Error Exponents of Compound Channel with Feedback

Aditya Mahajan and Sekhar Tatikonda Yale University

ISIT 2010

Problem Setup

- Compound channel
 - Channel is memoryless

$$\mathbb{P}(Y_n \mid X^n, Y^{n-1}) = Q_{\circ}(Y_n \mid X_n)$$

Channel is not known completely

 $Q_{\circ} \in \mathbf{Q} := \{Q_1, Q_2, \dots, Q_L\}$ (Family of DMCs)

Problem Setup

- Compound channel
 - Channel is memoryless

$$\mathbb{P}(Y_n \mid X^n, Y^{n-1}) = Q_{\circ}(Y_n \mid X_n)$$

Channel is not known completely

 $Q_{\circ} \in \mathbf{Q} := \{Q_1, Q_2, \dots, Q_L\}$ (Family of DMCs)

- Variable length communication
 - ► Capacity? (easy)
 - Error Exponents? (this talk)

Notation

For a (variable length) coding scheme S

$$P_{\ell}^{(S)} = \text{Prob of error when } Q_{\circ} = Q_{\ell}$$

$$R_{\ell}^{(S)} = \text{Rate when } Q_{\circ} = Q_{\ell}$$

▶ $\tau^{(S)}$ = Communication length (stopping time on $\{Y_n\}_{n \in \mathbb{N}}$)

Notation

For a (variable length) coding scheme S

•
$$P_{\ell}^{(S)} = \text{Prob of error when } Q_{\circ} = Q_{\ell}$$

$$R_{\ell}^{(S)} = \text{Rate when } Q_{\circ} = Q_{\ell}$$

► $\tau^{(S)}$ = Communication length (stopping time on $\{Y_n\}_{n \in \mathbb{N}}$)

Opportunistic Achievability (main idea)

A rate $(R_1, R_2, ..., R_L)$ is achievable if \exists a sequence of coding schemes $\{S_n\}_{n \in \mathbb{N}}$ such that for any $\varepsilon > 0$, $\exists n_{\circ}(\varepsilon)$ so that for all $n > n_{\circ}(\varepsilon)$

$$P_{\ell}^{(S_n)} < \varepsilon$$
 and $R_{\ell}^{(S_n)} > R_{\ell} - \varepsilon$ for all $\ell = 1, 2, ..., L$

Notation

For a (variable length) coding scheme S

$$P_{\ell}^{(S)} = \text{Prob of error when } Q_{\circ} = Q_{\ell}$$

$$R_{\ell}^{(3)} = \text{Rate when } Q_{\circ} = Q_{\ell}$$

► $\tau^{(S)}$ = Communication length (stopping time on $\{Y_n\}_{n \in \mathbb{N}}$)

Opportunistic Achievability (main idea)

A rate $(R_1, R_2, ..., R_L)$ is achievable if \exists a sequence of coding schemes $\{S_n\}_{n \in \mathbb{N}}$ such that for any $\varepsilon > 0$, $\exists n_{\circ}(\varepsilon)$ so that for all $n > n_{\circ}(\varepsilon)$

$$P_{\ell}^{(S_n)} < \varepsilon$$
 and $R_{\ell}^{(S_n)} > R_{\ell} - \varepsilon$ for all $\ell = 1, 2, ..., L$

Opportunistic Capacity: Union of all achievable rates. $C_F(Q) = \{(R_1, R_2, ..., R_L) : 0 \le R_\ell \le C_{Q_\ell}, \ \ell = 1, 2, ..., L\}$ where $C_{Q_\ell} = \text{capacity of DMC } Q_\ell$.

Notation

For a (variable length) coding scheme S

•
$$P_{\ell}^{(S)} = \text{Prob of error when } Q_{\circ} = Q_{\ell}$$

• $P_{\ell}^{(S)} = \text{Pate when } Q_{\circ} = Q_{\ell}$

Opportunistic capacity is a region

 $\bigcup_{n \in \mathbb{N}}$ such that for any c > 0, $\exists n_0(c)$ so that for an $n > n_0(c)$

$$P_{\ell}^{(S_n)} < \varepsilon$$
 and $R_{\ell}^{(S_n)} > R_{\ell} - \varepsilon$ for all $\ell = 1, 2, ..., L$

Opportunistic Capacity: Union of all achievable rates. $C_F(Q) = \{(R_1, R_2, ..., R_L) : 0 \le R_\ell \le C_{Q_\ell}, \ \ell = 1, 2, ..., L\}$ where C_{Q_ℓ} = capacity of DMC Q_ℓ .

Suppose a sequence $\{S_n\}_{n \in \mathbb{N}}$ of coding schemes that achieves a rate vector $\mathbf{R} = (R_1, R_2, \dots, R_L)$

Suppose a sequence $\{S_n\}_{n \in \mathbb{N}}$ of coding schemes that achieves a rate vector $\mathbf{R} = (R_1, R_2, \dots, R_L)$

Error exponent $E = (E_1, E_2, ..., E_L)$ of this scheme

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(S_n)}}{\mathbb{E}_{\ell}[\tau^{(S_n)}]}$$

Suppose a sequence $\{S_n\}_{n \in \mathbb{N}}$ of coding schemes that achieves a rate vector $\mathbf{R} = (R_1, R_2, \dots, R_L)$

Error exponent $E = (E_1, E_2, ..., E_L)$ of this scheme

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(S_n)}}{\mathbb{E}_{\ell}[\tau^{(S_n)}]}$$

Error exponent region (EER) $\mathcal{E}(\mathbf{R})$

Union of error exponent over all choices of coding schemes

Suppose a sequence $\{S_n\}_{n \in \mathbb{N}}$ of coding schemes that achieves a rate vector $\mathbf{R} = (R_1, R_2, \dots, R_L)$

Error exponent $E = (E_1, E_2, ..., E_L)$ of this scheme

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(S_n)}}{\mathbb{E}_{\ell}[\tau^{(S_n)}]}$$

Error exponent region (EER) $\mathcal{E}(\mathbf{R})$

Union of error exponent over all choices of coding schemes

Reliability
$$\equiv$$
 Pareoto frontier of EER

Suppose $Q = \{Q_1, Q_2\}$ and $R = (R_1, R_2) \le (C_1, C_2)$.

- Suppose $Q = \{Q_1, Q_2\}$ and $R = (R_1, R_2) \le (C_1, C_2)$.
- Let $S_{\ell} = \{S_{\ell,n}\}_{n \in \mathbb{N}}$ achieve Burnashev exponent for DMC Q_{ℓ} .

Suppose $Q = \{Q_1, Q_2\}$ and $R = (R_1, R_2) \le (C_1, C_2)$. Let $S_{\ell} = \{S_{\ell,n}\}_{n \in \mathbb{N}}$ achieve Burnashev exponent for DMC Q_{ℓ} .

Suppose $Q = \{Q_1, Q_2\}$ and $R = (R_1, R_2) \le (C_1, C_2)$. Let $S_{\ell} = \{S_{\ell,n}\}_{n \in \mathbb{N}}$ achieve Burnashev exponent for DMC Q_{ℓ} .

Our result: Propose a simple training based scheme such that

$$E_{\ell} \geq \lambda_{\boldsymbol{Q}} B_{\ell} \left(1 - \frac{R_{\ell}}{C_{\ell}} \right), \qquad \ell = 1, 2$$

Outline

Literature overview

- Burnashev exponent, Yamamoto-Itoh scheme
- ► Tchamkerten-Telatar result

Variable length coding scheme
 Transmit a compound message

An achievable scheme

A training based variation of Yamamoto-Itoh scheme

Example

 $\{BSC_p, BSC_{1-p}\}$. Non-obvious channel estimation

Literature Overview

DMC with Feedback

Variable length coding significantly booststhe error exponents[Burnashev, 1976]

$$E = B_Q \left(1 - \frac{R}{C} \right)$$

where $B_Q = \max_{x_A, x_R \in \mathcal{X}} D(Q(\cdot | x_A) || Q(\cdot | x_R))$

DMC with Feedback

Variable length coding significantly boosts the error exponents [Burnashev, 1976]

$$E = B_Q \left(1 - \frac{R}{C} \right)$$

where $B_Q = \max_{x_A, x_R \in \mathcal{X}} D(Q(\cdot | x_A) || Q(\cdot | x_R))$

A simple, two phase, coding scheme achieves Burnashev exponent [Yamamoto Itoh, 1979]

DMC with Feedback

Variable length coding significantly boosts the error exponents [Burnashev, 1976]

$$E = B_Q \left(1 - \frac{R}{C} \right)$$

BSC_{0.1} Rate

where $B_Q = \max_{x_A, x_R \in \mathcal{X}} D(Q(\cdot | x_A) || Q(\cdot | x_R))$

A simple, two phase, coding scheme achieves Burnashev exponent [Yamamoto Itoh, 1979]

Any scheme that achieves Burnashev exponent must have a control phase [Berlin *et. al*, 2009]

Training based schemes have poor error exponent

[Tchamkerten Telatar, 2006a]

The slope of the error exponent goes to zero at rates near capacity

Training based schemes have poor error exponent

7/19

Training based schemes have poor error exponent

The slope of the error exponent goes to zero at rates near capacity Burnashev exponent can be achieved universally [Tchamkerten Telatar, 2006b] The compound family is not too diverse $\Delta(Q) = 0$ Positive example: $\mathcal{B} = \{BSC_p : p \in [0, 1/2)\}$ and $\mathcal{Z} = \{Z_p : p \in [0, 1]\}$

Training based schemes have poor error exponent

known.

[Tchamkerten Telatar, 2006a] The slope of the error exponent goes to zero at rates near capacity Burnashev exponent can be achieved universally C_2 [Tchamkerten Telatar, 2006b] The compound family is not too diverse $\Delta(\mathbf{Q}) = 0$ Positive example: $\boldsymbol{\mathcal{B}} = \{BSC_p : p \in [0, 1/2)\}$ C_1 and $Z = \{Z_p : p \in [0, 1]\}$ Negative example: $Q_p = \{BSC_p, BSC_{1-p}\}, p$

7/19

Variable length coding over compound channel with feedback

- Adapting transmission rate
 - Vary communication length
- ► Vary the message size

- Adapting transmission rate
 - Vary communication length
- ► Vary the message size

Transmit $\log_2 M_\ell$ bits reliably when channel $Q_\circ = Q_\ell$, $\ell = 1, 2, ..., L$

- Adapting transmission rate
 - Vary communication length

► Vary the message size

Transmit $\log_2 M_\ell$ bits reliably when channel $Q_\circ = Q_\ell$, $\ell = 1, 2, ..., L$

Compound message $W = (W_1, W_2, \dots, W_L)$ of size $M = (M_1, M_2, \dots, M_L)$

- Adapting transmission rate
 - Vary communication length

Vary the message size

Transmit $\log_2 M_\ell$ bits reliably when channel $Q_\circ = Q_\ell$, $\ell = 1, 2, ..., L$

Compound message $W = (W_1, W_2, \dots, W_L)$ of size $M = (M_1, M_2, \dots, M_L)$

Encoding scheme

 $X_1 = f_1(W), \quad X_2 = f_2(W, Y_1), \quad X_3 = f_3(W, Y_1, Y_2), \quad \cdots$

- Adapting transmission rate
 - Vary communication length

► Vary the message size

Transmit $\log_2 M_\ell$ bits reliably when channel $Q_\circ = Q_\ell$, $\ell = 1, 2, ..., L$

Compound message $\boldsymbol{W} = (W_1, W_2, \dots, W_L)$ of size $\boldsymbol{M} = (M_1, M_2, \dots, M_L)$

Encoding scheme

 $X_1 = f_1(W), \quad X_2 = f_2(W, Y_1), \quad X_3 = f_3(W, Y_1, Y_2), \quad \cdots$

Decoding scheme: at stopping time τ , choose

$$(\hat{L},\hat{W})=g_{\tau}(Y_1,Y_2,\ldots,Y_{\tau})$$

The coding scheme

Coding scheme is a tuple (M, f, g, τ)

Compound message size $M = (M_1, M_2, \dots, M_L)$

Compound message alphabet $\mathcal{M} = \prod_{\ell=1}^{L} \{1, 2, \dots, M_{\ell}\}$

Encoding strategy $\boldsymbol{f} = (f_1, f_2, \dots)$

 $f_t: \mathcal{M} \times \mathcal{Y}^{t-1} \mapsto \mathcal{X}$

Decoding strategy $\boldsymbol{g} = (g_1, g_2, \dots)$

$$g_t: \boldsymbol{\mathcal{Y}}^{t-1} \mapsto \bigcup_{\ell=1}^{L} \left\{ (\ell, 1), (\ell, 2), \dots, (\ell, M_\ell) \right\}$$

Stopping time τ with respect to filtration $\{2^{\mathbf{y}^t}, t \in \mathbb{N}\}$

The coding scheme

Coding scheme is a tuple (M, f, g, τ)

- Compound message size $M = (M_1, M_2, \dots, M_L)$
- Compound message alphabet $\mathcal{M} = \prod_{\ell=1}^{L} \{1, 2, \dots, M_{\ell}\}$
 - Encoding strategy $\mathbf{f} = (f_1, f_2, \dots)$
 - $f_t: \mathcal{M} \times \mathcal{Y}^{t-1} \mapsto \mathcal{X}$

Decoding strategy $\boldsymbol{g} = (g_1, g_2, \dots)$

$$g_t: \boldsymbol{\mathcal{Y}}^{t-1} \mapsto \bigcup_{\ell=1}^{L} \left\{ (\ell, 1), (\ell, 2), \dots, (\ell, M_\ell) \right\}$$

Stopping time τ with respect to filtration $\{2^{\boldsymbol{y}^t}, t \in \mathbb{N}\}$

Rate
$$\mathbf{R} = (R_1, R_2, \dots, R_L)$$

$$R_{\ell} = \frac{\mathbb{E}_{\ell}[\log_2 M_{\hat{L}}]}{\mathbb{E}_{\ell}[\tau]}$$

Probability of error $P = (P_1, P_2, ..., P_L)$ $P_{\ell} = \mathbb{P}_{\ell}(\hat{W} \neq W_{\hat{L}})$

Capacity and Error Exponents

Achievable Rate: A rate $\mathbf{R} = (R_1, R_2, ..., R_L)$ is achievable if there exists a sequence of coding schemes $(\mathbf{M}^{(n)}, \mathbf{f}^{(n)}, \mathbf{g}^{(n)}, \tau^{(n)}), n \in \mathbb{N}$, such that

1.
$$\lim_{n \to \infty} \mathbb{E}_{\ell}[\tau^{(n)}] = \infty, \ \ell = 1, 2, \dots, L$$

2. For any $\varepsilon > 0$, $\exists n_{\circ}(\varepsilon)$ s.t. $\forall n \ge n_{\circ}(\varepsilon)$

$$P_{\ell}^{(n)} < \varepsilon$$
 and $R_{\ell}^{(n)} \ge R_{\ell} - \varepsilon$, $\ell = 1, 2, ..., L$

Capacity: Union of all achievable rates

Capacity and Error Exponents

Achievable Rate: A rate $\mathbf{R} = (R_1, R_2, ..., R_L)$ is achievable if there exists a sequence of coding schemes $(\mathbf{M}^{(n)}, \mathbf{f}^{(n)}, \mathbf{g}^{(n)}, \tau^{(n)}), n \in \mathbb{N}$, such that

1.
$$\lim_{n \to \infty} \mathbb{E}_{\ell}[\tau^{(n)}] = \infty, \ \ell = 1, 2, \dots, L$$

2. For any $\varepsilon > 0$, $\exists n_{\circ}(\varepsilon)$ s.t. $\forall n \ge n_{\circ}(\varepsilon)$

$$P_{\ell}^{(n)} < \varepsilon$$
 and $R_{\ell}^{(n)} \ge R_{\ell} - \varepsilon$, $\ell = 1, 2, ..., L$

Capacity: Union of all achievable rates

Error Exponent: Given a sequence of coding schemes $(\mathbf{M}^{(n)}, \mathbf{f}^{(n)}, \mathbf{g}^{(n)}, \tau^{(n)})$, that achieve a rate \mathbf{R} , the error exponent is given by

$$E_{\ell} = \lim_{n \to \infty} -\frac{\log P_{\ell}^{(n)}}{\mathbb{E}_{\ell}[\tau^{(n)}]}$$

- **Error Exponent Region**: Union of all error exponents.
- Reliability: Pareoto frontier of Error Exponent region

Main Result

Opportunistic Capacity

 $C_F(Q) = \{(R_1, ..., R_L) : 0 \le R_\ell < C_\ell, \ell = 1, ..., L\}$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

Main Result

Opportunistic Capacity

 $C_F(Q) = \{(R_1, ..., R_L) : 0 \le R_\ell < C_\ell, \ell = 1, ..., L\}$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

- Training based inner bound on Error Exponent Region
 - ▶ Let T_{ℓ}^{c} be the exponent of the channel estimation error when the channel is Q_{ℓ} . For any channel estimation scheme, $(T_{1}^{c}, ..., T_{L}^{c}) \in \mathcal{T}^{\star}$.

Main Result

Opportunistic Capacity

 $C_F(Q) = \{(R_1, ..., R_L) : 0 \le R_\ell < C_\ell, \ell = 1, ..., L\}$

where C_{ℓ} is the capacity of DMC Q_{ℓ} .

- Training based inner bound on Error Exponent Region
 - ▶ Let T_{ℓ}^{c} be the exponent of the channel estimation error when the channel is Q_{ℓ} . For any channel estimation scheme, $(T_{1}^{c}, ..., T_{L}^{c}) \in \mathcal{T}^{\star}$.
 - ▶ At rate $\mathbf{R} = (R_1, \dots, R_L)$, the error exponent is

$$E_{\ell} \geq \frac{T_{\ell}^{c}}{T_{\ell}^{c} + B_{Q_{\ell}}} B_{Q_{\ell}} \left(1 - \frac{R_{\ell}}{C_{\ell}}\right)$$

where $B_{Q_\ell} = \max_{x_A, x_R \in \mathcal{X}} D(Q_\ell(\cdot | x_A) || Q_\ell(\cdot | x_R))$

Parameterized by $n \in \mathbb{N}$. Multiple epochs. Each epoch has four phases

Parameterized by $n \in \mathbb{N}$. Multiple epochs. Each epoch has four phases

- 1. Training phase: length $\beta_1^{(n)}n$. Channel estimate $\hat{L}_m^{(k,n)}$.
- 2. Message phase: length $\beta_2^{(n)}(\hat{L}_m)n$
- 3. Retraining phase: length $\beta_3^{(n)}$. Channel estimate $\hat{L}_c^{(k,n)}$
- 4. Control phase: length $\beta_4^{(n)}(\hat{L}_c)n$.

Parameterized by $n \in \mathbb{N}$. Multiple epochs. Each epoch has four phases

- 1. Training phase: length $\beta_1^{(n)}n$. Channel estimate $\hat{L}_m^{(k,n)}$.
- 2. Message phase: length $\beta_2^{(n)}(\hat{L}_m)n$ 4. Control phase: length $\beta_4^{(n)}(\hat{L}_c)n$.
- 3. Retraining phase: length $\beta_3^{(n)}$. Channel estimate $\hat{L}_{c}^{(k,n)}$

Estimation rules: $\hat{\theta}_m^{(n)}$ for phase one, $\hat{\theta}_c^{(n)}$ for phase three.

Training exponents: (T_1^m, \ldots, T_L^m) and (T_1^c, \ldots, T_L^c) respectively

 $T_{\ell} = \mathbb{P}_{\ell}(\text{Channel estimation is wrong})$

Let
$$\kappa_{\ell} = \frac{T_{\ell}^{c}}{B_{Q_{\ell}}}$$
 and $\gamma_{\ell} = \frac{R_{\ell}}{C_{\ell}}$

Let
$$\kappa_{\ell} = \frac{T_{\ell}^c}{B_{Q_{\ell}}}$$
 and $\gamma_{\ell} = \frac{R_{\ell}}{C_{\ell}}$

Choose a reference channel Q^*

$$\alpha_{\ell} = \frac{(1+\kappa_{\ell})}{(1-\gamma_{\ell})} \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}$$

Let
$$\kappa_\ell = \frac{T_\ell^c}{B_{Q_\ell}}$$
 and $\gamma_\ell = \frac{R_\ell}{C_\ell}$

Choose a reference channel Q^*

$$\alpha_{\ell} = \frac{(1+\kappa_{\ell})}{(1-\gamma_{\ell})} \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}$$

Choice of parameters

 $\begin{aligned} \beta_1^{(n)} \downarrow 0, & \beta_2^{(n)}(\ell) \downarrow \alpha_{\ell} \gamma_{\ell}, \\ \beta_3^{(n)} \uparrow \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}, & \beta_4^{(n)}(\ell) \uparrow \kappa_{\ell} \beta_3^{(n)}, \end{aligned}$

Let
$$\kappa_\ell = \frac{T_\ell^c}{B_{Q_\ell}}$$
 and $\gamma_\ell = \frac{R_\ell}{C_\ell}$

Choose a reference channel Q^*

$$\alpha_{\ell} = \frac{(1+\kappa_{\ell})}{(1-\gamma_{\ell})} \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}$$

 $\begin{array}{ll} \rho_1^{(n)} \downarrow 0, & \beta_2^{(n)}(\ell) \downarrow \alpha_{\ell} \gamma_{\ell}, \\ \beta_3^{(n)} \uparrow \underbrace{(1 - \gamma^*)}_{\underbrace{(1 + \kappa^*)}_{= \alpha_{\ell} \underbrace{(1 - \gamma_{\ell})}_{(1 + \gamma_{\ell})}}, & \beta_4^{(n)}(\ell) \uparrow \kappa_{\ell} \beta_3^{(n)}, \end{array}$

Let
$$\kappa_\ell = \frac{T_\ell^c}{B_{Q_\ell}}$$
 and $\gamma_\ell = \frac{R_\ell}{C_\ell}$

Choose a reference channel Q^*

$$\alpha_{\ell} = \frac{(1+\kappa_{\ell})}{(1-\gamma_{\ell})} \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}$$

Choice of parameters

$$\beta_{1}^{(n)} \downarrow 0, \qquad \beta_{2}^{(n)}(\ell) \downarrow \alpha_{\ell}\gamma_{\ell}, \qquad \mathbb{E}_{\ell}[\beta_{1}^{(n)} + \beta_{2}^{(n)}(\ell)] \downarrow \alpha_{\ell}\gamma_{\ell}$$
$$\beta_{3}^{(n)} \uparrow \frac{(1 - \gamma^{\star})}{\underbrace{(1 + \kappa^{\star})}_{=\alpha_{\ell}\underbrace{(1 - \gamma_{\ell})}^{(1 + \gamma_{\ell})}}, \qquad \beta_{4}^{(n)}(\ell) \uparrow \kappa_{\ell}\beta_{3}^{(n)}, \qquad \mathbb{E}_{\ell}[\beta_{3}^{(n)} + \beta_{3}^{(n)}(\ell)] \uparrow \alpha_{\ell}(1 - \gamma_{\ell})$$

Let
$$\kappa_\ell = \frac{T_\ell^c}{B_{Q_\ell}}$$
 and $\gamma_\ell = \frac{R_\ell}{C_\ell}$

Choose a reference channel Q^*

$$\alpha_{\ell} = \frac{(1+\kappa_{\ell})}{(1-\gamma_{\ell})} \frac{(1-\gamma^{\star})}{(1+\kappa^{\star})}$$

Choice of parameters

$$\beta_{1}^{(n)} \downarrow 0, \qquad \beta_{2}^{(n)}(\ell) \downarrow \alpha_{\ell} \gamma_{\ell}, \qquad \mathbb{E}_{\ell}[\beta_{1}^{(n)} + \beta_{2}^{(n)}(\ell)] \downarrow \alpha_{\ell} \gamma_{\ell}$$

$$\beta_{3}^{(n)} \uparrow \underbrace{\frac{(1 - \gamma^{\star})}{(1 + \kappa^{\star})}}_{=\alpha_{\ell} \frac{(1 - \gamma_{\ell})}{(1 + \gamma_{\ell})}, \qquad \beta_{4}^{(n)}(\ell) \uparrow \kappa_{\ell} \beta_{3}^{(n)}, \qquad \mathbb{E}_{\ell}[\beta_{3}^{(n)} + \beta_{3}^{(n)}(\ell)] \uparrow \alpha_{\ell}(1 - \gamma_{\ell})$$

Expected length of an epoch

$$\mathbb{E}_{\ell}[\beta_1^{(n)} + \beta_2^{(n)}(\ell) + \beta_3^{(n)} + \beta_4^{(n)}(\ell)]n = \alpha_{\ell}n$$

- Training phase
- Message phase
- Retraining phase
- Control phase

Training phase

- Send training seq of length $\beta_1^{(n)}n$.
- ► Channel estimate $\hat{L}_m^{(k,n)}$ using estimation rule $\hat{\theta}_m^{(n)}$

Message phase

- Retraining phase
- Control phase

- Training phase
- Message phase

Encoder and decoder agree on L codebooks

- ► Codebook ℓ : No feedback comm over DMC Q_{ℓ} block length $\beta_2^{(n)}(\ell)$; size $M_{\ell}(n) = \lfloor 2^{n\alpha_{\ell}\gamma_{\ell}C_{\ell}} \rfloor$ (rate $\approx C_{\ell}$)
- ▶ Use codebook $\hat{L}_m^{(k,n)}$
- Retraining phase
- Control phase

- Training phase
- Message phase
- Retraining phase
 - Send training seq of length $\beta_3^{(n)}n$.
 - ► Channel estimate $\hat{L}_c^{(k,n)}$ using estimation rule $\hat{\theta}_c^{(n)}$

 $\hat{L}_{c}^{(k,n)}$ only depends on training sequence of phase 3 of epoch k

Control phase

14/19

- Training phase
- Message phase
- Retraining phase
- Control phase

Encoder and decoder agree upon

► L pairs of input symbols $(x_A(\ell), x_R(\ell))$ that are arg max of

 $\max_{x_A, x_R} D(Q_\ell(\cdot|x_A) \| Q_\ell(\cdot|x_R))$

• L decoding regions $\mathcal{A}_{\ell} \subset \mathcal{Y}^{\beta_4^{(n)}(\ell)n}$ that optimally distinguish

$$\underbrace{(x_A(\ell), \dots, x_A(\ell))}_{\beta_4^{(n)}(\ell) \text{ times}} \quad \text{from} \quad \underbrace{(x_R(\ell), \dots, x_R(\ell))}_{\beta_4^{(n)}(\ell) \text{ times}} \quad \text{over DMC } Q_\ell$$

Send ACCEPT or REJECT symbols for channel $\hat{L}_{c}^{(k,n)}$

 $\mathbb{E}_{\ell}[\tau^{(n)}] = \mathbb{E}_{\ell}[K^{(n)}\Lambda^{(K^{(n)},n)}n] \approx \frac{\alpha_{\ell}}{n}$

$$M_\ell(n) = \lfloor 2^{n\alpha_\ell \gamma_\ell C_\ell} \rfloor$$

$$M_\ell(n) = \lfloor 2^{n\alpha_\ell \gamma_\ell C_\ell} \rfloor$$

$$M_\ell(n) = \lfloor 2^{n\alpha_\ell \gamma_\ell C_\ell} \rfloor$$

16/19

An Example

 $Q = \{BSC_p, BSC_{1-p}\}, p \text{ known}$

Slope of Burnashev Exponent:

$$B_p = B_{1-p} = D(p||1-p)$$

An Example

 Q = {BSC_p, BSC_{1−p}}, p known
 Slope of Burnashev Exponent: B_p = B_{1−p} = D(p||1−p)

Channel Estimation

- ► Transmit all zero sequence
- ▶ Freq of ones < q : estimate BSC_p

An Example

 Q = {BSC_p, BSC_{1−p}}, p known
 Slope of Burnashev Exponent: B_p = B_{1−p} = D(p||1−p)

- Transmit all zero sequence
- ▶ Freq of ones < q : estimate BSC_p
- Exponent of training error

$$T_p = D(p || q), \quad T_{1-p} = D(1-p || q)$$

Performance evaluation

Performance evaluation

• Optimal threshold q

Choose q such that $E_p = E_{1-p}$: solve for q in

$$\varphi(q,p) = \frac{(1-\gamma_p)}{(1-\gamma_{1-p})}$$

where $\varphi(q, p)$ is appropriately defined

Conclusion

Contributions

- Defining opportunistic capacity and corresponding error exponent regions for compound channels with feedback.
- A simple and easy to implement coding scheme whose error exponents are within a multiplicative factor of the best possible error exponents
- In the presence of feedback, training based schemes can lead to reasonable performance

Conclusion

Contributions

- Defining opportunistic capacity and corresponding error exponent regions for compound channels with feedback.
- A simple and easy to implement coding scheme whose error exponents are within a multiplicative factor of the best possible error exponents
- In the presence of feedback, training based schemes can lead to reasonable performance
- Future directions
 - Channels defined over continuous families and continuous alphabets
 - Upper bound on error exponents

Thank you