fixed point theorem, & = Bg& has a unique fixed
point, which is equal to &g . The result then follows from [26,
Theorem 3.1]. �

We now consider the faster timescale. Recall that (G0, ℓ0) is
the initial state of the MDP. Recall

� (g) = +g (G0, ℓ0)

and consider the ODE limit of the slower timescale iteration
(16), which is given by

¤g = −∇� (g). (25)

Lemma 4 The equilibrium points of the ODE (25) are the
same as the local optima of � (g). Moreover, these equilibrium
points are locally asymptotically stable.

PROOF The equivalence between the stationary points of the
ODE and local optima of � (g) follows from definition. Now
consider � (g(C)) as a Lyapunov function. Observe that

3

3C
� (g(C)) = −

[
∇� (g(C))]2 < 0,

as long as ∇� (g(C)) ≠ 0. Thus, from Lyapunov stability criteria
all local optima of (25) are locally asymptotically stable. �

Now, we have all the ingredients to prove convergence. Lemmas
2-4 imply assumptions (A1) and (A2) of [27]. Thus, the
iteration (15) and (16) converges almost surely to a limit point
(&◦, g◦) such that &◦ = &g◦ and ∇� (g◦) = 0 provided that the
iterates {&=}=≥1 and {g=}=≥1 are bounded.
Note that {g=}=≥1 are bounded by construction. The boundness
of {&=}=≥1 follows from considering the scaled version of
(23):

¤& =Mg,∞& (26)

where,

Mg,∞& = lim
2→∞

Mg [2&]
2

.

It is easy to see that

[Mg,∞&] (G, ℓ, 0) = V
∑
G′,ℓ′

?(G ′, ℓ′ |G, ℓ, 0) min
0′∈A

&(G ′, ℓ′, 0′)

−&(G, ℓ, 0) (27)

Furthermore, origin is the asymptotically stable equilibrium
point of (26). Thus, from [28], we get that the iterates {&=}=≥1
of (15) are bounded. �
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