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Abstract— There has been a lot of recent progress in under-
standing the structure of optimal control strategies in decen-
tralized stochastic control, but not much is known about com-
putational methods. In this paper, we propose two finite-state
approximation methods for decentralized sequential hypothesis
testing. The first method, which is called orthogonal search,
is an iterative method that approximately solves the coupled
dynamic programs proposed in Teneketzis and Ho, Information
and Computation, 1987. The second method, which is called
direct search, approximates the performance of a threshold-
based strategy and then searches over the thresholds using a
derivative-free non-convex optimization algorithm. The approx-
imations for both methods are based on the discretization of
the information state process to a finite-state Markov chain,
and calculating the absorption probabilities and absorption
stopping times for appropriately defined absorption sets. The
performance of both the methods is compared numerically.

I. INTRODUCTION

Sequential hypothesis testing was first formulated by

Wald [1] for efficient testing of anti-aircraft guns in World

War II. Since then, the theory of sequential hypothesis

testing has been applied to various applications including

sensor networks, intrusion detection in surveillance networks,

primary channel detection in cognitive radio, quality control,

and clinical trials.

In many of the modern applications, multiple nodes

observe noisy information about the system state. Com-

municating all the observations to a single node is often

too expensive and impractical. Thus, decisions need to be

made in a decentralized manner by decision makers that

share a common objective. Such decentralized problem are

investigated using team decision theory.

Decentralized sequential hypothesis testing has received

considerable attention in the literature [2]–[6]. The main

emphasis is on identifying qualitative properties of optimal

decision strategies. In particular, in identifying information

state (or sufficient statistics) of the data available at the

decision maker and in establishing the structure of optimal

decision rules, e.g., showing that threshold-based strategies

(similar in spirit to Wald’s sequential likelihood ratio test [1])

are optimal. We summarize some of these results below.

A model of decentralized hypothesis testing problems in

which multiple decision makers make individual decisions

that are coupled through a common loss function was con-

sidered in [2], [3]. It was shown that optimal decision rules

are characterized by two thresholds. A model in which the

Can Cui and Aditya Mahajan are with the Department of Electrical
and Computer Engineering, McGill University, Montreal, QC, CA. Email:
fcan.cui@mail.mcgill.ca, aditya.mahajan.mcgill.cag.

decision makers communicate their decision to a centralized

fusion center was considered in [4]. The optimal decision

rules in this case are also characterized by two thresholds.

Models in which the decision makers communicate with one-

another have been considered in [5], [6]. It is shown that

for some decision makers, the optimal decision rules are

characterized by four thresholds.

In spite of the significant advances in understanding the

optimality of threshold-based strategies in decentralized hy-

pothesis testing, not much is known about numerical methods

to compute these thresholds. This reflects the general state

of affairs in decentralized stochastic control. There has been

a lot of recent progress of identifying structure of optimal

control strategies, but not much is known about numerically

identifying optimal strategies that have that structure. In

this paper, we revisit the decentralized sequential hypothesis

testing model of [2], [3] and develop numerical techniques to

compute the optimal thresholds. These numerical techniques

might be useful for general decentralized control problems

as well.

II. PROBLEM FORMULATION AND STRUCTURE OF

OPTIMAL STRATEGIES

A. The Model

Consider a decentralized sequential hypothesis problem

investigated in [2]. For ease of exposition, we assume that

there are two decision makers that we denote by DM
1 and

DM
2; the results generalize to multiple decision makers in a

natural manner. The hypothesis H takes two values h0 and

h1 with a priori probability p and 1 � p.

At time t , the DM
i , i 2 f1; 2g, observes Y i

t 2 Y i . It is

assumed that given the hypothesis H D hk , k 2 f1; 2g,

(i) the observations fY i
t g1

tD1 are conditionally i.i.d. with

PMF f i
k

; and (ii) the observations fY 1
t g1

tD1 and fY 2
t g1

tD1

are conditionally independent.

There is no communication between the decision makers

and each decision makers decides which hypothesis is true

based on its local observations. In particular, at time t , DM
i ,

i 2 f1; 2g takes a decision U i
t 2 fh0; h1; Cg according to

U i
t D gi

t .Y
i

1Wt /;

where we use the short-hand notation Y i
1Wt WD .Y i

1 � � � Y i
t /.

The decision U i
t D h0 (or U i

t D h1) means that DM
i

decides to stop and declare h0 (or h1) as the true hypothesis

and makes no further observations. The decision U i
t D C

means that DM
i decides to take an additional observation.



Let N i denote the stopping time when DM
i decides to

stop, i.e.,

N i D minft 2 Z > 0 W U i
t 2 fh0; h1gg:

We denote the terminal decision U i
N i

by U i .

There are two types of cost: (i) cost ci for each observation

at DM
i , and (ii) a stopping cost `.U 1; U 2; H/, which

satisfies the following assumptions:

(A1) `.U 1; U 2; H/ cannot be decomposed as `.U 1; H/ C

`.U 2; H/, otherwise, the problem decomposes into

two independent sequential hypothesis testing prob-

lems with one decision maker.

(A2) For any m; n 2 fh0; h1g, m ¤ n,

`.m; m; n/ > `.n; m; n/ > ci
> `.n; n; n/I

`.m; m; n/ > `.m; n; n/ > ci
> `.n; n; n/:

An example of such a loss function is:

`.u1; u2; h/ D

8

ˆ

<

ˆ

:

0; if u1 D u2 D h;

L1; if u1 ¤ u2;

L2; if u1 D u2 ¤ hI

This loss function implies that if both DMs make correct

stopping decisions, there is no loss; if one DM makes a

correct stopping decision but the other does not, the loss

is L1; and if both DMs make incorrect stopping decisions,

then the loss is L2. We will use this loss function in the

numerical experiments in Section V.

Let Gi denote the set of all strategies for DM
i . Then for

any choice .g1; g2/ 2 G1 � G2, the total cost is

J.g1; g2I p/ D EŒc1N 1 C c2N 2 C `.U 1; U 2; H/�: (1)

We are interested in the following optimization problem:

Problem 1: Given the prior probability p, the observation

PMFs f i
0 ; f i

1 , the observation cost ci , and the loss function

`, find a strategy .g1; g2/ that minimizes J.g1; g2I p/ given

by (1).

Note that in Problem 1, we are seeking team optimal

decision strategies. For team problems, a weaker solution

concept is that of person-by-person optimality (PBPO), de-

fined below.

Definition 1 (Person-By-Person Optimality (PBPO)): A

strategy .g1; g2/ is called person-by-person optimal (PBPO)

if

J.g1; g2I p/ � J.g1; Qg2I p/; 8 Qg2 2 G2;

and

J.g1; g2I p/ � J. Qg1; g2I p/; 8 Qg1 2 G1:

This gives rise to the following relaxation of Problem 1.

Problem 2: Given the prior probability p, the observation

PMFs f i
0 ; f i

1 , the observation cost ci , and the loss function

`, find a strategy .g1; g2/ that is person-by-person optimal

(PBPO).

In general, a person-by-person optimal strategy need not

be team optimal. For an example in the context of hypothesis

testing, see [7]. However, very little is known regarding

team optimal solutions. For that reason, we concentrate on

identifying person-by-person optimal strategies. In the next

section, we present qualitative properties of optimal decision

rules.

B. Structure of optimal decision rules

For any i 2 f1; 2g, let �i denote the other decision maker.

For any realization yi
1Wt of Y i

1Wt , define the information state

� i
t WD P.H D h0 j yi

1Wt /:

In addition, define

qi .yi
tC1 j � i

t / WD � i
t f i

0 .yi
tC1/ C .1 � � i

t /f i
1 .yi

tC1/; (2)

�i .� i
t ; yi

tC1/ WD � i
t f i

0 .yi
tC1/=qi .yi

tC1 j � i
t /: (3)

Then, by Bayes’ rule, the update of the information state is

given by

� i
tC1 D �i .� i

t ; yi
tC1/: (4)

For ease of notation, for any i 2 f1; 2g, k 2 f0; 1g, ui 2

fh0; h1g, and gi 2 Gi , define

� i
k.ui ; gi I p/ D P.U i D ui j H D hk I gi ; p/; (5)

which is called the operating characteristic of the decision

strategy and denotes the conditional probability given hy-

pothesis H D hk and information state p that DM
i using

strategy gi makes a terminal decision ui .

It was shown in [2] that f� i
t g1

tD1 is an sufficient statistic

for DM
i . In particular:

Proposition 1 ( [2]): For any i 2 f1; 2g and any strategy

g�i 2 G�i , there is no loss of optimality for DM
i to restrict

attention to strategies of the form

U i
t D gi

t .�
i
t /: (6)

To characterize the structure of the optimal strategy, we

define the following.

Definition 2 (Threshold based strategy): A strategy of the

form (6) is called threshold based if there exists thresholds

˛i
t ; ˇi

t 2 Œ0; 1�, ˛i
t � ˇi

t , such that for any � i 2 Œ0; 1�,

gi
t .�

i / D

8

ˆ

<

ˆ

:

h1 if � i < ˛i
t ;

C if ˛i
t � � i � ˇi

t ;

h0 if � i > ˇi
t :

It was shown in [2] that threshold-based strategies are team

optimal. In particular:

Proposition 2 ( [2, Theorem 3.1]): For any i 2 f1; 2g,

and any strategy g�i 2 Gi , there is no loss of optimality

in restricting attention to threshold-based strategies at DM
i .

The intuition behind the result is as follows: if we arbi-

trarily fix the strategy g�i of DM
�i , then DM

i is solving a

centralized sequential hypothesis testing problem with loss

function

Ò.ui ; hk/ WD EŒ`.ui ; U �i ; hk/�

D ��i
k .h0; g�i I p/ � `.ui ; h0; hk/

C ��i
k .h1; g�i I p/ � `.ui ; h1; hk/:



From classical results in sequential hypothesis testing, we

know that for any loss function of this form, the optimal

strategy is threshold-based.

Definition 3 (Time invariant strategy): A strategy gi D

.gi
1; gi

2; : : : / is called time invariant if for any � i 2 Œ0; 1�,

gi
t .�

i / does not depend on t .

For infinite-horizon problems with a single decision maker,

there are time-invariant strategies that are optimal. However,

that is not always the case for multiple decision makers.

Nonetheless, it was shown in [2] that there are threshold-

based time-invariant strategies that are PBPO.

Proposition 3 ( [2, Theorem 3.2]): For any i 2 f1; 2g and

any time-invariant and threshold-based strategy g�i 2 G�i ,

there is no loss of optimality in restricting attention to time-

invariant and threshold-based strategies at DM
i . Moreover,

the best response strategy at DM
i is given by the solution of

the following dynamic program: for any � i 2 Œ0; 1�

V i .� i / D minfW i
0 .� i ; g�i /; W i

1 .� i ; g�i /; W i
C

.� i ; g�i /g;

(7)

where for k 2 f0; 1g,

W 1
k .�1; g2/ D

X

u22fh0;h1g

�

�2
0 .u2; g2I �1/ � �1 � `.hk ; u2; h0/

C �2
1 .u2; g2I �1/ � .1 � �1/ � `.hk ; u2; h1/

�

; (8)

W 2
k

is defined similarly, and

W i
C

.� i ; g�i / D ci C ŒBi V i �.� i /; (9)

where B
i is the Bellman operator given by

ŒBi V i �.� i / D
X

yi 2Yi

q.yi j � i / � V i .�.� i ; yi //;

q.yi j � i / and �.� i ; yi / are given by (2) and (3).

For ease of notation, denote a threshold-based strategy gi

by the tuple h˛i ; ˇi i. Theorem 3 gives two coupled dynamic

programs, which we write succinctly as

h˛1; ˇ1i D D1.h˛2; ˇ2i/ and h˛2; ˇ2i D D2.h˛1; ˇ1i/:

(10)

A solution of these coupled dynamic program determines a

PBPO solution for Problem 2.

Note that the above approach cannot be generalized to

determine team optimal solutions for the following reason. In

Theorem 3, it is assumed that DM
�i is using a time-invariant

strategy but it has not been shown that this assumption is

without loss of optimality. If this assumption is removed,

then the expected loss function that is seen by DM
i is not

time-invariant. Consequently, the optimal strategy of DM
i

would not be time-invariant and we would need to identify

optimal time-varying strategies. On the other hand, if we do

assume that a time-invariant strategy is being used at DM
�i ,

then Theorem 3 shows that the best response strategy at DM
i

is also time-invariant and one can seek to identify the best

strategies within the class of time-invariant strategies.

C. Computation of PBPO Strategies

In [2], an approximate solution for these coupled dynamic

programs was presented under the assumption that f i
k

are

Gaussian distributions and

ci � minf`.h0; h1; h0/; `.h1; h0; h1/g: (11)

Under (11), the stopping time N i � 1, and one can use

the asymptotic expressions of Type I and Type II errors

in [1], [8]. This method can be extended to the non-Gaussian

distributions using the expressions in [9], but it is not a good

approximation when the stopping cost does not satisfy (11).

We do not assume (11) rather approximately solve the

dynamic programs. The information state of these dynamic

programs is continuous valued. To solve them numerically,

we discretize the state space on a uniform grid. The operating

characteristics � i
k

also needs to be computed to solve these

dynamic programs. � i
k

is the probability that a discrete-time

Markov process crosses a threshold and there are various

methods to compute it approximately. One option is to use

the asymptotic expressions of [1] (also see [8]); another

option is to solve an appropriate Fredholm Integral equation

(see [10]). To be consistent with the approximation that

we use to solve the dynamic program, we compute � i
t

by approximating the discrete-time continuous-state Markov

process by a finite state Markov chain.

Even within the class of time-invariant strategies, orthog-

onal search only identifies PBPO strategies. We propose a

second method, which we call direct search, to approximate

team optimal strategies (within the class of time-invariant

strategies). To do so, we approximate the expected cost

J.h˛1; ˇ1i; h˛2; ˇ2iI p/ (which is given by (1)) of an arbi-

trary threshold-based strategy by approximating the evolution

of � i
t , which is a discrete-time continuous-state Markov

process, by a finite-state Markov process. In general, this

cost is not convex in the threshold. So, we use a derivative-

free non-convex optimization method to identify the optimal

thresholds. Since the objective function is non-convex, direct

search can only identify locally optimal solution (within the

class of time-invariant strategies).

Both the proposed methods only guarantee local optimal-

ity. So, it is not immediately clear which method is better.

We perform a numerical comparison of the two methods

in Section V. In most of our experiments, direct search

outperforms orthogonal search; sometimes significantly.

III. METHOD I: ORTHOGONAL SEARCH

The coupled dynamic programs of (10) may be solved

using orthogonal search procedure described below.

1) Start with an arbitrary threshold-based strategy

.h˛1
.1/

; ˇ1
.1/

i; h˛2
.1/

; ˇ2
.1/

i/.

2) Construct a sequence of strategies as follows:

a) For even n:

h˛1
.n/; ˇ1

.n/i D D1.h˛2
.n�1/; ˇ2

.n�1/i/;

and

h˛2
.n/; ˇ2

.n/i D h˛2
.n�1/; ˇ2

.n�1/i:



b) For odd n:

h˛1
.n/; ˇ1

.n/i D h˛1
.n�1/; ˇ1

.n�1/i;

and

h˛2
.n/; ˇ2

.n/i D D2.h˛1
.n�1/; ˇ1

.n�1/i/:

Note that orthogonal search is conceptually similar to the

iterated best response procedure to compute Nash equili-

birum and the coordinate descent procedure to compute local

mininum of a function.

Theorem 1: The orthogonal search procedure described

above converges to a time-invariant threshold-based strategy

.g1; g2/ that is person-by-person optimal.

Proof: For any strategy .g1; g2/, define

J 1.g1; g2I p/ D EŒc1N 1 C `.U 1; U 2; H/�;

and

J 2.g1; g2I p/ D EŒc2N 2 C `.U 1; U 2; H/�:

Then, by construction, for even n

J 1.g1
.n/; g2

.n/I p/ � J 1.g1
.n�1/; g2

.n�1/I p/;

and, for odd n

J 2.g1
.n/; g2

.n/I p/ � J 2.g1
.n�1/; g2

.n�1/I p/:

Thus, at every step n,

J.g1
.n/; g2

.n/I p/ � J.g1
.n�1/; g2

.n�1/I p/;

Therefore, the sequence fJ.g1
.n/

; g2
.n/

I p/g is a decreasing

sequence lower bounded by 0. Hence, a limit exists and the

limiting strategy is PBPO.

There are two difficulties in using orthogonal search. First,

at step n, we need to compute � i
k

for a threshold-based

strategy h˛i
.n/

; ˇi
.n/

i. Second, the dynamic program at step n

is a POMDP. So, we either need to discretize the state-space,

or use the point-based methods [11], [12].

We use discretization to approximately compute � i
k

and

solve the dynamic program as well. In principle, other

approaches can be used for both approximations.

A. The discretization procedure

For any m 2 N, define Sm D
˚

0; 1
m

; 2
m

; : : : ; 1
	

: For

any i 2 f0; 1g, we approximate the Œ0; 1�-valued Markov

process f� i
t g1

tD1, which is given by (4), by a Sm-valued

Markov chain. We consider three approximations that make

different assumptions on probability distribution of Y i . We

denote the corresponding transition probabilities by P i
0 , P i

1 ,

and P i
�. For P i

k
, k 2 f0; 1g, we assume that Y i � f i

k
; for

P i
� we assume that Y i

tC1 � qi .� j � i
t /, which is given by (2).

The discretization procedure is shown in Algorithm 1, which

corresponds to the first-order hold method in [13].

Note that the transition probabilities P i
k

, k 2 f0; 1g,

approximate the evolution of the f� i
t g1

tD1 process when

hypothesis H D hk is true. We will use these to approximate

probabilities � i
k

. On the other hand, the transition probability

P i
� approximates the uncontrolled evolution of f� i

t g1
tD1. This

will be used to approximately solve the dynamic program of

Proposition 3.

Algorithm 1: Compute transition matrices

input : Discretization size m, DM i

output: P i
0 , P i

1 , P i
�

forall sp 2 Sm do

forall y 2 Y i do

let sC D �i .s; yi /

find sq; sqC1 2 Sm such that sC 2 Œsq; sqC1/

find �
y
q ; �

y
qC1 2 Œ0; 1� such that

� �
y
q C �

y
qC1 D 1

� sC D �
y
q sq C �

y
qC1sqC1

forall q 2 f0; 1; : : : ; mg do

ŒP i
0 �pq D

P

y �
y
q � f i

0 .y/ � sp

ŒP i
1 �pq D

P

y �
y
q � f i

1 .y/ � .1 � sp/

ŒP i
��pq D

P

y �
y
q � qi .yi j sp/

B. Approximately computing � i
k

Fix a decision maker i , i 2 f1; 2g, and the threshold H D

hk , k 2 f0; 1g. Given any threshold-based strategy gi D

h˛i ; ˇi i such that ˛i ; ˇi 2 Sm, define sets Ai
0, Ai

1 � Sm as

follows:

Ai
0 D

˚

ˇi ; ˇi C 1
m

; : : : ; 1
	

and Ai
1 D

˚

0; 1
m

; : : : ; ˛i
	

:

Note that � i
k
.h0; gi I p/ corresponds to the event that the

Markov process f� i
t g1

tD1 that starts in p, goes above the

threshold ˇi before it goes below the threshold ˛i . This event

is approximated by the event that the Markov chain with

transition probability P i
k

that starts in p (which is assumed

to belong to Sm) gets absorbed in the set Ai
0 before it is

absorbed in the set Ai
1. A similar interpretation holds for

� i
k
.h1; gi I p/.

Thus, to approximate � i
k

, we can consider the Markov

chain with transition probability P i
k

and two absorption

sets: Ai
0 and Ai

1. Let OP i
k

be the transition matrix of the

corresponding absorbing Markov chain. Re-order states so

that OP i
k

may be written in the canonical form

OP i
k D

�

Qi
k

Ri
k

0 I

�

:

Define B i
k

D .1 � Qi
k
/�1Ri

k
. From standard results in

Markov chain analysis, we know that for any s 2 Sm n.Ai
0 [

Ai
1/ and b 2 f0; 1g, ŒB i

k
�sb is the probability that the Markov

chain starting in state s is absorbed in the set Ai
b
. Thus,

� i
k.hb; h˛i ; ˇi iI p/ � ŒB i

k �p�b; b 2 f0; 1g; (12)

where p� denotes the index of p in Sm n .Ai
0 [ Ai

1/.

C. Approximate solution of the dynamic program

Using the procedure of the previous section, we can ap-

proximate � i
k
.�; g�i I � i /, and therefore approximately com-

pute W i
k

.� i ; g�i /, for any � i 2 Sm and any threshold-based

strategy g�i D h˛�i ; ˇ�i i. To approximately solve the dy-

namic program of Proposition 3, we also need to approximate

the Bellman operator B
i . Define an approximate Bellman



operator using the first-order hold transition matrix P i
� as

follows:

Œ OB
i V i �.s/ D ci C

X

sC2Sm

ŒP i
��ssC

V.sC/:

Then OB
i corresponds to the discretization of B

i on Sm

and performing linear interpolation on points outside Sm

(see [14]). Hence, it may be used to approximately compute

WC.� i ; g�i /.

Combing all these, we get an approximate procedure to

solve the dynamic program of Proposition 3. This, in turn,

gives an approximate procedure for finding a PBPO strategy

using orthogonal search.

IV. METHOD II: DIRECT SEARCH

In this section, we describe a second approach to compute

team optimal threshold-based strategies. The main idea of the

approach is to approximately compute the performance of

a generic threshold-based strategy .h˛1; ˇ1i; h˛2; ˇ2i/, and

then optimize over the thresholds. For this reason, we call

this approach direct search.

A. Performance of an arbitrary strategy

Given an arbitrary strategy .g1; g2/ and i 2 f1; 2g, k 2

f0; 1g, define:

� i
k.gi I p/ D EŒNi j H D hk I gi ; p�:

Note that we index � i
k

by the a priori probability p. Then

the total cost (1) is given by

J.g1; g2I p/ D p � Œc1 � �1
0 .g1I p/ C c2 � �2

0 .g2I p/�

C .1 � p/ � Œc1 � �1
1 .g1I p/ C c2 � �2

1 .g2I p/

C
X

u1;u22fh0;h1g2

�

p � �1
0 .u1; g1I p/ � �2

0 .u2; g2I p/ � `.u1; u2; h0/

C .1 � p/ � �1
1 .u1; g1I p/ � �2

1 .u2; g2I p/ � `.u1; u2; h1/
�

:

(13)

For an arbitrary strategy, it is difficult to compute � i
k

and � i
k

. However, based on the approximation presented in

Section III-B, when .g1; g2/ are threshold-based strategies,

then � i
k

may be approximated by the absorption probabilities

of appropriate sets for a Markov chain with transition matrix

P i
k

. The same idea can be used to approximate � i
k
.gi I p/, as

explained below.

Given any threshold-based strategy gi D h˛i ; ˇi i, define

sets Ai
0 and Ai

1, and the matrix OP i
k

as in Section III-B. Define

T i
k

D .I � Qi
k
/�11, where 1 is a column vector with all

entries as 1. From standard results in Markov chain analysis,

we know that for any s 2 Sm n .Ai
0 [ Ai

1/, ŒT i
k
�s is the

expected stopping time that the Markov chain starting in state

s is absorbed in .Ai
b

[ Ai
1/. Thus,

� i
k.h˛i ; ˇi iI p/ � ŒT i

k �p� ; (14)

where p� denotes the index of p in Sm n .Ai
0 [ Ai

1/.

By substituting the approximate values of � i
k

from (14)

and � i
k

from (12) in (13), we can approximately compute

J.h˛1; ˇ1i; h˛2; ˇ2iI p/ when p; ˛1; ˇ1; ˛2; ˇ2 2 Sm.

B. Approximate search over all threshold-based strategies

Although there is no analytic expression for

J.h˛1; ˇ1i; h˛2; ˇ2iI p/, it can be numerically approximated

using the method proposed above. In general, team

problems are non-convex in strategy space; so we expect

J.h˛1; ˇ1i; h˛2; ˇ2iI p/ to be non-convex in the parameters

.˛1; ˇ1; ˛2; ˇ2/. For an example, see [7].

In principle, such non-convex optimization problems can

be solved using derivative-free methods that do no use nu-

merical or analytic gradients (see [15]). In the numerical re-

sults we use one of the simplest derivative-free algorithms—

Nelder-Mead simplex algorithm (see [16]). This step can be

replaced by more sophisticated algorithms to obtain better

results. However, it is not possible to guarantee that such

algorithms will converge to team optimal solution. Thus, in

practice, the direct search algorithm converges to a locally

optimal solution.

To reduce the dependence of the numerical results on the

choice of the a priori probability p, we pick multiple values

of p in a finite set P � Œ0; 1� and use

OJ .h˛1; ˇ1i; h˛2; ˇ2i/ D
1

jPj

X

p2P

J.h˛1; ˇ1i; h˛2; ˇ2iI p/

as the objective function for the non-convex optimization

algorithm. If J.h˛1; ˇ1i; h˛2; ˇ2i; p/ was computed exactly,

then such an averaging will not affect the result of the

optimization algorithm because the optimal strategy .g1; g2/

does not depend on the choice of p.

V. NUMERICAL COMPARISON OF THE TWO METHODS

Both the approaches presented in this paper only guarantee

local optimality. In this section, we compare their perfor-

mance on a benchmark system in which Y1 D Y2 D f0; 1g

and the loss function is of the form

`.u1; u2; h/ D

8

ˆ

<

ˆ

:

0; if u1 D u2 D h;

L1; if u1 ¤ u2;

L2; if u1 D u2 ¤ h:

(15)

For both methods, we use m D 1000 and in direct search,

we use P D Sm.

Note that the choice of parameters .c1; c2; L1; L2/ and

observation distributions .f 1
0 ; f 1

1 ; f 2
0 ; f 2

1 / completely spec-

ifies the model. We first consider an example where we pick

specific values for the parameters and the distributions. Then

we compare the performance of the two methods when all

the parameters are chosen at random.

A. A specific example

Let c1 D c2 D 1, L1 D 20, L2 D 50 and

f 1
0 D

�

0:25 0:75
�

; f 2
0 D

�

0:80 0:20
�

;

f 1
1 D

�

0:60 0:40
�

; f 2
1 D

�

0:30 0:70
�

:

The result of orthogonal search and direct search are

shown in Table I. Both approaches converge to a locally

optimal solution. For this particular example, direct search

converges to a slightly better solution that orthogonal search.



Although orthogonal search converges in significantly fewer

number of iterations, each iteration of orthogonal search

involves solving an infinite horizon dynamic program (which

was solved using value iteration with convergence thresh-

old 10�3). The running time of both the algorithms is

reported, but it should be noted that we did not attempt to

optimize the Matlab implementation of the algorithms.

TABLE I

COMPARISON OF ORTHOGONAL SEARCH AND DIRECT SEARCH FOR THE

SPECIFIC PARAMETERS PRESENTED IN SECTION V-A.

g1 Dh˛1; ˇ1i g2 Dh˛2; ˇ2i OJ .g1; g2/ iters. runtime

OS1 h0:326; 0:73i h0:07; 0:931i 9.109 5 1.45s

DS1 h0:287; 0:726i h0:14; 0:863i 8.719 45 6.05s

1 OS stands for orthogonal search and DS stands for direct search.

B. General Performance for random instance

To compare the performance of the two methods, we

test both of them over 500 randomly generated instances

of the parameters .c1; c2; L1; L2/ and .f 1
0 ; f 1

1 ; f 2
0 ; f 2

1 /.

Specifically, we use c1; c2 � unifŒ0; 1�, L1 � unifŒ2; 40�,

and L2 � unifŒ40; 80�. We pick f i
k

by picking a random

number ıi
k

� unifŒ0; 1� and setting f i
k

D Œıi
k
; 1 � ıi

k
�.

Let J1 denote the performance of the strategy obtained

using orthogonal search and J2 denote the performance of

the strategy obtained using direct search. To compare the

performance of the two methods, we pick � D 10�2 and

check the number of instances for which J1 > J2 C � or

J2 > J1 C �. When Ja > Jb C �, we define the maximum

percentage improvement as the maximum of .Ja � Jb/=Ja

over all random instances and the average percentage im-

provement as the average of .Ja � Jb/=Ja over all random

instances. These results are presented in Table II.

TABLE II

COMPARISON OF ORTHOGONAL AND DIRECT SEARCH OVER RANDOMLY

GENERATED INSTANCES

J1 > J2 C � J2 > J1 C �

Number of cases 475 5
Max improvement 50.9% 6.75%
Avg improvement 4.16% 2.03%

From the result, we see that in over 90% of the 500 cases,

direct search does better than orthogonal search. There are

instances where direct search does significantly better.

VI. DISCUSSION

The proposed search algorithms consist of two parts:

computing the transition matrix (Algorithm 1) and using the

transition matrix to compute the thresholds. The complexity

of the first part is linear in jYj, but the complexity of the

second part does not depend on jYj. Therefore, one would

not expect a significant increase in the run-time with an

increase in the size of the observations jYj.

In this paper, we proposed two methods to approximately

compute the optimal threshold-based strategies in decen-

tralized sequential hypothesis testing. Both these methods

are based on discretization of the continuous-valued infor-

mation state process by a finite-valued Markov chain. The

orthogonal search method computes PBPO strategies while

the direct search methods attempts to compute globally

optimal strategies. Direct search involves solving a non-

convex optimization problem, so in practice, it will also

converge to a local optimal. In our numerical investigation

of the two algorithms, direct search performs better than

orthogonal search; sometimes, significantly better.

A future direction is to generalize the approximation meth-

ods developed in this paper to more general decentralized

sequential hypothesis models of [4]–[6].
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