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Abstract—We consider a communication system with noiseless
feedback where the channel is not known to the encoder or the
decoder. The channel belongs to a known family of channels and
remains constant over time. Using the noiseless feedback, the
encoder can learn the channel over time and communicate at a
rate equal to the capacity of the actual realization of the channel.
Thus, not knowing the channel does not affect capacity. However,
analyzing the error exponent (for variable length coding) is more
challenging. Tchamkerten and Telatar (2006) showed that for
certain families of channels, not knowing the channel does not
change the error exponent; for other families, not knowing the
channel results in a strict decrease in the error exponent. In
general, the error exponent is not known. It is also known
that simple training based schemes have poor error exponent
behavior. In this paper, we show that a smart training based
scheme can achieve an error exponent which is a multiplicative
factor less than the error exponent for known channel. This shows
that contrary to popular belief, smart training based schemes
preserve the main advantage of feedback—an error exponent
with non-zero slope at rates close to capacity.

I. INTRODUCTION

We consider a communication system with noiseless feed-

back where the channel is not known to the encoder or

the decoder. The channel W◦ belongs to a family of DMCs

(discrete memoryless channels) defined over common input

and output alphabets X and Y . We use W◦ to denote both the

channel as well as its transition probability. Nature chooses a

channel out of this family before start of communication, her

choice is not revealed to the encoder and the decoder, and the

choice of channel does not change with time. We are interested

in characterizing the error exponent for this setup.

When W◦ is known to the encoder and the decoder, the

above setup is identical to the classical channel coding prob-

lem [1]. The capacity of channel W◦ is given by

C(W◦) = max
P (x)

I(X;Y )

where

I(X;Y ) =
∑

x∈X
y∈Y

P (x)W◦(y|x) log

(

W◦(y|x)
∑

x′∈X

P (x′)W◦(y|x
′)

)

is the mutual information between the channel input and the

channel output. Since the channel is memoryless, feedback

does not increase capacity. Nevertheless, feedback allows the

encoder to adapt to the channel variations and consequently

boosts the error exponent. In particular, if variable length

coding [3] is allowed, the error exponent at rate R < C(W◦)
is

EB(R,W◦)

=

(

max
(x,x′)∈X×X

D(W◦(·|x)‖W◦(·|x
′))

)(

1−
R

C(W◦)

)

where

D(W◦(·|x)‖W◦(·|x
′)) =

∑

y∈Y

W◦(y|x) log

(

W◦(y|x)

W◦(y|x
′)

)

is the Kullback-Liebler divergence between the output distri-

butions induced by input letters x and x′. We call EB(R,W◦)
the Burnashev’s exponent for channel W◦. Unlike the sphere

packing and random coding exponents, the Burnashev’s expo-

nent has a non-zero slope at rates close to capacity. This slope

captures the main advantage of noiseless feedback—reducing

the transmission rate by a small fraction of the capacity,

linearly increases the error exponent and thus, exponentially

decreases the probability of error.

We are interested in the scenario when the channel W◦

is not known. In such a scenario, simple training based

schemes can guarantee1 reliable transmission at any rate below

C(W◦) (even though C(W◦) is not known before the start of

transmission). Thus, not knowing the channel does not affect

channel capacity. However, error exponents behave differently.

For some families of channels, appropriately chosen adap-

tive communication schemes [6] can have error exponent

equal to the Burnashev’s exponent of W◦. However, for other

families [6], no communication scheme can have an error

exponent equal to the Burnashev’s exponent of W◦. Thus, for

some families of channels, not knowing the channel does not

affect the error exponent; for others, it does. In the latter case,

error exponent is not completely characterized.

In view of this negative result, we relax our objective. As

explained before, the usefulness of feedback in a commu-

nication systems can be characterized by the slope of the

1The result follows from large deviation bounds for channel estimation and
uniform continuity of mutual information in the input distribution and the
channel transition matrix.
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error exponent at capacity. So, instead of trying to completely

characterize the error exponent for communicating over an

unknown channel, we simply ask if the error exponent has

a non-zero slope near capacity. In Section II, we show an

example of a family of channels for which no scheme can

achieve Burnashev’s exponent, yet a simple training based

scheme an error exponent up to a multiplicative factor of

Burnashev’s exponent.

This example illustrates two points. First, it shows (perhaps

not surprisingly) that even when the channel is unknown,

noiseless feedback boosts the error exponent. Second, it shows

that for communicating over unknown channels, training based

schemes have merit.

The second point puts the result of [5] and [7] in perspective.

In both [5] and [7], a simple family Wp = {BSC(p),
BSC(1− p)}, with 0 ≤ p < 1

2 was used to prove nega-

tive results about training based schemes. (BSC(p) denotes

a binary symmetric channel with crossover probability p).

With fixed length communication, training based schemes do

no not achieve universal error exponent [5]. With variable

length communication with noiseless feedback, training based

scheme that have a single training phase will have error ex-

ponent with zero slope near capacity. These results, especially

the result of [7], suggest that when we are concerned about

error exponents, we should not use training based schemes. In

Section II, we show that this need not be the case. We propose

a training based scheme with multiple training phases for the

family Wp; the error exponent of this scheme is of the form

ES(R,Wp) = DWp

(

1−
R

C(W◦)

)

where DWp
is a constant that depends on the family Wp and

is strictly less than the corresponding constant in Burnashev’s

exponent. This exponent has a non-zero slope at capacity!

We present the intuition behind our proposed scheme in

Section IV.

II. A TRAINING BASED SCHEME AND THE MAIN RESULT

In this section we consider the family of channels Wp =
{BSC(p),BSC(1 − p)}, where 0 ≤ p < 1

2 is known.

This family is used in [5] and [7] to prove negative results

about training based schemes. We use this family to show

that training based schemes with multiple training phases

can achieve error exponents that have the same form as

Burnashev’s exponent.

Both BSC(p) and BSC(1− p) have capacity

Cp = 1− h(p)

where h(p) = −p log p−(1−p) log(1−p) is the binary entropy

function. Since both the channels have the same capacity,

we do not need to modulate the transmission rate according

to nature’s choice of the channel. Hence, we assume that

the transmission rate has a predetermined value R. This as-

sumption simplifies the description of the coding scheme. The

coding scheme operates in multiple epochs of duration t. We

choose four fractions β1, β2, β3, and β4 such that 0 ≤ βi < 1,

i = 1, 2, 3, 4, and β1 + β2 + β3 + β4 = 1. These fractions are

chosen before the start of communication; their actual values

will be described later.

For every sufficiently large epoch duration t, the encoder

and the decoder choose a codebook and “hypothesis testing

regions” for channels BSC(p) and BSC(1− p) such that

1) The codebook is of length β2t and rate R/β2. When

R/β2 < Cp, the error exponent Er(R/β2) of the

codebook is positive.

2) The “hypothesis testing regions” optimally distinguish

between the transmission of β4t zeros from β4t ones

according to the Chernoff-Stein Theorem [2].

These codebooks and hypothesis testing regions are for the

case then the channel is known. Thus, the codebook for

BSC(p) assumes that the channel is BSC(p) and the codebook

for BSC(1−p) assumes that the channel is BSC(1−p). Similar

interpretation holds for the hypothesis testing regions.

Consider a variable length communication scheme that

consists of multiple epochs of length t. Each epoch consists

for four phases:

1) A training phase of length β1t: During this phase the

encoder sends a training sequence of β1 zeros. At the

end of this phase, the encoder and the decoder choose a

channel estimate θ1. If the number of ones in the channel

output is less than β1t/2, θ1 equals BSC(p); otherwise

θ1 equals BSC(1− p).
2) A communication phase of length β2t: During this phase

the encoder transmits of of M (t) = ⌊2tR⌋ messages

using the codebook corresponding to θ1. The decoder

decodes according to the same codebook. Because of

output feedback, the encoder knows the decoded mes-

sage.

3) A re-training phase of length β3t: During this phase,

the encoder sends β3t zeros. At the end of this phase,

the encoder and the decoder choose a channel estimate

θ2. If the number of ones in the channel output is

less than β3t/2, θ2 equals BSC(p); otherwise θ2 equals

BSC(1− p). The channel estimate θ2 depends on the

channel behavior in only the third phase and not the

first phase.

4) A control phase of length β4t: If the decoding in the

second phase was correct, the encoder sends an ACK

consisting of β4t zeros; otherwise it sends a NACK

consisting of β4t ones. The decoder uses the hypothesis

testing regions of channel θ2 to decode the ACK/NACK.

If the decoded symbol is ACK, communication stops;

otherwise, the encoder and the decoder discard the

results of the current epoch and repeat the same process

in the next epoch.

This communication scheme is similar to the scheme pro-

posed by Yamamoto-Itoh [4]. That scheme achieves the Bur-

nashev’s exponent for variable length coding over a known

channel. As in that scheme, a decoding error occurs if the

message transmitted during the communication phase is de-

coded incorrectly, and the NACK sent by the encoder during
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the control phase is decoded as an ACK. All other erroneous

situations are corrected by retransmission and increase only

the duration of communication.

For epoch duration t, the above scheme has a probability

of error P
(t)
e and a random communication length T (t). Then,

the main result of this paper is the following.

Proposition 1: The average transmission rate of the above

communication scheme is

lim
t→∞

logM (t)

E{T (t)}
= R. (1)

Furthermore, the error exponent of the above scheme is

Es(R,Wp) = − lim
t→∞

logP (t)
e

E{T (t)}
≥ Dp

(

1−
R

Cp

)

(2)

where

Dp =
D(0.5‖p)D(p‖1− p)

D(0.5‖p) +D(p‖1− p)
(3)

and

D(x‖y) = x log(x/y) + (1− x) log((1− x)/(1− y))

is the binary Kullback-Leibler divergence between binary

probability distributions [x, 1− x] and [y, 1− y].
In contrast, when the channel is known the error exponent

is

D(p‖1− p)

(

1−
R

Cp

)

.

Therefore, in this example, a training based scheme for un-

known channel achieves a fraction

D(0.5‖p)

D(0.5‖p) +D(p‖1− p)

of the Burnashev’s exponent of the actual channel.

III. PROOF OF PROPOSITION II

For epoch k, k = 1, 2, . . ., with epoch duration t define the

following events:

• E
(t,k)

1 : the channel estimation at the end of the first phase

is incorrect.

• D(t,k) : the decoding at the end of the second phase is

incorrect.

• E
(t,k)
2 : the channel estimation at the end of the third

phase is incorrect.

• C
(t,k)
A : an ACK is decoded as a NACK in the forth phase.

• C
(t,k)
N : a NACK is decoded as an ACK in the forth phase.

The assumptions on the codebook and the hypothesis testing

regions can be stated more formally as follows. The error

exponent of the codebook used in phase two is

Er

(

R

β2

)

= − lim
t→∞

log Pr(D(t,k)|
–
EE

(t,k)
1 )

β2t
. (4)

When R/β2 < Cp, the error exponent Er(R/β2) > 0 and the

probability of error

lim
t→∞

Pr(D(t,k)|
–
EE

(t,k)
1 ) = 0. (5)

Similarly, for the hypothesis testing region, Chernoff-Stein

Theorem [2] implies that the probability of type I and type II

errors are
lim
t→∞

Pr(C
(t,k)
A |

–
EE

(t,k)
2 ) = 0,

lim
t→∞

Pr(C
(t,k)
N |

–
EE

(t,k)
2 ) = 0,

(6)

and the exponent of type I error is

− lim
t→∞

log Pr(C
(t,k)
A |

–
EE

(t,k)
2 )

β4t
= D(p‖1− p). (7)

To evaluate the performance of the above communication

scheme, we first determine the asymptotic behavior of the

number of retransmission epochs.

Lemma 1: For epochs of duration t, let ζ(t) be the epoch

when communication stops, i.e.,

ζ(t) = inf{k ∈ N : D(t,k) ∩ C
(t,k)
N ∪

–
DD (t,k) ∩

–
CC

(t,k)
A

}.

Then, T (t) = tζ(t) and

lim
t→∞

E{ζ(t)} = 1

Proof: T (t) = tζ(t) follows from the definition of ζ(t).
For the second part, we claim that ζ(t) is stochastically

dominated by a geometrically distributed random variable, i.e.,

for any t
Pr(ζ(t) ≥ k) ≤ (ξ(t))k−1

where

ξ(t) = Pr(D(t, 1)|
–
EE 1(t, 1)) + Pr(CN (t, 1) ∩

–
EE 2(t, 1)).

We prove this claim by induction. The claim is trivially true

for k = 1. Suppose it is true for some k in N; then

Pr(ζ(t) ≥ k + 1)

= Pr(ζ(t) ≥ k) · Pr(ζ(t) ≥ k + 1|ζ(t) ≥ k)

= Pr(ζ(t) ≥ k) · Pr(D(t,k) ∩
–
CC

(t,k)
N ∪

–
DD (t,k) ∩ C

(t,k)
A

)

= Pr(ζ(t) ≥ k)

· [Pr(D(t,k)) · Pr(
–
CC

(t,k)
N

) + Pr(
–
DD (t,k)) · Pr(C

(t,k)
A

)]

≤ Pr(ζ(t) ≥ k) · [Pr(D(t,k)|
–
EE

(t,k)
1 ) + Pr(C

(t,k)
A ∩

–
EE

(t,k)
2 )]

≤ (ξ(t))k

where the first inequality follows from law of total probability,

and the second inequality follows from the induction hypothe-

sis. This completes the induction argument. Now, we use this

claim to bound E{ζ(t)}.

E{ζ(t)} =
∑

k≥1

Pr(ζ(t) ≥ k) ≤
∑

k≥1

(ξ(t))k−1 =
1

1− ξ(t)
.

(5) and (6) imply that limt→∞ ξ(t) = 0. Thus, we have

lim
t→∞

E{ζ(t)} ≤ 1.

By definition ζ(t) ≥ 1, which completes the proof.
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We use the result of Lemma 1 to prove Proposition 1.

Proof of Proposition 1: The transmission rate is given

by

lim
t→∞

logM (t)

E{T (t)}
= lim

t→∞

log⌊2tR⌋

tE{ζ(t)}
= R lim

t→∞

1

E{ζ(t)}
= R

where the first equality follows from Lemma 1.

Now, consider the probability of error,

P (t)
e = Pr(D(t,ζ(t)) ∩ C

(t,ζ(t))
N

)

≤
∑

k≥1

Pr(D(t,k) ∩ C
(t,k)
N |ζ(t) ≥ k) · Pr(ζ(t) ≥ k)

≤
∑

k≥1

Pr(D(t,k)) · Pr(C
(t,k)
N

) · (ξ(t))k−1

= Pr(D(t,1)) · Pr(C
(t,1)
N

) ·
[

∑

k≥1

(ξ(t))k−1
]

= Pr(D(t, 1)) · Pr(CN (t, 1)) ·
1

1− ξ(t)
.

(8)

The first inequality follows the union bound of probability, the

second inequality is due to the independence of decoding and

hypothesis testing and the claim in Lemma 1, and the second

last equality is due to symmetry across transmission epochs.

The error exponent is given by

ES = − lim
t→∞

logP (t)
e

E{T (t)}

= − lim
t→∞

logP (t)
e

t
lim
t→∞

1

E{ζ(t)}

= − lim
t→∞

logP (t)
e

t

≥ − lim
t→∞

log Pr(D(t,1))

t
− lim

t→∞

log Pr(C
(t,1)
N

)

t

+ lim
t→∞

1− ξ(t)

t

= − lim
t→∞

log Pr(D(t,1))

t
− lim

t→∞

log Pr(C
(t,1)
N

)

t

(9)

where the first two equalities follow from Lemma 1, the third

inequality follows from (8) and last equality follows from

limt→∞ ξ(t) = 0.

Next, consider the above two term one by one. First consider

Pr(D(t,1)). By the law of total probability

Pr(D(t,1)) = Pr(D(t,1)|E
(t,1)
1 ) · Pr(E

(t,1)
1 )

+ Pr(D(t,1)|
–
EE

(t,1)
1 ) · Pr(

–
EE

(t,1)
1 )

≤ Pr(E
(t,1)
1 ) + Pr(D(t,1)|

–
EE

(t,1)
1 )

≤ exp(−β1tD(0.5‖p)) + exp(−β2tER(R/β2)).

(10)

The first term in last inequality follows from Chernoff-

Hoeffding Theorem [8] and the second term follows from the

definition of error exponents and is true for sufficiently large

values of t. Thus, when R/β2 < Cp,

− lim
t→∞

log Pr(D(t,1))

t

≥ lim
t→∞

min{β1D(0.5‖p), β2ER(R/β2)} ≥ 0.

(11)

Now consider Pr(C
(t,1)
N ). By the law of total probability

Pr(C
(t,1)
N

) = Pr(C
(t,1)
N |E

(t,1)
2 ) · Pr(E

(t,1)
2 )

+ Pr(C
(t,1)
N |

–
EE

(t,1)
2 ) · Pr(

–
EE

(t,1)
2 )

≤ Pr(E
(t,1)
2 ) + Pr(C

(t,1)
N |

–
EE

(t,1)
2 )

≤ exp(−β3tD(0.5‖p)) + exp(−β4tD(p‖1− p))

(12)

where the first term in the last inequality follows from

Chernoff-Hoeffding Theorem [8] and the second term follows

from (7) and is true for sufficiently large values of t. Thus,

− lim
t→∞

log Pr(C
(t,1)
N

)

t

≥ lim
t→∞

min{β3D(0.5‖p), β4D(p‖1− p)}.

The minimum value is achieved when

β3

β4

=
D(p‖1− p)

D(0.5‖p)

and in that case

− lim
t→∞

log Pr(C
(t,1)
N

)

t

≥
D(0.5‖p)D(p‖1− p)

D(0.5‖p) +D(p‖1− p)
lim
t→∞

(β3 + β4).

(13)

Finally, choose β1, β2, β3, and β4 such that β1 = o(1)
and β2 = R/Cp − o(1). Thus, β3 + β4 = 1 − β1 − β2 =
1−R/Cp + o(1). (For example, the o(1) terms can be log t).
Combining this with (9), (11) and (13), we get,

ES ≥

(

1−
R

Cp

)

D(0.5‖p)D(p‖1− p)

D(0.5‖p) +D(p‖1− p)
. (14)

IV. DISCUSSION

At first glance, the communication scheme proposed in this

paper looks counter intuitive. In the retraining phase, we ignore

what we learnt in the first training phase. To understand why

ignoring this available information makes sense, we need to

reconsider why training based schemes work badly for fixed

length communication over an unknown channel and why

Yamamoto-Itoh’s scheme is able to achieve the Burnashev’s

exponent for variable length communication over a known

channel.

First, lets reconsider the arguments of [5] on why training

based schemes perform badly for fixed length communication

over an unknown channel. In that scenario, the probability of

decoding error is similar to expression (10) for Pr(D(t,1)): a
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sum of two exponential terms. To ensure that the exponent of

the channel estimation error (the first term) does not dominate,

the training length should be long enough so that the two expo-

nents match. However, training for a non-negligible fraction of

the communication length results in a loss in transmission rate.

On the other hand, if we do not want a loss in transmission

rate, the training length should be negligible; this in turn

implies that the exponent of the channel estimation dominates,

and the overall error exponent drops drastically (although it

still remains positive). Thus, training based schemes will either

result in a loss in transmission rate, or a loss in the error

exponent.

Next, lets reconsider why Yamamoto-Itoh’s scheme [4]

achieves the Burnashev’s exponent for variable length coding

over a known channel. As in Lemma 1, the number of

retransmissions in Yamamoto-Itoh’s scheme is stochastically

dominated by a geometric random variable whose parameter

goes to zero with epoch length. As a result, the retransmissions

do not affect the transmission rate. Furthermore, the dominant

error event is an intersection of two independent events: the

decoding error in the communication phase, and a NACK

being decoded as an ACK in the control/hypothesis testing

phase. As long as the exponent of the decoding error in the

communication phase is positive, the overall error exponent is

dominated by the Chernoff-Stein exponent for hypothesis test-

ing (the Kullback-Leibler divergence term in the Burnashev’s

exponent) times the fraction of time spent in the hypothesis

testing phase. If this fraction is less than (1 − R/C), then

the exponent of the decoding error is positive. This is why

Yamamoto-Itoh’s scheme achieves the Burnashev’s exponent.

A careful examination of these two results shows that if

we use Yamamoto-Itoh like scheme for variable length coding

over an unknown channel which uses a training based scheme

in the communication and the hypothesis testing phases then

a happy coincidence occurs. In the communication phase, we

need to ensure only that the exponent of the decoding error is

positive. So, we can use a training based scheme that spends

a negligible fraction of time on training. In the hypothesis

testing phase, we want to maximize the exponent of hypothesis

testing. So, we can use a training based scheme that spends

an appropriate amount of time on training to ensure a good

exponent. Such a training based scheme will result in a loss

in transmission rate. However, in the hypothesis testing phase

we are sending one of only two messages; so, the transmission

rate is zero anyways. Thus, training based schemes for fixed

length coding over unknown channels fits nicely with the

requirements of a Yamamoto-Itoh like scheme. The only

caveat for the analysis to go through is that the decoding error

should be independent of a NACK being decoded as an ACK.

To ensure this independence, we do not use any information

from the first training phase in the second one.

In the example of Section II, the family of channels was

such that all channels had the same capacity. As a result, we

could fix the transmission rate in advance, and thereby fix the

ratio of β1+β2 and β3+β4 and the epoch length t in advance.

When the transmission rate depends on the channel, both the
ratio (β1 + β2)/(β3 + β4) and the epoch length t cannot be

chosen in advance. So, the communication scheme proposed

in Section II will not work in that case. Nonetheless, the

example of Section II illustrates that training based schemes

for communicating over unknown channels warrant further

investigation.
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