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Opportunistic Capacity and Error Exponent Region
for the Compound Channel With Feedback
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Abstract—Variable length communication over a compound
channel with feedback is considered. Traditionally, capacity of a
compound channel without feedback is defined as the maximum
rate that is determined before the start of communication such
that communication is reliable. This traditional definition is pes-
simistic. In the presence of feedback, an opportunistic definition is
given. Capacity is defined as the maximum rate that is determined
at the end of communication such that communication is reliable.
Thus, the transmission rate can adapt to the realized channel.
Under this definition, feedback communication over a compound
channel is conceptually similar to multiterminal communication.
Transmission rate is a vector rather than a scalar; channel ca-
pacity is a region rather than a scalar; error exponent is a region
rather than a scalar. In this paper, variable length communication
over a compound channel with feedback is formulated, its oppor-
tunistic capacity region is characterized, and lower bounds for its
error exponent region are provided.

Index Terms—Burnashev exponent, error exponent region
(EER), feedback error exponent, variable-length coding, vari-
able-rate coding.

I. INTRODUCTION

T HE compound channel, first considered by Wolfowitz [1]
and Blackwell et al. [2], is one of the simplest extensions

of the discrete memoryless channel (DMC). In a compound
channel, the channel transition matrix belongs to a family Q
that is defined over a common discrete input and discrete output
alphabets X and Y . The transmitter and the receiver know the
compound family Q but do not know the realized channel ;
the realized channel does not change with time. We are in-
terested in characterizing the error exponents of a compound
channel used with feedback. For that purpose, we define a new
notion of the capacity of the compound channel with feedback.
There have been comprehensive investigations on the ca-

pacity of compound channels, used both with and without
feedback. In addition, there is some work on characterizing the
error exponent of compound channels used with feedback. We
briefly summarize the existing work below, focusing on finite
compound families Q .
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Given a coding scheme defined over a compound family
Q, let and denote the probability of error and trans-
mission rate when the realized channel is , .
The general notion of capacity of a compound channel is as fol-
lows: a rate is said to be achievable if , a sequence

of coding schemes such that and ,
. Then, the capacity is the supremum of all achiev-

able rates. This same notion applies when the channel is used
without or with feedback (the difference being in the choice of
coding schemes ).
When the compound channel is used without feedback, the

capacity is given by (see [3])

C Q
X Q

(1)

where X is the space of probability distributions on input
alphabet X and

X Y X

is the mutual information between the input and output of a
channel with input distribution and channel transition matrix
. When the compound channel is used with feedback, the ca-

pacity is given by (see [4])

C Q
Q X

(2)

These and other variations of the compound channel are sur-
veyed in [5].
The aforementioned notion of capacity is pessimistic. It quan-

tifies the maximum rate determined before the start of trans-
mission such that communication is reliable over every realized
channel . An opportunistic definition of feedback is possible
in the presence of feedback.
For many applications, network traffic is backlogged and a

rate guarantee before the start of transmission is not critical.
Rather, we want to communicate at the maximum rate while
ensuring that communication is reliable for the realized channel

(even though is not known to the transmitter or the re-
ceiver before the start of transmission). In particular, instead of
modeling achievable rate as a scalar value that is guaranteed
before the start of communication, we model achievable rate as
a vector such that the rate of communication is
when the realized channel is . In addition, communica-

tion is reliable for every realized channel. More precisely, we
say that a rate vector is opportunistically achiev-
able if , a sequence of coding schemes such that
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and , . We define the union
of all opportunistically achievable rates as the opportunistic ca-
pacity region C Q , i.e.,

C Q

(3)

We formally define opportunistically achievable rates and op-
portunistic capacity in Section II.
Let denote the capacity of DMC , . Then,

it is straightforward to show (see Corollary 1) that the oppor-
tunistic capacity region is given by a hyper-rectangle

C Q

which is determined by just its upper corner .
Thus, the capacity region C Q is equivalent to the ca-
pacity vector CQ .
In this paper, we consider variable length coding schemes.

For a sequence of coding schemes that (opportunisti-
cally) achieves a rate vector , we define the error
exponent vector as

where is the expected length of the coding scheme
when the realized channel is . The union of all achievable
error exponent vectors is defined as the error exponent region
(EER) at rate and denoted by E .
The formal definition is presented in Section II.
Consider a DMC used with feedback. Let denote its

capacity. The error exponent of variable length coding scheme
at rate is given by (see [6])

(4)

where

X
(5)

(6)

is the probability distribution of the channel output when
the channel input is , and

Y

is the Kullback–Leibler divergence between probability distri-
butions and . We call as the Burnashev exponent
of channel at rate and as the zero rate Burnashev ex-
ponent.
One of the key features of the Burnashev exponent is that it

has a nonzero slope at capacity. This slope captures the main
advantage of feedback—by reducing the transmission rate by
a small fraction of the capacity, we linearly increase the error
exponent, and therefore, exponentially decrease the probability
of error. Does feedback provide the same advantage for a com-
pound channel?
Clearly, a particular component of the EER of the

compound channel cannot beat the Burnashev exponent for

DMC . Thus, a trivial upper bound for the EER at rate
C Q is the hyper-rectangle with upper

corner

(7)

Tchamkerten and Telatar [7] showed that this bound is not tight
by means of a simple counterexample. They considered a com-
pound family consisting of two binary symmetric channels with
complementary cross-over probabilities, and , where
is known to the transmitter and the receiver. They showed

that, even for this simple family, no coding scheme universally
achieves the Burnashev exponent.
Another way to interpret that result is that the EER need not

be a hyper-rectangle i.e., for a fixed rate if
E , then it is not necessary

that

E

Thus, different sequence of coding schemes that achieve the
same rate vector may have different and noncom-
parable error exponents. Thus, in terms of error exponents, the
compound channel with feedback behaves in a manner similar
to multiterminal communication channels [8].
Tchamkerten and Telatar [7] also identified necessary and suf-

ficient conditions on the compound family Q under which the
upper bound of (7) is tight for all rates along the principle di-
agonal , , of the opportunistic
capacity region. For channels that do not satisfy these condi-
tions, the EER is not characterized. Even when these conditions
are satisfied, the EER is not characterized for rate vectors that
are off the principle diagonal (i.e., is not constant for
all ). In Section III, we present a coding scheme
for all rates in the opportunistic capacity region. This scheme
achieves an error exponent with a nonzero slope at all points
in the rate region, including points near the capacity boundary.
This shows that feedback provides similar advantage for a com-
pound channel as for a DMC.

A. Notation

We use the following notation in this paper. X denotes
the space of probability distributions over X . denotes the set
of natural numbers. denotes the probability of an event,

denotes the expectation of a random variable, and de-
notes the indicator function. All logarithms are to the base 2,
and denotes .

denotes the capacity of a DMC with transition matrix ;
denotes its zero-rate Burnashev exponent. Given a com-

pound family Q , denotes the realized
channel; denotes the capacity of DMC ; denotes
the zero-rate Burnashev exponent of DMC . is short
hand for ; and is a short hand for
.

II. OPPORTUNISTIC CAPACITY AND ERROR EXPONENTS

In this section, we formally define opportunistic capacity and
EERs for a compound channel with feedback. Conceptually, it
is easier to first define achievable rate vector for fixed length
communication and then extend that definition to variable
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length communication. However, for succinctness, we only de-
fine achievable rate vector for variable length communication.

Definition 1 (Variable-Rate Variable-Length Coding
Scheme): A variable-rate variable-length coding scheme for
communicating over a compound channel Q
with feedback is a tuple where
1) is the compound message size where

, . Define M .
2) is the encoding strategy where

M Y X

is the encoding function used at time .
3) is the decoding strategy where

Y

is the decoding function at time .
4) is the stopping time with respect to the channel outputs

. More precisely, is a stopping time with respect to the
filtration Y .

The coding scheme is known to both the transmitter and the
receiver. Variable length communication takes place as fol-
lows. A compound message is generated
such that is uniformly distributed in .1 The
transmitter uses the encoding strategy to generate
channel inputs

until the stopping time with respect to the channel outputs. (
is known to the transmitter because of feedback.) The decoder
then generates a decoding decision

The decoding decision consists of two components: the index
of decoded component and an estimate of the -component
of the compound message . A communication error occurs if

.

Remark 1: The aforementioned scheme is a variable-rate
variable-length coding scheme. The transmitter and receiver
agree upon the set of rates before the start of
communication. The transmitter chooses different messages,
one message for each rate. At the end of communication, the
receiver decides the message it wants to decode and gen-
erates an estimate for that message. Because of noiseless
feedback, the encoder knows what the decoder decoded. In
principle, the index need not be the same as the index of the
realized channel. For that reason, is not considered a
communication error.
The two main performance metrics of a coding scheme are

its error probability and rate, both of which are vectors (rather

1All the probabilities of interest only depend on the marginal distributions of
. So, the joint distribution of need not be speci-

fied.

than scalars), and denoted by and
, respectively. These are defined as follows.

Definition 2 (Probability of Error): A communication
error occurs when . The probability of error

of a coding scheme is given by

where is a short hand notation for .

Definition 3 (Rate): The rate of a coding
scheme is given by

where is a short hand notation for .

Remark 2: The aforementioned scheme is a variable
rate communication scheme. The size of the commu-
nicated message is a random variable taking values
in . For that reason, we define the rate as

. When all rates are equal,
the above scheme reduces to a fixed-rate variable-length coding
scheme and the definition of rate in Definition 4 collapses to
the traditional definition of fixed-rate variable-length coding.
Rate and probability of error give rise to two asymptotic

performance metrics, viz., opportunistically achievable rate and
error exponents. These are defined as follows.

Definition 4 (Opportunistically Achievable Rate): A rate
vector is said to be opportunistically
achievable if there exists a sequence of variable-rate vari-
able-length coding schemes ,
such that:
1) for .
2) For every , there exists a so that for every

, we have

or equivalently

Definition 5 (Opportunistic Capacity): The union of all op-
portunistically achievable rates is called the opportunistic ca-
pacity region of the compound channel Q with feedback and
denoted by C Q .
In Corollary 1, we show that C Q is given by a hyper-

rectangle with upper corner . For that reason,
we call CQ as the capacity vector of the
compound channel Q.
The variable-rate variable-length coding scheme defined

above is related to the notion of rateless codes used in fountain
codes [9]–[11] for BER (binary erasure channel).

Definition 6 (Error Exponent): Given a sequence of coding
schemes , , that achieve a rate
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vector , the asymptotic exponent of error probability is
given by

Then, is the error exponent of the sequence
of coding schemes , .

Definition 7 (EER): For a particular rate , the union of
all possible error exponents is called the EER of a compound
channel with feedback and denoted by E .
In this paper, we study the EER for all rates in the oppor-

tunistic capacity region and present lower bounds on the EER.
The aforementioned scheme describes a variable-rate vari-

able-length coding scheme; varying the rate of the coding
scheme allows for an additional degree of freedom. This
additional freedom does not affect the opportunistic capacity
region of compound channel; all rates withinC Q defined
above can be achieved using a fixed-rate variable length coding
scheme. We do not know if this additional degree of freedom
improves the EER since the EER of a compound channel
has not been investigated using the traditional fixed-rate
variable-length coding scheme. The reason that we chose a
variable-rate coding scheme is that this additional degree of
freedom significantly simplifies the coding scheme.

A. Operational Interpretation

A transmitter has to reliably communicate an infinite bit
stream, which is generated by a higher layer application,
to a receiver over a compound channel with feedback. The
transmitter uses a variable-rate variable-length coding scheme

. For ease of exposition, assume that every ,
, is a power of 2 so that is an integer. Let

and .
The transmitter picks bits from the bit stream. The
decimal expansion of the first of these bits determine
the component of . The message is transmitted as
described previously. At stopping time the receiver passes

to a higher layer application (which then converts
to bits) and the transmitter removes the first bits

from the initially chosen bits and return the remaining
bits to the bit stream. Then, the aforemen-

tioned process is repeated.
If the traditional pessimistic approach is followed, only

bits are removed from the bit stream at each stage. By
following the opportunistic approach, with high probability

bits are removed from the bit stream when the real-
ized channel is . By definition, . Thus, by
defining capacity in an opportunistic manner, an additional

bits are removed at each step.

B. Trivial Outer Bound on Error Exponents

Any coding scheme for communicating over a
compound channel Q can also be used to communicate over
DMC . Hence, we have the following trivial upper bound on
the EER.

Proposition 1: For any variable-rate variable-length coding
scheme for communicating over Q at rate , each
component of the EER is bounded by the Burnashev exponent
of channel , i.e.,

In the remainder of this paper, we try to derive a reasonable
lower bound on the EER.

III. CODING SCHEME

In this section, we define a family of variable-rate vari-
able-length coding schemes indexed by . As , the
scheme opportunistically achieves a rate vector .
This coding scheme is based on the Yamamoto–Itoh [12]
scheme that achieves the Burnashev exponent for DMC.

A. Parameters of the Coding Scheme

For each , the scheme is parameterized by the fol-
lowing nonnegative real constants:2

We will explain the purpose and choice of these constants later.
For now, we assume that , , , and are chosen

such that , , , and are integers. When
there is no ambiguity, we will not explicitly show the depen-
dence on and drop the superscripts .
For each , the encoder and the decoder agree upon the fol-

lowing:
1) Two training sequences and of lengths and
and corresponding channel estimation rules and .

2) codebooks; one for each , . Codebook
has rate and length .

3) control sequences; two for each , ,
viz.3 and , both of length and corresponding
hypothesis testing rules for disambiguating and

over DMC .
A compound message is chosen at random such that
component , , is uniformly distributed over

.4

B. Operation of the Coding Scheme

The coding scheme transmits in multiple epochs indexed by
. Each epoch consists of four phases.

1) A fixed length training phase of length . During this
phase the transmitter sends the training sequence ; both
the transmitter and the receiver use the estimation rule
to determine a channel estimate .

2) A variable length message phase of length . The

transmitter and receiver use codebook to send com-
ponent of the compound message . Let

2The subscripts stand for message and control.
3The subscripts stand for accept and reject.
4The joint distribution of does not matter.
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denote the transmitted message and the decoded
message.

3) A fixed length re-training phase of length . During this
phase the transmitter sends the training sequence ; both
the transmitter and the receiver use the estimation rule
to determine a channel estimate .

4) A variable length control phase of length . If

, the transmitter sends a control mes-
sage ; otherwise it sends .

The receiver decodes the control message using .

Let denote the estimated control message.
If , then transmission stops and the receiver

declares as its final decision; otherwise, the
compound message is retransmitted in the next epoch. Let
denote the epoch when communication stops, i.e.,

Let the length of epoch be , i.e.,

Hence, the length of communication is

C. Choice of Training Sequences

As described earlier, the transmitter and the receiver agree
upon two training sequences, and , of lengths
and , respectively. The optimal choice of such training
sequences falls under the domain of experiment design for
estimating unknown parameters. We assume that we can find
good training sequences for Q ; if not, we choose a simple
training sequence that cycles through all the channel inputs
one-by-one.
The transmitter and the receiver also agree upon two esti-

mating rules, and . For a training sequence of size
and an estimation rule , define the estimation error exponent
as follows. For ,

(8)

and for

(9)

where and are the channel inputs and outputs, re-
spectively. We are interested in characterizing the union of

for all choices of estimation rule . We call this re-
gion the estimation EER and denote it by T . Instead of directly
characterizing estimation EER, it is easier to first characterize
pairwise estimation EER—the union of ;

for all choices of estimation rule ; this region is denoted
by T —and then obtain the estimation error estimation region
T using (9).
Characterizing the pairwise estimation error exponent is

equivalent to characterizing the pairwise hypothesis testing
exponent for multiple hypothesis testing. The latter was char-
acterized by Tuncel [13] for -ary hypothesis testing with
independent and identically distributed observations. Let be
the probability distribution of the observations under hypoth-
esis . Then

T

For our setup, the observations at the receiver need not be iden-
tically distributed. Nonetheless, the observations are indepen-
dent across time, and it is easy to generalize the above region
to the case of independent (but not identically distributed) ob-
servations. We then use (9) to obtain the desired region T as
follows:

T T

The estimation rules and attain particular points in T;
denote these by and , respec-
tively. Recall that the training sequences and are of length

and , respectively. Thus, for any epoch ,

(10)

and

(11)

Choose and such that

(12)

and

(13)

D. Choice of Codebooks

As described earlier, the transmitter and receiver agree upon
codebooks. Codebook is a fixed length codebook for DMC
, , with rate and length .

Choose codebook such that the error exponent is positive for
all rates below capacity, i.e., if , then

(14)

The actual form of the codebook does not matter; for example, it
could be a linear code, or a convolutional code, or a LDPC code,
or a polar code, or a posterior matching code that uses feedback.
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E. Choice of Control Sequences

As described earlier, the transmitter and the receiver agree
upon two control sequences, and of length , for
signaling ACCEPT (when ) and REJECT (when

). Choose these sequences as repetitions of and ,
the maximally separated input symbols for , i.e., the
in (5) for .
The transmitter and the receiver also agree upon a hypothesis

testing rule for disambiguating and . Let
and denote the error exponents of this rule, i.e.,

(15)
and

(16)
Choose such that

(17)
while

(18)

Such a choice of is always possible (see [14]).

F. Choice of Parameters

The first and second phases of the proposed scheme corre-
spond to themessage mode of the Yamamoto–Itoh [12] scheme,
while the third and fourth phases correspond to the control
mode. In the Yamamoto–Itoh scheme, the ratio of the lengths of
the message and control modes is where .
We choose the parameters such that a similar relation holds for
the proposed scheme. In particular, let ; then, we
want

The parameter is the proportionality constant, i.e.,

We let one of these proportionality constants to be one and call
that channel the reference channel .
In the Burnashev exponent, the slope (i.e., the term in

(4)) is determined by the “signaling exponent” in the control
mode. As will become apparent in the proof of Proposition 6,
to maximize the slope of our exponent, we need to choose the
parameters such that

We choose the parameters that satisfy the above properties as
follows. For , define constants

(19)

Let , , and be the , , and parameters corresponding
to the reference channel . Then, choose the parameters of the
coding scheme as follows.
1) Choose .
2) Choose such that is an integer,

while . An
example for such a choice is .

3) Choose such that is an integer,
.

4) Choose such that is an integer,
.

5) Choose such that is an integer,

.

G. Consequences of the Choice of Parameters

The choice of the parameters , , , , and ,
implies the following:

Lemma 1 (Length of Message and Control Phases): For
every , we have that
1) ;
2) .

The choice of the estimation rules , , the codebooks,
and the hypothesis testing rules , , implies the
following properties:

Lemma 2: For every and , we have that
1) ;
2) ;
3) ,

;
4) ,

;
5) ,

.

An immediate consequence of the above is that each of the
error probabilities approach zero as . Specifically,

Lemma 3: For every and , we have that
1) ;
2) ;
3)

;
4) ,

;
5) ,

.
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IV. PERFORMANCE ANALYSIS

A. Some Preliminary Results

Recall that the length of epoch is . Thus

Combining Lemmas 1 and 3, we get the following:

Lemma 4: For every and , we have that

(20)

Thus, for large and realized channel , the expected length
of each epoch is .

Proof: The event depends on the third and the
fourth phase of the coding scheme and is, therefore, independent
of the first phase; hence

Moreover, Lemma 2 also implies that

Combining the above two relations with Lemmas 1 and 3 give
the result.

Let

denote the set of all REJECT control signals and let denote
the probability that the estimated control sequence in epoch is
in , i.e.,

(21)

Due to symmetry across each epoch, does not depend on .
Conditioned on the event that , communication stops

at epoch if the estimated control sequence is REJECT.
Hence

Consequently, we have the following.

Proposition 2: For any and , the number
of retransmissions has a geometric distribution; in particular

(22)

Furthermore, Lemma 3 implies that

(23)

Hence

(24)

Thus, for large and irrespective of the realized channel, the
expected number of transmission epochs is one.

B. Expected Length of Communication

Proposition 3: For every

(25)

Proof: Since , we get

Proposition 2 implies that

where the last equality follows from Lemma 4.

C. Probability of Error

Proposition 4: For any and , the proba-
bility of error is given by

(26)

Proof: The error event is . For each
, . Using this to simplify the proba-

bility of error, we get that

where follows from the symmetry across epochs and
follows from the Bayes rule.

D. Opportunistically Achievable Rate

Proposition 5: The coding scheme of Section III opportunis-
tically achieves the rate vector .
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Proof: To prove the result, we need to show the proposed
scheme satisfies the properties described in Definition 4. Specif-
ically

(27)

along with

(28)

and

(29)

We prove these separately.
(a) Property (27) follows from Proposition 3.
(b) Recall that . Hence

Proposition 3 implies that

(30)
Now

where we do not condition on in the first term
of the RHS because the event depends only on
the events of the third and the fourth phases, which are
independent of the first and the second phases, and hence
independent of . Using Proposition 2, we get that

(31)

Now

Using Lemma 3, we get that

(32)

Substituting (31) and (32) into (30) gives (28).
(c) Property(29) follows substituting the results of Proposi-

tion 2 and Lemma 3 in Proposition 4.

E. EER

Proposition 6: For a particular choice of estimation rule ,
the -component of the error exponent of the
coding scheme of Section III is bounded by

(33)

By varying the choice of , we get

E

T

(34)

Proof: Consider the expression for in Proposition 4.
Taking logs, we get

(35)

Consider the three summands in the RHS of (35). First con-
sider the first term of the RHS of (35). From Lemma 3, we have
that

(36)

Next consider the second term of the RHS of (35).

(37)

From Lemma 3, we have that

(38)

and

(39)

where the last equality follows because . Substi-
tuting (38) and (39) into (37), and taking logarithms and limits,
we get

(40)
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Next consider the third term of the RHS of (35). From Propo-
sition 2, it follows that

(41)

Substituting the result of (36), (40), and (41) into (35), we get

(42)

Combining this with Proposition 3, we get

(43)

The result follows by observing that , and substi-
tuting the value of and in (43).

The choice of operating point on the EER boundary depends
on the objective. For given positive constants , two
possible objectives are to minimize the weighted probability of
error

or maximize the weighted error exponent

As , each of decay to zero exponen-
tially. Thus, minimizing is equivalent to maximizing

. The choice of the operating point
, and hence the choice of , depends on the

objective.

F. Capacity

Proposition 6 implies that for any rate vector
such that , , each component of the prob-
ability of error goes to zero as . Thus

C Q

Furthermore, if a coding scheme (opportunistically) achieves
rate when the realized channel , then the same
schemewill also achieve rate when used over DMC . Thus

C Q

Combining these two bounds, we get

Corollary 1: The opportunistic capacity region is given by a
hyper-rectangle

C Q

We call CQ as called the capacity vector of
the compound channel Q.

V. EXAMPLE

Consider a compound channel consisting of two BSCs with
complementary crossover probabilities, and , where

Fig. 1. Scaled EER region
E for different instances of the compound channel Q

.

and is known to the transmitter and the receiver.
Denote this compound channel by

Q

where denotes a binary symmetric channel with
crossover probability . For convenience, we index all vari-
ables by and rather than by 1 and 2. For binary
symmetric channel, the capacity and the zero-rate Burnashev
exponent are given by

and

where is the binary entropy
function and

is the binary Kullback–Leibler function. Assume that the
desired communication rate is , where and

.
Choose the training sequences and as all zero se-

quences of length and . Choose the channel estimation
rules and as the threshold tests: if the empirical frequency
of ones in the output is less than , , estimate the
channel as ; otherwise, estimate the channel as .
The thresholds for and are and , respectively. For
such a threshold test, the probability of estimation error is
bound by the tail probability of a sum of independent random
variables. From Hoeffding’s inequality [15, Th. 1], the expo-
nents of the estimation errors are

Choose the two codebooks as any codebooks for and
that have positive error exponents.

Choose the control sequences and as rep-
etitions of zeros and ones, respectively. Similarly, choose the
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control sequences and as repetitions of
ones and zeros, respectively. The hypothesis testing rules
and are chosen as described in Section III-E.
Proposition 6 implies that for any rate vector and

a particular choice of the estimation threshold ,5 the above
scheme achieves an error exponent such that

where and .
There are no known upper bounds on the EER. Hence, we

compare with the trivial upper bound of the Burnashev exponent
of and .

Let

and

E

For the scheme proposed in Section III, does not depend
on the transmission rate . We plot for different
values of in Fig. 1.

VI. CONCLUSION

In the presence of feedback, not knowing the exact channel
transition matrix does not result in a loss in capacity. As a result,
we can provide an optimistic rate guarantee: any rate less than
the capacity of the realized channel is opportunistically achiev-
able, even though we do not know the realized channel before
the start of communication. This is in contrast to the pessimistic
rate guarantees in compound channel without feedback. More
importantly, any rate vector in the optimistic capacity region can
be achieved using a simple training-based coding scheme. The
error exponent of this scheme has a negative slope at all rates in
the capacity region, even at rates near the boundary of the ca-
pacity region.
Our proposed training-based scheme is conceptually similar

to Yamamoto–Itoh’s scheme. It operates in multiple epochs;
each epoch is divided into a message mode and a control mode.
A training sequence is transmitted at the beginning of each

5The choice of does not affect the values of and as long as
. For that, we require only that . Choosing

ensures that.

mode, and the corresponding channel estimate determines the
operation during the remainder of the mode.
It may appear that the proposed scheme can be simplified

by combining the training phases in each epoch, i.e., have a
training phase followed by message and control modes. How-
ever, as argued by Tchamkerten and Telatar [16], such a simplifi-
cation will lead to error exponents that have zero-slope near ca-
pacity. Our results do not contradict the results of [16] because
we allow for more sophisticated training. Re-training in the con-
trol mode ensures that the error events and

are independent, which, in turn, is essential
to obtain an error exponent of the form .
One possible way to make the scheme more efficient is to ac-

cumulate the training sequences for each phase, i.e.,, the channel
estimation for the message mode and the control mode is based
on all past training sequences for that mode. Such an accumula-
tion will improve the finite length performance of the scheme,
but does not affect the asymptotic performance because, in the
limit, the communication lasts for only one epoch with high
probability.
Another possibility to improve the performance of the coding

scheme is to use a universal coding scheme for the control mode
rather than a training-based scheme. This motivates the study of
the following communication problem.
Open Problem: Consider the communication of a binary

valued message over a compound channel with feedback.
Let Q denote the compound channel,

denote the message, and denote the
channel inputs and output at time , and denotes the decoded
message. Consider a variable length coding scheme ,
where is the encoding function at time , is the decoding
function at time , and is a -measurable stopping time. The
decoded message is

Let and denote the exponent of the two types of errors,
i.e.,

(44)

(45)

where is the induced probability measure when the true
channel equals .
For a sequence of coding schemes

such that

define the type-I and type-II error exponents of as
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Furthermore, define

What is the best type-II exponent ?
Tchamkerten and Telatar [17] studied a similar problem and

identified necessary and sufficient conditions under which

We are not aware of the solution to the above problem when the
conditions in [17] are not satisfied.
Given any sequence of coding schemes for Problem 1, we

can replace the control mode (phases three and four) of the pro-
posed coding scheme by and achieve an error exponent of

If is optimal, the error exponent is

(46)

We conjecture that no coding scheme can achieve a better error
exponent, i.e., (46) is the Pareto frontier of the EER.
When the conditions in [17] are satisfied, we can replace the

control mode by the variable length coding scheme proposed
in [17], and thereby recover the result of [7]. In fact, in that
case, our modified scheme is exactly the same as the variation
proposed in [7, Sec. IV-B]. When the conditions in [17] are not
satisfied, the scheme proposed in this paper provide an inner
bound on the EER. To find the best error exponents, we need to
solve Problem 1.
In this paper, we presented an inner bound on the EER when

the compound channel is defined over a finite family. Gener-
alization of the coding scheme to compound channels defined
over continuous families is an important and interesting future
direction. We believe that solving Problem 1 is a critical step in
that direction.
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