
1

On Computing Optimal Thresholds in Decentralized
Sequential Hypothesis Testing

Can Cui and Aditya Mahajan

Abstract—Decentralized sequential hypothesis testing refers to
a generalization of Wald’s sequential hypothesis testing setup in
which multiple decision makers make separate stopping decisions
that are coupled through a common loss function. In the simplest
such generalization, the stopping decisions are not seen by other
decision makers. For this model, it is known that threshold-
based stopping strategies are optimal. Two methods are presented
for approximately computing the optimal thresholds. The first
method, which is called orthogonal search, is an iterative method
that approximately solves the coupled dynamic programs pro-
posed in Teneketzis and Ho, Information and Computation, 1987.
The second method, which is called direct search, approximates
the performance of a threshold-based strategy and then searches
over the thresholds using a derivative-free non-convex optimiza-
tion algorithm. The approximations for both methods are based
on discretizing the continuous-state information state process
to a finite-state Markov chain and calculating the absorption
probabilities and absorption stopping times for appropriately
defined absorption sets. The performance of both the methods is
compared numerically.

Index Terms—Hypothesis testing, sequential analysis, decen-
tralized systems, dynamic programming, derivative-free optimiza-
tion.

I. INTRODUCTION

Sequential hypothesis testing is a classical problem in
sequential analysis with applications ranging from clinical trials,
quality control, and sensor networks. In the basic sequential
hypothesis model, a single decision maker or sensor observes
a random process (often assumed to i.i.d.) that depends on
the underlying binary hypothesis. The decision maker takes
observations until a stopping time and then declares a guess for
the hypothesis. This problem was posed and solved by Wald [1],
who showed that a threshold-based sequential probability ratio
test is optimal. See [2]–[4] for more details. Wald’s results
considered binary hypothesis. Subsequently, the model with
multiple hypothesis have been investigated in detail in [5]–
[11] where multihypothesis version of sequential probability
ratio test are developed. In recent years, various generalizations
to controlled sensing (or active sequential hypothesis testing),
where the decision maker also has the option to pick the
observation channel (out of a finite set of possibilities) have
been considered in [12]–[18].

Various approaches have been proposed to compute the opti-
mal thresholds. Wald proposed an approximation to compute the
performance of a sequential probability ratio test that provides
bounds on the operating characteristics (type I and type II
errors) and approximate the expected sampling time [1]. When
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the cost of observation is significantly smaller than the cost
of making a mistake, more acurate “offshoot approximations”
based on non-linear renewal theory have been proposed in [2].
For the general case, various approaches have been proposed to
obtain the optimal thresholds including approximate dynamic
programming [19], [20] and Markov chain approximation [21].

The common feature of the above models is that a single
decision maker makes all the observations and decides when
to stop. In many applications, there are multiple sensors
that observe data. Such models may broadly be classified
as distributed sequential hypothesis testing and decentralized
sequential hypothesis testing.

In distributed sequential hypothesis testing, multiple sensors
observe correlated random processes and send quantized signals
to a fusion center that makes the stopping decision. Therefore,
the stopping decision is made in centralized manner, while
the observations are made in decentralized manner. Different
configurations on local memory of distributed sensors and
feedback from the fusion center are considered. See [22]–[25]
for details and [26], [27] for asymptotic results.

In decentralized sequential hypothesis testing, multiple
decision makers observe correlated random processes and make
separate stopping decisions (which may or may not be observed
by others). These stopping decisions are coupled through a
common loss function. Most of the results in the literature
have emphasized on identifying qualitative properties of optimal
decision rules i.e., identifying whether threshold-based decision
rules are optimal. See [28]–[31] for details.

It should be noted that the terms distributed and decentralized
are used interchangeably in the literature. We are using the
terminology followed in team-theory and making a distinction
based on whether one or multiple stopping decisions are made.

In this paper, we revisit a model of decentralized sequential
hypothesis testing of [28]. In this model, two (or multiple)
decision makers observe correlated random processes (which,
given the hypothesis, are conditionally independent across
time and also conditionally independent of each other), and
make separate stopping decisions that are coupled through a
common loss function. An individual cost is incurred for each
observation made by each sensor. It was shown that optimal
decision rules are threshold based, where the thresholds of
the two decision makers are coupled. The continuous time
extension of this model was solved in [29].

A closely related model was investigated in [30]. The key
difference in [30] is that instead of individual observation costs,
there is a cost associated with the observations made by the
sensors as a team. For this model, it was shown that the optimal
decision rules are given by time varying convergent thresholds.
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In [28], Wald approximation was used to compute the
operating characteristics of threshold based strategies. Wald
approximations are accurate only when the observation cost is
much smaller than the loss function. In [30], a Monte Carlo
sampling approach was proposed to estimate the operating
characteristics and the distribution of the stopping time.

In this paper, we revisit the mode of decentralized sequential
hypothesis testing investigated in [28] and present two search
procedures that approximately compute the optimal thresholds.
In the first search procedure, which we call orthogonal search,
we iteratively solve two coupled dynamic programs to identify
optimal thresholds. In the second search procedure, which we
call direct search, we propose a method to approximately
compute the performance of an arbitrary threshold-based
strategy and then optimize over the choice of thresholds using a
derivative-free optimization method. Both these approximations
are based on approximating a continuous-state Markov process
by a finite-state Markov chain. Although the idea of approxi-
mately computing the operating characteristics and stopping
time by discretizing a continuous state Markov chain was also
used in [21], who proposed to quantize the log-likelihood ratio
(which takes value in (−∞,∞)), our approach is different
because we quantize the [0, 1]-valued belief state.

In Section IV, we present detailed numerical experiments
to compare the performance of the two procedures. In most
experiments, both methods have similar performance. As far as
we are aware, these are the first results on numerical methods
for computing optimal thresholds for decentralized sequential
hypothesis testing (i.e., when stopping decisions are made by
multiple decision makers).

We use the following notation in the paper. Upper case letters
(e.g., X,Y , etc.) denote random variables, the corresponding
lower case letters (e.g., x, y, etc.) denote their realization and
calligraphic letters (X , Y , etc.) denote sets. Superscripts index
decision makers and subscripts index time. Y1:t is a short-hand
for the vector (Y1, . . . , Yt). P(·) denotes the probability of an
event and E[·] denotes the expectation of a random variable.
For a matrix A, [A]nm denotes the (n,m)-th element. Similarly,
for a vector A, [A]n denotes the n-th element.

II. PROBLEM FORMULATION AND STRUCTURE OF OPTIMAL
STRATEGIES

A. The Model

Consider a decentralized sequential hypothesis problem
investigated in [28]. For ease of exposition, we assume that
there are two decision makers that we denote by DM1 and
DM2; the results generalize to multiple decision makers in a
natural manner. The hypothesis H takes two values h0 and h1
with a priori probability p and 1− p.

At time t, the DMi, i ∈ {1, 2}, observes Y it ∈ Yi. It is
assumed that given the hypothesis H = hk, k ∈ {0, 1}, (i) the
observations {Y it }∞t=1 are conditionally i.i.d. with PMF or
PDF f ik; and (ii) the observations {Y 1

t }∞t=1 and {Y 2
t }∞t=1 are

conditionally independent.
There is no communication between the decision makers

and each decision makers decides which hypothesis is true

based on its local observations. In particular, at time t, DMi,
i ∈ {1, 2}, takes a decision U it ∈ {h0, h1,C} according to

U it = git(Y
i
1:t),

where we use the short-hand notation Y i1:t := (Y i1 · · ·Y it ). The
collection gi = (gi1, g

i
2, . . . ) is called the decision strategy of

DMi, i ∈ {1, 2}.
The decision U it = h0 (or U it = h1) means that DMi decides

to stop and declare h0 (or h1) as the true hypothesis and makes
no further observations. The decision U it = C means that DMi

decides to take an additional observation.
Let N i denote the stopping time when DMi decides to stop,

i.e.,
N i = min{t ∈ N : U it ∈ {h0, h1}}.

We denote the terminal decision U iNi by U i.
There are two types of cost: (i) cost ci for each observation

at DMi, and (ii) a stopping cost `(U1, U2, H), which satisfies
the following assumptions:
(A1) `(U1, U2, H) cannot be decomposed as `(U1, H) +

`(U2, H), otherwise, the problem decomposes into two
independent sequential hypothesis testing problems with
one decision maker.

(A2) For any m,n ∈ {h0, h1}, m 6= n,

`(m,m, n) > `(n,m, n) > ci > `(n, n, n);

`(m,m, n) > `(m,n, n) > ci > `(n, n, n).

An example of such a loss function is:

`(u1, u2, h) =


0, if u1 = u2 = h,

1, if u1 6= u2,

L, if u1 = u2 6= h, 1 < L <∞

This loss function implies that if both DMs make correct
stopping decisions, there is no loss; if one DM makes a correct
stopping decision but the other does not, the loss is 1; and if
both DMs make incorrect stopping decisions, then the loss is
L. We will use this loss function in the numerical experiments
in Section IV.

Let Gi denote the set of all strategies for DMi. Then for
any choice (g1, g2) ∈ G1 × G2, the total cost is

J(g1, g2; p) = E[c1N1 + c2N2 + `(U1, U2, H)]. (1)

We are interested in the following optimization problem:
Problem 1: Given the prior probability p, the observation

PMFs f i0, f
i
1, the observation cost ci, and the loss function

`, find a strategy (g1, g2) that minimizes J(g1, g2; p) given
by (1).

Note that in Problem 1, we are seeking team optimal decision
strategies. For team problems, a weaker solution concept is
that of person-by-person optimality (PBPO), defined below.

Definition 1 (Person-By-Person Optimality (PBPO)): A
strategy (g1, g2) is called person-by-person optimal (PBPO) if

J(g1, g2; p) ≤ J(g1, g̃2; p), ∀g̃2 ∈ G2,
and

J(g1, g2; p) ≤ J(g̃1, g2; p), ∀g̃1 ∈ G1.
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This gives rise to the following relaxation of Problem 1.
Problem 2: Given the prior probability p, the observation

PMFs f i0, f
i
1, the observation cost ci, and the loss function

`, find a strategy (g1, g2) that is person-by-person optimal
(PBPO).

In general, a person-by-person optimal strategy need not
be team optimal. For an example in the context of hypothesis
testing, see [32]. However, very little is known regarding team
optimal solutions. For that reason, we concentrate on identifying
person-by-person optimal strategies. In the next section, we
present qualitative properties of optimal decision rules.

B. Structure of Optimal Decision Rules

For any i ∈ {1, 2}, we use the game-theoretic notation and
use −i to denote the other decision maker. For any realization
yi1:t of Y i1:t, define

πit := P(H = h0 | yi1:t).

By Bayes rule, the update of this posterior probability is given
by

πit+1 = φi(πit, y
i
t+1). (2)

where

φi(πit, y
i
t+1) := πitf

i
0(yit+1)/qi(yit+1 | πit), (3)

qi(yit+1 | πit) := πitf
i
0(yit+1) + (1− πit)f i1(yit+1). (4)

It was shown in [28] that {πit}∞t=1 is an information state
process for DMi. In particular:

Lemma 1 ( [28]): For any i ∈ {1, 2} and any strategy
g−i ∈ G−i of DM−i, there is no loss of optimality for DMi

to restrict attention to strategies of the form

U it = git(π
i
t). (5)

To characterize the structure of the optimal strategy, we
define the following.

Definition 2 (Threshold based strategy): A strategy of the
form (5) is called threshold based if there exists thresholds
αit, β

i
t ∈ [0, 1], αit ≤ βit , such that for any πi ∈ [0, 1],

git(π
i) =


h1 if πi < αit,

C if αit ≤ πi ≤ βit ,
h0 if πi > βit .

In general, the thresholds depend on the a priori probability p.
It was shown in [28] that threshold-based strategies are team

optimal. In particular:
Lemma 2 ( [28, Theorem 3.1]): For any i ∈ {1, 2}, and any

strategy g−i ∈ Gi of DM−i, there is no loss of optimality in
restricting attention to threshold-based strategies at DMi.

The intuition behind the result is as follows: if we arbitrarily
fix the strategy g−i of DM−i, then DMi is solving a centralized
sequential hypothesis testing problem with loss function

ˆ̀i(ui, hk; g−i, p) := E[`(ui, U−i, hk)]

= ξ−ik (h0, g
−i; p)`(ui, h0, hk)

+ ξ−ik (h1, g
−i; p)`(ui, h1, hk), (6)

where

ξik(ui, gi; p) := P(U i = ui | H = hk; gi, p) (7)

is the operating characteristic of the decision strategy and
denotes the conditional probability given hypothesis H = hk
and information state p that DMi using strategy gi makes
a terminal decision ui. From classical results in sequential
hypothesis testing, we know that for any loss function ˆ̀i(·, ·),
the best-response strategy at DMi is threshold-based. Since the
loss function ˆ̀i(·, ·) depends on the a priori probability p, so
do the thresholds.

Definition 3 (Time invariant strategy): A strategy gi =
(gi1, g

i
2, . . . ) is called time invariant if for any πi ∈ [0, 1],

git(π
i) does not depend on t.

For infinite-horizon problems with a single decision maker,
there are time-invariant strategies that are optimal. However,
that is not always the case for multiple decision makers.
Nonetheless, it was shown in [28] that there are threshold-
based time-invariant strategies that are PBPO.

Theorem 1 ( [28, Theorem 3.2]): For any i ∈ {1, 2} and
any time-invariant and threshold-based strategy g−i ∈ G−i,
there is no loss of optimality in restricting attention to time-
invariant and threshold-based strategies at DMi. Moreover, the
best response strategy at DMi is given by the solution of the
following dynamic program: for any πi ∈ [0, 1]

V i(πi) = min{W i
0(πi, g−i),W i

1(πi, g−i),W i
C(πi, g−i)},

(8)
where for i ∈ {1, 2} and k ∈ {0, 1},

W i
k(π1, g2) = ˆ̀i(hk, h0; g−i, p)πi + ˆ̀i(hk, h1; g−i, p)(1−πi)

(9)
and

W i
C(πi, g−i) = ci + [BiV i](πi), (10)

where Bi is the Bellman operator given by

[BiV i](πi) =
∑
yi∈Yi

q(yi | πi) · V i(φ(πi, yi)), (11)

φ(πi, yi) and q(yi | πi) are given by (3) and (4).
For ease of notation, denote a threshold-based time-invariant

strategy gi by the tuple 〈αi, βi〉. Theorem 1 gives two coupled
dynamic programs, which we write succinctly as

〈α1, β1〉 = D1(〈α2, β2〉) and 〈α2, β2〉 = D2(〈α1, β1〉).
(12)

A solution of these coupled dynamic program determines a
PBPO solution for Problem 2.

Note that the terms W i
k(πi, g−i) in the dynamic programs

depend on the a priori probability p. Therefore, the solution
(〈α1, β1〉, 〈α2, β2〉) of (12) also depends on p. This is in
contrast to a single sensor setup, where the optimal thresholds
do not depend on the a priori probability p.

Remark 1: The above approach cannot be generalized to
determine team optimal solutions for the following reason. In
Theorem 1, it is assumed that DM−i is using a time-invariant
strategy but it has not been shown that this assumption is
without loss of optimality. If this assumption is removed, then
the expected loss function that is seen by DMi is not time-
invariant. Consequently, the optimal strategy of DMi would not
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be time-invariant and we would need to identify optimal time-
varying strategies. On the other hand, if we do assume that a
time-invariant strategy is being used at DM−i, then Theorem 1
shows that the best response strategy at DMi is also time-
invariant and one can seek to identify the best strategies within
the class of time-invariant strategies.

C. Computing optimal threshold strategies

In this paper, we investigate two algorithms to compute
person-by-person optimal strategies: orthogonal search and
direct search, which are explained below. Orthogonal search
is an iterative algorithm that identifies a PBPO strategy while
direct search uses a non-convex optimization algorithm that
tries to identify team optimal strategy (within the class of time-
invariant strategies). Since both the proposed methods do not
guarantee global optimality, it is not immediately clear which
method is better. We perform a detailed numerical comparison
of the two methods in Section IV. In most of our experiments,
both algorithms give similar performance.

1) Orthogonal search: Orthogonal search is an iterative
algorithm to solve the coupled dynamic programs of (12). It
is conceptually similar to the iterated best response procedure
to compute Nash equilibrium and the coordinate descent pro-
cedure to compute local minimum of a function. In particular,
orthogonal search proceeds as follows:

1) Start with an arbitrary threshold-based strategy
(〈α1

(1), β
1
(1)〉, 〈α

2
(1), β

2
(1)〉).

2) Construct a sequence of strategies as follows:
a) For even n:

〈α1
(n), β

1
(n)〉 = D1(〈α2

(n−1), β
2
(n−1)〉),

and
〈α2

(n), β
2
(n)〉 = 〈α2

(n−1), β
2
(n−1)〉.

b) For odd n:

〈α1
(n), β

1
(n)〉 = 〈α1

(n−1), β
1
(n−1)〉,

and

〈α2
(n), β

2
(n)〉 = D2(〈α1

(n−1), β
1
(n−1)〉).

Theorem 2: The orthogonal search procedure described above
converges to a time-invariant threshold-based strategy (g1, g2)
that is person-by-person optimal.

See Appendix for proof.
There are two difficulties in using orthogonal search. First,

the state space of the dynamic programs is continuous valued.
Second, we need to compute ξ−ik (u−i, 〈α−i, β−i〉; p) to com-
pute W i

k. We develop a procedure to approximately compute
ξ−ik and approximately solve the dynamic program by using
discretization.

2) Direct search: The idea behind direct search is to
write the total expected cost J(g1, g2; p) as a function of
the thresholds (α1, β1, α2, β2). In particular, for any strategy
(g1, g2) and i ∈ {1, 2}, k ∈ {0, 1}, define:

θik(gi; p) = E[Ni | H = hk; gi, p].

Note that θik depends on the a priori probability p. Then the
total cost (1) is given by

J(g1, g2; p) = p · [c1 · θ10(g1; p) + c2 · θ20(g2; p)]

+ (1− p) · [c1 · θ11(g1; p) + c2 · θ21(g2; p)

+
∑

u1,u2∈{h0,h1}2

[
p · ξ10(u1, g1; p) · ξ20(u2, g2; p) · `(u1, u2, h0)

+ (1− p) · ξ11(u1, g1; p) · ξ21(u2, g2; p) · `(u1, u2, h1)
]
.

(13)

We develop a procedure to approximately compute
θik(〈αi, βi〉; p) and ξik(ui, 〈αi, βi〉; p). Using this procedure,
we can approximately compute J(〈α1, β1〉, 〈α2, β2〉; p) for a
given choice of (α1, β1, α2, β2). In general, the total cost is
not convex in the thresholds. So, we use a derivative-free non-
convex optimization method to identify approximately optimal
thresholds. Since the objective function is non-convex, direct
search may not identify team optimal solution (within the class
of time-invariant strategies).

III. APPROXIMATELY COMPUTING OPTIMAL STRATEGIES

A. Approximately computing operating characteristics and
expected stopping times

Each step of orthogonal search involves solving a dynamic
program where the cost depends on the operating characteristic
of the strategy used by DM. Similarly, irrespective of the choice
of the derivative free non-convex optimization method, each
step of direct search depends on the operating characteristics
and expected stopping times of the strategies used by both
users.

In [28], the operating characteristics and expected stopping
times were computed using the Wald approximation [33], which
is a good approximation only when

ci � min{`(h0, h1, h0), `(h1, h0, h1)}. (14)

In this paper, we propose an alternative method to approximate
the operating characteristics and expected stopping times that
works well for all ranges of ci.

Given a time-homogeneous strategy gi = 〈αi, βi〉, the
information state process {πit}t≥1 is a continuous state Markov
process. When the hypothesis is hk, the operating character-
istic ξik(h0, g

i; p) (respt., ξit(h1, g
i; p)) is the probability that

{πit}t≥1 crosses βi before αi (respt., crosses αi before βi);
the expected stopping time θik is the expected stopping time for
crossing the thresholds αi or βi. We quantize the continuous
state Markov process {πit}t≥1 by a discrete state Markov
process {π̂it}t≥1 defined on a grid Sm = {0, 1

m ,
2
m , . . . , 1},

where m ∈ N. The transition matrix P ik of quantized Markov
process (when the true hypothesis is hk) can be computed
using a zero-order hold approximation shown in Algorithms 1
and 2. We approximately compute the operating characteristics
ξik and expected stopping times θik using results from absorbing
Markov chains as explained below.

Given any threshold-based strategy gi = 〈αi, βi〉 such that
αi, βi ∈ Sm, define sets Ai0, Ai1 ⊂ Sm as follows:

Ai0 =
{
βi, βi + 1

m , . . . , 1
}

and Ai1 =
{

0, 1
m , . . . , α

i
}
.
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Algorithm 1: Compute transition matrices for discrete Y
input : Discretization size m, DM i, Hypothesis hk
output :P ik
Initialize [P ik] = 0m×m
forall sp ∈ Sm do

forall yi ∈ Yi do
let s+ = φi(sp, y

i)
find sq = arg mins′∈Sm |s′ − s+|
let [P ik]spsq = [P ik]spsq + f ik(yi)

Algorithm 2: Compute transition matrices for continuous Y
input : Discretization size m, DM i, Hypothesis hk, No.

of samples J
output :P ik
Initialize [P ik] = 0m×m
forall sp ∈ Sm do

for J times do
sample yi ∼ f ik let s+ = φi(sp, y

i)
find sq = arg mins′∈Sm |s′ − s+|
let [P ik]spsq = [P ik]spsq + 1

forall sq ∈ Sm do
normalize [P ik]spsq = [P ik]spsq/J

ξik(h0, g
i; p) is the probability of the event that the Markov

process {πit}∞t=1 that starts in p, goes above the threshold
βi before it goes below the threshold αi. This event is
approximated by the event that the Markov chain with transition
probability P ik that starts in p (which is assumed to belong to
Sm) gets absorbed in the set Ai0 before it is absorbed in the
set Ai1. A similar interpretation holds for ξik(h1, g

i; p). θik is
the expected stopping time until absorption.

Partition the transition matrix P ik as

P ik =


Aik Bik Cik

Di
k Eik F ik

GiK Hi
k Ki

k


where the dashed lines partition Sm into Ai1, Sm \ (Ai0 ∪Ai1),
and Ai0. The transition matrix of the absorbing Markov chain
is given by

P̂ ik =


I 0 I

Di
k Eik F ik

I 0 I

 .
Now, suppose j is the index of p in Sm. Then, by properties
of absorbing Markov chains, if p ∈ (αi, βi), then

ξik(h0, 〈αi, βi〉; p) ≈
[
(I − Eik)−1F ik1

]
j

(15a)

ξik(h1, 〈αi, βi〉; p) ≈
[
(I − Eik)−1Di

k1
]
j

(15b)

θik(〈αi, βi〉; p) ≈
[
(I − Eik)−11

]
j

(15c)

where 1 is an all ones column vector of appropriate dimensions.
If p ≤ αi, then

ξik(h0, 〈αi, βi〉; p) = 0,

ξik(h1, 〈αi, βi〉; p) = 1,

θik(〈αi, βi〉; p) = 1;

and if p ≥ βi, then

ξik(h0, 〈αi, βi〉; p) = 1,

ξik(h1, 〈αi, βi〉; p) = 0,

θik(〈αi, βi〉; p) = 1.

B. Orthogonal search
Two approximations are needed to implement orthogonal

search. First, for a given a priori probability p and time-
invariant threshold based strategy g−i, the expected loss
function ˆ̀i (given by (6)) can be numerically approximated
using (15).

Second, we need to numerically solve a dynamic program
for a POMDP at each step of orthogonal search. We solve
these by discretizing the continuous valued state space πi. In
particular, we approximate the Bellman operator Bi in (11)
by using a zero-order hold as follows:

[B̂iV i](s) = ci +
∑

s+∈Sm

[P i∗]ss+V (s+).

where P i∗ is the transition matrix obtained by quantizing the
continuous state Markov kernel q(yi | πi) (which may be done
by replacing f ik with qi(yi|sp) in Algorithms 1 and 2). The
approximation B̂i is similar to the discretization described
in [34], where the corresponding error bounds corresponding
error bounds were also derived.

C. Direct search
For a given a priori probability p, the optimal time-invariant

threshold based strategy is given by

arg min
(α1,β1,α2,β2)

J(〈α1, β1〉, 〈α2, β2〉; p)

where J(〈α1, β1〉, 〈α2, β2〉; p) is given by (13) and can
be numerically approximated using (15). In general, team
problems are non-convex in strategy space; so we expect
J(〈α1, β1〉, 〈α2, β2〉; p) to be non-convex in the parameters
(α1, β1, α2, β2). For an example, see [32].

In principle, such non-convex optimization problems can be
solved using derivative-free methods that do no use numerical
or analytic gradients (see [35]). Since the optimization problem
is non-convex, such algorithms cannot guarantee convergence
to a globally optimal solution. In the numerical results we use
Nelder-Mead simplex algorithm [36], which is implemented
as fminsearch function in MATLAB.

Note that the transition probabilities P ik, k ∈ {0, 1},
approximate the evolution of the {πit}∞t=1 process when
hypothesis H = hk is true. We will use these to approximate
probabilities ξik. On the other hand, the transition probability
P i∗ approximates the uncontrolled evolution of {πit}∞t=1. We
will use this to approximately solve the dynamic program of
Lemma 1.
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D. Computational complexity
Although an exact analysis of the complexity of the proposed

algorithms is difficult, we explain the complexity of some of
the steps.

Given a grid Sm of size m, computing the operating
characteristics and stopping time involves matrix inversion,
or more precisely, solving a linear systems of equations. The
complexity of this operating is O(m3).

For a fixed p, the initialization step (computing ˆ̀) of orthogo-
nal search requires computing the operating characteristics. So,
it has O(m3) complexity. In each step of the orthogonal search,
a dynamic program with state space m needs to be solved,
which involves O(nm2) operations, where n is an estimate of
number of steps needed for value iteration to converge. The
exact bound on n depends on the structure of the transition
matrix P i∗ (see [37]). We are not aware of any bounds on the
number of steps needed for orthogonal search to converge.

For a fixed p, each step of direct search requires computing
the operating characteristics and stopping times. So, it has
O(m3) complexity. There are bounds on the number of steps
needed for direct search to converge [38], but in practice it
depends on the shape of the function being minimized.

IV. NUMERICAL COMPARISON OF THE TWO METHODS

Both the approaches presented in this paper do not guarantee
global optimality. In this section, we compare their performance
on a benchmark system in which Y1 = Y2 = {0, 1} and the
loss function is of the form

`(u1, u2, h) =


0, if u1 = u2 = h,

1, if u1 6= u2,

L, if u1 = u2 6= h

(16)

where L ≥ 1. We select several prior probability p and compare
the performance of direct search and orthogonal search. For
both methods, we use m = 1000.

Note that the choice of parameters (c1, c2, L) and observation
distributions (f10 , f

1
1 , f

2
0 , f

2
1 ) completely specifies the model.

We compare the performance JOS (p) of orthogonal search with
the performance JDS (p) of direct search: first for a specific
values of parameters and distributions and then for randomly
chosen values. For each randomly chosen instance, we identify
a threshold-based strategy using orthogonal and direct search
for each p ∈ [0 : 0.05 : 1]. We compare JOS (p) and JDS (p) in
two different ways: L2 norm and L∞ norm. In particular, we
evaluate

∆J2
OS =

‖JOS − JDS‖2
‖JOS‖2

, ∆J2
DS =

‖JDS − JOS‖2
‖JDS‖2

,

∆J∞OS =
‖JOS − JDS‖∞
‖JOS‖∞

, ∆J∞DS =
‖JDS − JOS‖∞
‖JDS‖∞

.

and plot their histogram for comparison.

A. General Loss Case
We first consider specific values of all the parameters: c1 =

c2 = 0.05, L = 4 and

f10 =
[
0.25 0.75

]
, f20 =

[
0.80 0.20

]
,

f11 =
[
0.60 0.40

]
, f21 =

[
0.30 0.70

]
.

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

J(
g

1
, g

2
; p

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

J-OS
J-DS

Fig. 1. The plots of JOS (p) and JDS (p) for a specific choice of parameters
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Fig. 2. Plot of ∆J2
OS and ∆J2

DS for 500 random values of parameters
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Fig. 3. Plot of ∆J∞
OS and ∆J∞

DS for 500 random values of parameters

For each p ∈ [0 : 0.05 : 1], we identify a threshold-based strategy
using orthogonal search and direct search. The plots of the
performance JOS (p) and JDS (p), given in Fig. 1, show that
the two methods yield same performance for all p.

Next, we compare the performance of the two methods for
500 randomly chosen values of the parameters (c1, c2, L) and
(f10 , f

1
1 , f

2
0 , f

2
1 ). Specifically, we use c1, c2 ∼ unif[0, 0.05],

L ∼ unif[1, 4]. We pick f ik by picking a random number
δik ∼ unif[0, 1] and setting f ik = [δik, 1− δik].

The histograms of (J2
OS , J

2
DS ) and (J∞OS , J

∞
DS ) are plotted

in Figs. 2 and 3. For more than 97% of the cases, JOS (·) and
JDS (·) are within 0.01% of each other in L2 norm. For almost
90% of the cases, they are within 0.05% of each other in L∞

norm.
The fact that these two methods converge to similar solutions
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Fig. 4. The plots of JOS (p), JDS (p), and JCS (p) for a specific choice of
parameters
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Fig. 5. Plot of E2
OS and E2

DS for 500 random values of parameters

0 0.1 0.2 0.3

0

50

100

150

200

250

300

350

400

450

500
481

Histogram of E∞

OS

0 0.1 0.2 0.3 0.4

0

50

100

150

200

250

300

350

400

450

500
481

Histogram of E∞

DS

Fig. 6. Plot of E∞
OS and E∞

DS for 500 random values of parameters

strongly suggests that the resulting solution is also team optimal
(within the class of time-invariant threshold-based strategies).
However, such a claim cannot be checked because there is
no general method to compute team optimal solution. In the
following, we compare our results with two other methods: the
centralized solution with L = 2 and the Wald approximation.

B. Decomposable Case

We consider the special case when L = 2 and, therefore, the
total cost `(U1, U2, H) may be written as `(U1, H)+`(U2, H).
Hence the decentralized sequential hypothesis testing prob-
lem decomposes into two independent centralized sequential
hypothesis testing problem. We call this the decomposable
case. In this case, the team optimal solution can be obtained

by separately solving the two separate centralized sequential
hypothesis testing problems, which can be solved using value
iteration. We refer to this solution as centralized solution and
denote it by JCS (p).

We first consider specific values of all parameters: L = 2 and
c1, c2, f10 , f

1
1 , f

2
0 , f

2
1 are the same as the values in Section IV-A.

For each p ∈ [0 : 0.05 : 1], we identify a threshold-based strategy
using orthogonal search, direct search, and centralized solution.
The plots of the performance JOS (p), JDS (p) and JCS (p),
given in Fig. 4, show that the three methods yield same
performance for all p.

Next, we compare the two methods with the centralized
solution for 500 randomly chosen values of the parameters.
We set L = 2 and choose the other parameters as in Sec. IV-A.
To compare the solution, define relative errors

E2
OS =

‖JCS − JOS‖2
‖JCS‖2

, E2
DS =

‖JCS − JDS‖2
‖JCS‖2

,

E∞OS =
‖JCS − JOS‖∞
‖JCS‖∞

, E∞DS =
‖JCS − JDS‖∞
‖JCS‖∞

.

The histograms of (E2
OS , E

2
DS ) and (E∞OS , E

∞
DS ) are plotted

in Figs. 5 and 6. For more than 96% of the cases, JOS (·) and
JDS (·) are within 0.005% of JCS (·) in L2 norm and are within
0.05% of JCS (·) in L∞ norm. Thus, both orthogonal search
and direct search have the same performance as the centralized
(optimal) solution.

C. Comparison with Wald approximation

In [28], the Wald approximation was used to compute person-
by-person optimal strategies. Given the a priori probability p
and a threshold based strategy gi = 〈αi, βi〉, define

Ai =
p

1− p
1− βi

βi
and Bi =

p

1− p
1− αi

αi
.

Then, according to the Wald approximation [1], [33],

ξi0(h1, g
i; p) ≈ 1−Ai

Bi −Ai
(17a)

ξi1(h0, g
i; p) ≈ Ai(Bi − 1)

Bi −Ai
(17b)

θi0(gi; p) ≈ − (logAi)(Bi − 1) + (logBi)(1−Ai)
(Bi −Ai)D(f i0‖f i1)

(17c)

θi1(gi; p) ≈ Ai(logAi)(Bi − 1) +Bi(logBi)(1−Ai)
(Bi −Ai)D(f i1‖f i0)

(17d)

where D(P‖Q) is the Kullback-Leibler divergence between
distributions P and Q.

Instead of the proposed Markov chain approximation (15),
one can use the Wald approximations (17) in both orthogonal
and direct search. Let JWOS (p) and JWDS (p) denote the corre-
sponding performance. In this section, we compare the proposed
Markov chain approximations with the Wald approximation
for both methods.

We choose 500 random values for (c1, c2, L) and
(f10 , f

1
1 , f

2
0 , f

2
1 ) as described in Sec. IV-A. To compare the

performance of the Wald approximation with the Markov chain
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Fig. 7. Comparison of the performance of orthogonal and direct search using Markov chain approximation and using Wald approximation for different values
of p

approximation, we use the following metrics: for an arbitrary
p ∈ [0, 1],

∆JOS (p) =
JOS (p)− JWOS (p)

JOS (p)

∆JDS (p) =
JDS (p)− JWDS (p)

JDS (p)
.

The histograms of ∆JOS (p) and ∆JDS (p) for different
values of p are shown in Fig. 7. For almost all cases, the
Markov chain approximation performs better than the Wald
approximation. Note that the random values are chosen in a
range where (c1, c2) are about a factor of 100 smaller than
L. So, one expects that the Markov chain approximation will
perform significantly better when (c1, c2) are of the same order
as L.

D. Computational Complexity

The proposed search algorithms consist of two parts: an
initial step of computing the transition matrix (Algorithm 1)
and an iterative step of using the transition matrix to compute
the thresholds. The complexity of the first step is linear in |Y|,
but the complexity of the second iterative step does not depend
on |Y|. Therefore, one would not expect a significant increase
in the run-time with an increase in the size of the observations
|Y|. This is confirmed numerically as well.

We consider four cases: |Y| = 2, |Y| = 4, |Y| = 8, |Y| = 16.
For each case, we run 100 simulations where c1, c2, L are
chosen randomly as described in Sec. IV-A and p = [0 : 0.05 : 1].
To choose f ih, for |Y| = m, we pick m random numbers
(δik0, . . . , δ

i
km) ∼ unif[0, 1] and set f ih = [δik0, . . . , δ

i
km]/Sik,

where Sik =
∑m
j=1 δ

i
kj . The median run-time for orthogonal

search and direct search is shown in Table I. As expected,
increasing |Y| has a small effect on runtime.

TABLE I
RUNTIME WITH RESPECT TO NUMBER OF OBSERVATIONS.

|Y| = 2 |Y| = 4 |Y| = 8 |Y| = 16

OS median 24.9412s 29.8904s 34.9856s 39.7705s
DS median 25.0533s 36.1206s 51.1771s 62.7652s

V. DISCUSSION

In this paper, we proposed two methods to approximately
compute the optimal threshold-based strategies in decentralized
sequential hypothesis testing. Both these methods are based
on discretization of the continuous-valued information state
process by a finite-valued Markov chain. The orthogonal search
method computes PBPO strategies while the direct search
methods attempts to compute team optimal strategies. Direct
search involves solving a non-convex optimization problem, so
in practice, it will also not converge to a global optimum. In
our numerical study, both algorithms identify strategies with
similar performance.

These results generalize naturally to multiple hypothesis
and multiple decision makers, but, as expected, accompanied
by an increase in computational complexity. An interesting
future direction is to develop procedures to compute optimal
thresholds for more general models of sequential hypothesis
testing such as those considered in [31], [39].
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APPENDIX A
PROOF OF THEOREM 2

The dynamic program of Theorem 1 is from the point of
view of a single DM; it does not minimize J(g1, g2; p) rather
for a given strategy g−i of DM−i, it minimizes

J i(g1, g2; p) := E[ciN i + `(U1, U2, H)].

Note that

J(g1, g2; p) = J i(g1, g2; p) + E[c−iN−i]

where the second term only depends on g−i (which is fixed).
For even n, g1(n) = D1(g2(n)) and g2(n) = g2(n−1). Therefore,

J1(g1(n), g
2
(n); p) = J1(g1(n), g

2
(n−1); p) ≤ J

1(g1(n−1), g
2
(n−1); p),

or, equivalently,

J(g1(n), g
2
(n); p) ≤ J(g1(n−1), g

2
(n−1); p).
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Similarly, for odd n

J(g1(n), g
2
(n); p) ≤ J(g1(n−1), g

2
(n−1); p).

Thus, at every step n,

J(g1(n), g
2
(n); p) ≤ J(g1(n−1), g

2
(n−1); p),

Therefore, the sequence {J(g1(n), g
2
(n); p)} is a decreasing

sequence lower bounded by 0. Hence, a limit exists. By
definition, the limiting strategy is PBPO.
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