Compound channel with feedback: Opportunistic capacity and error exponents

Aditya Mahajan and Sekhar Tatikonda Yale University

March 17, 2010 CISS

Compound channel

Channel model

 $\mathbb{P}(Y_n \mid X^n, Y^{n-1}) = Q_{\circ}(Y_n \mid X_n)$

 $Q_{\circ} \in \mathbb{Q}$, \mathbb{Q} known to encoder and decoder

HAN THE PHILT THE (11

Compound channel

Channel model

 $\mathbb{P}(Y_n \mid X^n, Y^{n-1}) = Q_{\circ}(Y_n \mid X_n)$

 $Q_{\circ} \in \mathbb{Q}$, \mathbb{Q} known to encoder and decoder

Capacity

 $C(\mathbb{Q}) = \max_{P \in \Delta(\mathbb{X})} \inf_{Q \in \mathbb{Q}} I(P, Q)$

HAN THE PHE THE THE LET

Compound channel

Channel model

 $\mathbb{P}(Y_n \mid X^n, Y^{n-1}) = Q_{\circ}(Y_n \mid X_n)$

 $Q_{\circ} \in \mathbb{Q}$, \mathbb{Q} known to encoder and decoder

Capacity

$$C(\mathbb{Q}) = \max_{P \in \Delta(\mathbb{X})} \inf_{Q \in \mathbb{Q}} I(P, Q)$$

Capacity with feedback

 $C_F(\mathbb{Q}) = \inf_{Q \in \mathbb{Q}} \max_{P \in \Delta(\mathbb{X})} I(P, Q)$

HAN HAN HAN HAN INA

Feedback capacity is defined pessimistically

Outline

- Stress Variable length coding scheme
 - Achievable rate and opportunistic capacity
 - Probability of error and error exponents
- Literature Overview
 - Variable length communication over DMC
 - Variable length communication over compound channel
- Main Result
 - Lower bound on error exponent region
 - Achievable coding scheme
- Example

THU THE THE THE IS

Variable length coding

Assume $\mathbb{Q} = \{Q_1, ..., Q_L\}$. Variable length coding scheme is a tuple $(\mathbf{M}, \mathbf{f}, \mathbf{g}, \tau)$

© Compound message: $\mathbf{M} = (M_1, ..., M_L)$. Let $\mathbb{M} = \prod_{\ell=1}^{L} \{1, ..., M_\ell\}$.

Similar Encoding strategy: $\mathbf{f} = (f_1, f_2, ...)$

$$f_t = \mathbb{M} \times \mathbb{Y}^{t-1} \mapsto \mathbb{X}$$

Solution Decoding strategy: $\mathbf{g} = (g_1, g_2, ...)$

$$g_t: \mathbb{Y}^t \mapsto \bigcup_{\ell=1}^L \{(\ell,1), (\ell,2), ..., (\ell,M_\ell)\}$$

Stopping time τ with respect to the channel output Y^t

THE THE THE THE THE IN

Operation of the scheme

- Sompound message $\mathbf{W} = (W_1, ..., W_L)$
- \textcircled{W}_{ℓ} is uniformly distributed in $\{1, ..., M_{\ell}\}$

Encoder

$$X_1 = f_1(\mathbf{W}), \quad X_2 = f_2(\mathbf{W}, Y_1), \quad \cdots$$

Decoder:

 $(\hat{L},\hat{W})=g_\tau(Y_1,...,Y_\tau)$

HAN THE THE THE UI

Performance metrics

Solution Probability of error $\mathbf{P} = (P_1, ..., P_L)$

$$P_{\ell} = \mathbb{P}_{\ell}(\hat{W} \neq W_{\hat{L}})$$

(a) Rate: $\mathbf{R} = (R_1, ..., R_L)$

$$R_{\ell} = \frac{\mathbb{E}_{\ell}[\log M_{\hat{L}}]}{\mathbb{E}_{\ell}[\tau]}$$

HAN THE THE THE UN

- Solution $(\mathbf{M}, \mathbf{f}, \mathbf{g}, \tau)$
- Bigher level application generates an infinite bit-stream

HALT THE THE THE IN

- Solution Variable length communication using $(\mathbf{M}, \mathbf{f}, \mathbf{g}, \tau)$
- Bigher level application generates an infinite bit-stream
 - ▶ Let $M_{\max} = \max\{M_1, ..., M_L\}$ and $M_{\min} = \min\{M_1, ..., M_L\}$

HAT THE THE THE UI

- Solution Variable length communication using $(\mathbf{M}, \mathbf{f}, \mathbf{g}, \tau)$
- Bigher level application generates an infinite bit-stream
 - ► Let $M_{\max} = \max\{M_1, ..., M_L\}$ and $M_{\min} = \min\{M_1, ..., M_L\}$
- Encoding
 - **r** Transmitter picks $\log_2 M_{\text{max}}$ bits from the bit-stream.
 - ▶ W_{ℓ} is the decimal expansion of the first $\log_2 M_{\ell}$ of these bits.

THE THE THE THE COL

- Decoding
 - At stopping time τ , the receiver passes (\hat{W}, \hat{L}) to a higher layer application.
 - The transmitter removes $\log_2 M_{\hat{L}}$ bits from the $\log_2 M_{\text{max}}$ initially chosen bits and returns the remaining bits to the bit-stream.

HAN THE THE THE UI

- Decoding
 - At stopping time τ , the receiver passes (\hat{W}, \hat{L}) to a higher layer application.
 - The transmitter removes $\log_2 M_{\hat{L}}$ bits from the $\log_2 M_{\text{max}}$ initially chosen bits and returns the remaining bits to the bit-stream.

Advantage of being opportunistic: $\log_2 M_{\hat{L}} - \log_2 M_{\min}$

HHT JHHT HHT JHHT III

Opportunistic capacity

Achievable Rate

Rate $\mathbf{R} = (R_1, ..., R_L)$ is **achievable** if \exists sequence of coding schemes such that for $\varepsilon > 0$ and sufficiently large n, and for all $\ell = 1, ..., L$,

- 1. $\lim_{n\to\infty} \mathbb{E}_{\ell}[\tau^{(n)}] = \infty$
- 2. $P_{\ell}^{(n)} < \varepsilon$ and $R_{\ell}^{(n)} \ge R_{\ell} \varepsilon$

HAN HAN ANT ANT MAN (11

Opportunistic capacity

Achievable Rate

Rate $\mathbf{R} = (R_1, ..., R_L)$ is **achievable** if \exists sequence of coding schemes such that for $\varepsilon > 0$ and sufficiently large n, and for all $\ell = 1, ..., L$,

1.
$$\lim_{n\to\infty} \mathbb{E}_{\ell}[\tau^{(n)}] = \infty$$

2.
$$P_{\ell}^{(n)} < \varepsilon$$
 and $R_{\ell}^{(n)} \ge R_{\ell} - \varepsilon$

The union of all achievable rates is called the **opportunistic capacity region** $\mathbb{C}_F(\mathbb{Q})$

HAN HAN HAN HAN LAHN (11

Error Exponents

Error exponent

Given a sequence of coding scheme that achieve a rate vector **R**, the error exponent $\mathbf{E} = (E_1, ..., E_L)$ is given by

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(n)}}{\mathbb{E}_{\ell}[\tau^{(n)}]}$$

HAT HAT HAT HAT INT (11

Error Exponents

Error exponent

Given a sequence of coding scheme that achieve a rate vector **R**, the error exponent $\mathbf{E} = (E_1, ..., E_L)$ is given by

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(n)}}{\mathbb{E}_{\ell}[\tau^{(n)}]}$$

For a particular rate **R**, the union of all possible error exponents is called the error exponent region $\mathbb{E}(\mathbf{R})$.

HAT HAT HAT HAT IN [1]

Outline

- Stress Variable length coding scheme
 - Achievable rate and opportunistic capacity
 - Probability of error and error exponents
- Literature Overview
 - Variable length communication over DMC
 - Variable length communication over compound channel

I'M HH IH IH II

- Main Result
 - Lower bound on error exponent region
 - Achievable coding scheme
- Example

Variable length communication over DMC

Special case of a compound channel when $|\mathbb{Q}| = 1$.

 Burnashev-76, "Data transmission over a discrete channel with feedback: Random transmission time"

Burnashev exponent

 $E(R,Q) = B_Q(1-\gamma)$

where $\gamma = R/C$.

HAN HAN HAN HAN IN (11

Variable length communication over DMC

- Achievability scheme
 - Yamamoto-Itoh-79, "Asymptotic performance of a modified Schalkwijk-Barron scheme with noiseless feedback".
 - **Message mode:** Fixed length code at rate $C \varepsilon$ and length γn
 - **Control mode**: Send ACCEPT or REJECT for length $(1 \gamma)n$
 - Repeat until ACCEPT is received

THE THE THE THE THE ISI

Advantage of variable length comm

HAT HAT HAT HAT INT

Variable length comm over compound channel

Tchamkerten-Telatar-o6, "Variable length coding over unknown channel"

Can we achieve Burnashev exponent even if we do not know the channel?

HAT THE PHI THE (11

Variable length comm over compound channel

Tchamkerten-Telatar-06, "Variable length coding over unknown channel"

Can we achieve Burnashev exponent even if we do not know the channel?

Segative result

Restricted attention to $R_{\ell}/C_{\ell} = constant$

- ▶ Under some restricted conditions, yes.
- ▶ In general, no.

HAT THE THE THE UN

Counterexample: { BSC_p , BSC_{1-p} }

HAT HAT HAT LANT (11

Questions

- What are the error exponents when conditions of Tchamkerten-Telatar-o6 are not met?
- Which coding schemes achieve the best exponent?
- Solution What about rates when R_{ℓ}/C_{ℓ} is not a constant?

THE THE THE THE THE IS

Outline

- Variable length coding scheme
 - Achievable rate and opportunistic capacity
 - Probability of error and error exponents
- Literature Overview
 - Variable length communication over DMC
 - Variable length communication over compound channel
- Main Result
 - Lower bound on error exponent region
 - Achievable coding scheme
- Example

HAN HAT HAT LANT (11

Main Result

Opportunistic Capacity

$$\mathbb{C}_{F}(\mathbb{Q}) = \{ (R_{1}, ..., R_{L}) : 0 \le R_{\ell} < C_{\ell}, \ell = 1, ..., L \}$$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

HAT HAT HAT HAT INT (11

Main Result

Opportunistic Capacity

 $\mathbb{C}_{F}(\mathbb{Q}) = \{ (R_{1}, ..., R_{L}) : 0 \le R_{\ell} < C_{\ell}, \ell = 1, ..., L \}$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

- Serror Exponent Region
 - ► Let T_{ℓ}^{c} be the exponent of the channel estimation error when the channel is Q_{ℓ} . For any channel estimation scheme, $(T_{1}^{c}, ..., T_{L}^{c}) \in \mathbb{T}^{*}$.

Main Result

Opportunistic Capacity

 $\mathbb{C}_{F}(\mathbb{Q}) = \{ (R_{1}, ..., R_{L}) : 0 \le R_{\ell} < C_{\ell}, \ell = 1, ..., L \}$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

- Error Exponent Region
 - ► Let T_{ℓ}^c be the exponent of the channel estimation error when the channel is Q_{ℓ} . For any channel estimation scheme, $(T_1^c, ..., T_L^c) \in \mathbb{T}^*$.
 - ▶ At rate $\mathbf{R} = (R_1, ..., R_L)$, the error exponent is

$$E_{\ell} \geq \frac{T_{\ell}^{c}}{T_{\ell}^{c} + B_{Q_{\ell}}} B_{Q_{\ell}} \left(1 - \frac{R_{\ell}}{C_{\ell}}\right)$$

where $B_{Q_{\ell}} = \max_{x_A, x_R \in \mathbb{X}} D(Q_{\ell}(\cdot | x_A), Q_{\ell}(\cdot | x_R))$ $\mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W} \mathcal{W}$

The achievable scheme

Communicate in variable number of epochs. Each epoch is variable length and consists of four phases

- Training phase of length $\beta_1(n)n$. Generate channel estimate \hat{L}_m
- Message phase of length $\beta_2(\hat{L}^m, n)n$. Assume that the channel is \hat{L}_m .
- **•** Re-training phase of length $\beta_3(n)n$. Generate channel estimate \hat{L}_c .
- Control phase of length $\beta_4(\hat{L}_c, n)n$. Transmit ACCEPT or REJECT assuming that the channel is \hat{L}_c .

HAN THE HAL THE THE

Proof Outline: Number of epochs

Number of epochs ≈ 1

THE THE PHE THE THE IS

Rate of transmission

 $\lim_{n \to \infty} \frac{\mathbb{E}_{\ell} [\text{\# messages}]}{\mathbb{E}_{\ell} [\text{\# epochs}] \mathbb{E}_{\ell} [\text{epoch length}]}$

HAT HAT HAT HAT INT (11

HAT THE PHIL THE UN

HAN THE HE THE THE UI

HAT HAT HAT HAT IN

- \mathbb{E}_{ℓ} [# epochs] ≈ 1

Server exponent

 $\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell} [\text{\# epochs}] \mathbb{E}_{\ell} [\text{epoch length}]}$

HAT THE HEL THE THE

Error exponent

 $\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell}[\text{\# epochs}]\mathbb{E}_{\ell}[\text{epoch length}]}$

► \mathbb{E}_{ℓ} [# epochs] \approx 1, \mathbb{E}_{ℓ} [epoch length] $\approx \alpha_{\ell} n$

HAT HAT HAT IAN (1/

Error exponent

 $\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell}[\text{\# epochs}]\mathbb{E}_{\ell}[\text{epoch length}]}$

► \mathbb{E}_{ℓ} [# epochs] \approx 1, \mathbb{E}_{ℓ} [epoch length] $\approx \alpha_{\ell} n$

$$P_{\ell} \leq \left(e^{-\beta_{1}(n)n\left(\bullet \right)} + e^{-\beta_{2}(\ell,n)n\left(\bullet \right)} \right)$$
$$\times \left(e^{-\beta_{3}(n)n\left(\bullet \right)} + e^{-\beta_{4}(\ell,n)n\left(\bullet \right)} \right)$$
$$\times \mathbb{E}_{\ell}[\# \text{ epochs}]$$

HAT THE THE THE IN (11

Error exponent

 $\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell}[\text{\# epochs}]\mathbb{E}_{\ell}[\text{epoch length}]}$ • \mathbb{E}_{ℓ} [# epochs] ≈ 1 , \mathbb{E}_{ℓ} [epoch length] $\approx \alpha_{\ell} n$ $P_{\ell} \leq \left(e^{-\beta_1(n)n\left(\square \right)} + e^{-\beta_2(\ell,n)n\left(\square \right)} \right)$ $\times \left(e^{-\beta_3(n)n\left(-\beta_4(\ell,n)n\left(-\beta_4(\ell,n)n$ $\times \mathbb{E}_{\ell}$ [# epochs] $-\log\left(e^{-\beta_1(n)n\left(-\right)} + e^{-\beta_2(\ell,n)n\left(-\right)}\right) \approx \beta_1(n)n\left(-\right) \ge 0$

HAN THE HEL THE LEFT (11

Error exponent

 $\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell}[\text{# epochs}]\mathbb{E}_{\ell}[\text{epoch length}]}$ \blacktriangleright \mathbb{E}_{ℓ} [# epochs] ≈ 1 , \mathbb{E}_{ℓ} [epoch length] $\approx \alpha_{\ell} n$ $P_{\ell} \leq \left(e^{-\beta_1(n)n\left(\square \right)} + e^{-\beta_2(\ell,n)n\left(\square \right)} \right)$ $\times \left(e^{-\beta_3(n)n\left(-\beta_4(\ell,n)n\left(-\beta_4(\ell,n)n$ $\times \mathbb{E}_{\ell}$ [# epochs] $-\log\left(e^{-\beta_1(n)n\left(-\right)} + e^{-\beta_2(\ell,n)n\left(-\right)}\right) \approx \beta_1(n)n\left(-\right) \ge 0$ $-\log\left(e^{-\beta_3(n)n\left(\textbf{m}\right)} + e^{-\beta_4(\ell,n)n\left(\textbf{m}\right)}\right) \ge \frac{\left(\textbf{m}\right)\cdot\left(\textbf{m}\right)}{\left(\textbf{m}\right)+\left(\textbf{m}\right)}(\beta_3(n) + \beta_4(\ell,n))$ LHAT LHAT HAT LANT (11

Error exponent

$$\lim_{n \to \infty} \frac{-\log P_{\ell}}{\mathbb{E}_{\ell}[\text{# epochs}]\mathbb{E}_{\ell}[\text{epoch length}]}$$

$$\geq \frac{T_{\ell}^c \cdot B_{Q_{\ell}}}{T_{\ell}^c + B_{Q_{\ell}}} (1 - \gamma_{\ell})$$

► \mathbb{E}_{ℓ} [# epochs] \approx 1, \mathbb{E}_{ℓ} [epoch length] $\approx \alpha_{\ell} n$

$$P_{\ell} \leq \left(e^{-\beta_{1}(n)n\left(\blacksquare \right)} + e^{-\beta_{2}(\ell,n)n\left(\blacksquare \right)} \right)$$

$$\times \left(e^{-\beta_{3}(n)n\left(\blacksquare \right)} + e^{-\beta_{4}(\ell,n)n\left(\blacksquare \right)} \right)$$

$$\times \mathbb{E}_{\ell}[\# \text{ epochs}]$$

$$-\log\left(e^{-\beta_{1}(n)n\left(\blacksquare \right)} + e^{-\beta_{2}(\ell,n)n\left(\blacksquare \right)} \right) \approx \beta_{1}(n)n\left(\blacksquare \right) \geq 0$$

$$-\log\left(e^{-\beta_{3}(n)n\left(\blacksquare \right)} + e^{-\beta_{4}(\ell,n)n\left(\blacksquare \right)} \right) \geq \frac{\left(\blacksquare \right)\cdot\left(\blacksquare \right)}{\left(\blacksquare \right) + \left(\blacksquare \right)} (\beta_{3}(n) + \beta_{4}(\ell,n))$$

Outline

- Solution Variable length coding scheme
 - Achievable rate and opportunistic capacity
 - Probability of error and error exponents
- Literature Overview
 - Variable length communication over DMC
 - Variable length communication over compound channel
- Main Result
 - Lower bound on error exponent region
 - Achievable coding scheme
- Sexample

HAT HAT HAT IAM IAM (11)

 $\mathbb{Q} = \{BSC_p, BSC_{1-p}\}, p \text{ known at encoder and decoder}$

HAT HAT HAT HAT (11

(a) $\mathbb{Q} = \{BSC_p, BSC_{1-p}\}, p \text{ known at encoder and decoder}$

Capacity: $C_p = C_{1-p} = 1 - h(p)$

LANT LANT LANT LANT (11

 $\mathbb{Q} = \{BSC_p, BSC_{1-p}\}, p \text{ known at encoder and decoder}$

- **Capacity:** $C_p = C_{1-p} = 1 h(p)$
- Slope of Burnashev exp: $B_p = B_{1-p} = D(p||1-p)$

HAT HAT HAT HAT INT (1/

 $\textcircled{Q} = {BSC_p, BSC_{1-p}}, p \text{ known at encoder and decoder}$

- **Capacity:** $C_p = C_{1-p} = 1 h(p)$
- Slope of Burnashev exp: $B_p = B_{1-p} = D(p||1-p)$
- Solution Channel estimation rule: Transmit the all zero sequence as the training sequence. Estimate BSC_p if frequency of ones is less than q; else estimate BSC_{1-p} .

HAT HAT HAT HAT INT (1/

 $\textcircled{Q} = \{BSC_p, BSC_{1-p}\}, p \text{ known at encoder and decoder}$

- **Capacity:** $C_p = C_{1-p} = 1 h(p)$
- Slope of Burnashev exp: $B_p = B_{1-p} = D(p||1-p)$
- Channel estimation rule: Transmit the all zero sequence as the training sequence. Estimate BSC_p if frequency of ones is less than q; else estimate BSC_{1-p} .
- Exponent of training error:

 $T_p = D(p||q)$ $T_{1-p} = D(1-p||q)$

HAN THE HE THE THE

Performance evaluation

Communication at rate $\mathbf{R} = (R_p, R_{1-p})$. Let $\gamma = R/C$.

Error exponents

$$E_{p} \geq \frac{D(q\|p) \cdot D(p\|1-p)}{D(q\|p) + D(p\|1-p)} (1-\gamma_{p})$$

$$E_{1-p} \geq \frac{D(q\|1-p) \cdot D(p\|1-p)}{D(q\|1-p) + D(p\|1-p)} (1-\gamma_{1-p})$$

HAT HAT HAT HAT IAM (1/

Performance evaluation

Communication at rate $\mathbf{R} = (R_p, R_{1-p})$. Let $\gamma = R/C$.

Error exponents

$$E_{p} \geq \frac{D(q\|p) \cdot D(p\|1-p)}{D(q\|p) + D(p\|1-p)} (1-\gamma_{p})$$

$$E_{1-p} \geq \frac{D(q\|1-p) \cdot D(p\|1-p)}{D(q\|1-p) + D(p\|1-p)} (1-\gamma_{1-p})$$

Optimal threshold q

Choose q such that $E_p = E_{1-p}$: solve for q in

$$\varphi(q,p) = \frac{(1-\gamma_p)}{(1-\gamma_{1-p})}$$

where $\varphi(q, p)$ is appropriately defined

HAT HAT HAT HAT (11

Error Exponents

HAT THE THE THE IN (1)

Threshold for channel estimation

THE THE THE THE THE IN

Threshold for channel estimation

γ_p	γ_{1-p}	q	$E_p = E_{1-p}$
0.5	0.1	0.5861	0.3666
0.5	0.2	0.5695	0.3511
0.5	0.3	0.5501	0.3329
0.5	0.4	0.5273	0.3114
0.5	0.5	0.5000	0.2855
0.5	0.6	0.4666	0.2537
0.5	0.7	0.4247	0.2139
0.5	0.8	0.3698	0.1628
0.5	0.9	0.2918	0.0952

THE THE THE THE UN

Conclusion

Contributions

- Defining opportunistic capacity and corresponding error exponent regions for compound channels with feedback.
- A simple and easy to implement coding scheme whose error exponents are within a multiplicative factor of the best possible error exponents
- In the presence of feedback, training based schemes can lead to reasonable performance

111 HHT 111 HHT 111

Conclusion

Contributions

- Defining opportunistic capacity and corresponding error exponent regions for compound channels with feedback.
- A simple and easy to implement coding scheme whose error exponents are within a multiplicative factor of the best possible error exponents
- In the presence of feedback, training based schemes can lead to reasonable performance
- Future directions
 - Channels defined over continuous families and continuous alphabets
 - Upper bound on error exponents

111 1111 111 HH HH III

Thank You