On-time diagnosis of discrete event systems

Aditya Mahajan and Demosthenis Teneketzis

Dept. of EECS, University of Michigan, Ann Arbor, MI. USA.

WODES 2008, May 30, 2008.

Fault Diagnosis in DES

- 1. Asymptotic (accuracy is critical; delay is important but not critical)
- 2. On-time (delay is critical; accuracy is important but not critical)

Most of the literature on diagnosis of DES has concentrated on asymptotic fault diagnosis.

Contribution of this paper

- Formulate on-time fault diagnosis as a minimax optimization problem.
- Use decision theory to provide a solution methodology.

Modelling questions

- What do we mean by "time"?
- What should the diagnoser/monitor do?
- How do we model performance?

When it is time to take a decision but the monitor is not sure that a fault has occurred, it will **make mistakes**.

Preliminaries Language, Monitor, and Costs

Language

• Language L is prefix-closed, finite, and bounded

 $L = L_{\mathsf{T}} \cup L_{\mathsf{NT}}$

- Terminal Strings: $L_T := \{s \in L : L \setminus s \neq \emptyset\}$
- Non-terminal Strings: $L_{NT} \coloneqq L \setminus L_T$.

- Event Set $\Sigma = \Sigma_o \cup \Sigma_{uo} \implies$ natural projections.
- Observable events: Σ_0 Unobservable events: Σ_{uo} .
- Fault event $f \in \Sigma_{uo}$.

Monitor

- Observes P(L)
- Upon observing an event, the monitor can:
 - raise an alarm, \implies the system is shut down immediately.
 - **do nothing**, \implies the system continues to operate.
- Monitoring policy $g : P(L) \rightarrow \{0, 1\}$
- Monitored sub-language Ll_q

Sub-language where the system can stop

• Monitor raises an alarm \implies system stops in $L^S_{NT} \cup L^S_{T}$

$$L_{NT}^S = \{s \cdot \sigma \in L_{NT} : \sigma \in \Sigma_o\}, \qquad L_T^S = \{s \cdot \sigma \in L_T : \sigma \in \Sigma_o\}$$

- Monitor does not raise an alarm \implies system stops in L_T
- System can stop in $L^{S} = L^{S}_{NT} \cup L_{T}$ For any g, $(L|_{g})_{T} \subseteq L^{S}$

Example

Quantifying timeliness

- After a fault has occurred, each event incurs a cost c.
- System is stopped in a non-faulty state \implies false alarm penalty of H_{NT}.
- System executes a terminal trace in a faulty state \implies

additional terminal penalty of H_T .

Cost of stopping

• For $s \in L$, let

 \circ $\tau(s)$ be the first stage when a fault occurs in s.

• n be the "length" of s

• for
$$s \in L_{NT}^{S}$$
, $C(s) = \begin{cases} (n - \tau(s))c, & \text{if s contains a fault,} \\ H_{NT}, & \text{otherwise;} \end{cases}$

• for $s \in L_T$, $C(s) = \begin{cases} (n - \tau(s))c + H_T, & \text{if s contains a fault,} \\ 0, & \text{otherwise.} \end{cases}$

Problem Formulation

The on-time diagnosis problem

• Given

- Prefix-closed, finite, and bounded language L,
- $\circ~$ Observable events $\Sigma_o,$ unobservable events $\Sigma_{uo},$ and fault event f
- $\circ~$ Cost c, fault alarm penalty $H_{NT},$ and a terminal penalty $H_{T}.$

• Define

- \circ $\$ G family of functions from P(L) to $\{0,1\}$
- $\circ \quad \text{Performance of a monitoring policy } g \in \mathfrak{G}$

$$\mathcal{J}(g) \coloneqq \max_{s \in (L|_g)_T} C(s).$$

• Choose

 $\circ~$ A monitoring rule $g^*\in \mathfrak{G}$ to minimize $\mathfrak{J}(g)$

$$\mathcal{J}^* = \mathcal{J}(g^*) = \min_{g \in \mathcal{G}} \max_{s \in (L|_g)_T} C(s)$$

Centralized minimax optimization problem Can be solved by dynamic programming

Some Notation

•
$$Q(t) \coloneqq \{s \cdot \sigma \in P^{-1}(t) : \sigma \in \Sigma_o\}$$

 $\bullet \quad Q_T(t)\coloneqq P^{-1}(t)\cap L_T$

Optimal monitoring rule

• For
$$t \in (P(L))_T$$

$$\begin{array}{lll} V(t) &= \min \left\{ \begin{array}{cc} \max_{s \in Q(t)} C(s) &, \ \max_{s \in Q_T(t)} C(s) \end{array} \right\} \\ & \underset{\text{worst case}}{\text{minimum}} \\ & \underset{\text{cost to go at t}}{\text{to go at t}} & \underset{\text{of stopping}}{\text{minimum}} & \underset{\text{of continuing}}{\text{minimum}} \end{array} \right\}$$

• For $t \in (P(L))_{NT}$, let $O_C(t) \coloneqq \{e \in \Sigma : t \cdot e \in P(L)\}$, and

$$\begin{array}{ll} V(t) &= \min \left\{ \begin{array}{cc} \max_{s \in Q(t)} C(s) &, \max \left\{ \max_{s \in Q_T(t)} C(s), \max_{e \in O_C(t)} V(t \cdot e) \right\} \right\} \\ & \\ \min_{worst \ case} & worst \ case \ cost \\ cost \ to \ go \ at \ t & of \ stopping \end{array} \right.$$

Example

Relaxing some modelling assumptions

- Live languages Should be possible. Working on the details.
- Generalized costs

Use a trace dependent cost in the paper

Generalized projections
Use prefix-preserving projections in the paper

Summary

- Formulate and solve on-time fault diagnosis problem.
- Penalize false alarm and (trace dependent) amount of delay in fault detection.
- Equivalent to a minimax optimization problem.

Thank you