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Abstract— We study a class of Keynesian beauty contest
games where a large number of heterogeneous players attempt
to estimate a common parameter based on their own observa-
tions. The players are rewarded for producing an estimate close
to a certain multiplicative factor of the average decision, this
factor being specific to each player. This model is motivated
by scenarios arising in commodity or financial markets, where
investment decisions are sometimes partly based on following a
trend. We provide a method to compute Nash equilibria within
the class of affine strategies. We then develop a mean-field ap-
proximation, in the limit of an infinite number of players, which
has the advantage that computing the best-response strategies
only requires the knowledge of the parameter distribution of
the players, rather than their actual parameters. We show
that the mean-field strategies lead to an ε-Nash equilibrium
for a system with a finite number of players. We conclude
by analyzing the impact on individual behavior of changes in
aggregate population behavior.

I. INTRODUCTION

“Beauty contest” games, first introduced by Keynes in
1936 [1], are strategic games where each player attempts
to make a choice that is close to a certain aggregate choice
of the group, e.g., an average selection. Such models have
been used for example to study trading decisions in financial
markets or the social value of information [2]–[4]. In this
paper, we consider a type of beauty contest game where a
large number of players with heterogeneous characteristics
estimate the value of an underlying parameter based on their
local observation, while at the same time trying to remain
close to a scaled version of the average estimate produced
by all the players in the system. The payoff function for
our model relates to the general form of ρ-beauty contest
games first proposed in [5], but with a player-specific scaling
weight ρ multiplying the average estimate. An interpretation
of this weight could be as a degree of “bullishness” about
an asset in the context of a financial trading decision [4] or
of “polarization” when evaluating a political issue [6].

The existence and characteristics of symmetric Nash equi-
libria for beauty-contest games were studied in [7], which
did not however include the parameter estimation aspect of
the model that we consider here. In our setting, the players
trade-off the accuracy of their estimate with its “popularity”.
A closely related model was studied in [8], where players
were connected via a graph and wished to remain close to
the average estimate of their neighbors. It was shown that
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a myopic policy leads to a Nash equilibrium where players
reach a consensus with their neighbors. Similar conclusions
were drawn in [6], where the authors study how the opinion
alignment between neighbors leads to network polarization

Beauty contest games with ρ = 1 were also considered
in [9]–[11], where the authors analyzed the impact of public
information on social welfare when homogeneous players
have access to both private and public information. In [9],
the uniqueness of the equilibrium in linear strategies was
analyzed and it was shown that in the absence of private
information, an increase in public information leads to an
increase in the social welfare. The authors draw a connection
with the “island economy” model [12]–[14] and show the
similarity between the equilibrium attained and that of the
features of such models. In [10], the authors show that
in beauty contest games, mixing private noise with public
information is often socially beneficial. In [11], the model
of [9] was generalized to analyze the impact of privacy
considerations on equilibrium strategies.

Computing Nash equilibria for the games mentioned above
becomes more difficult as the number of players in the
system increases and can, in many cases, only be done
numerically, which complicates the analysis of the solution.
Moreover, in our setting it requires that players know per-
fectly the parameters of every other player, e.g., their scaling
weight. To address these limitations, we study a mean-field
approximation for the beauty-contest game, assuming an
infinity of players. Indeed, the beauty-contest term may be
viewed as a special case of “mean-field coupling” between
the players considered in the mean-field games (MFG) litera-
ture [15], [16]. We outline the conditions for the existence of
a mean-field Nash equilibrium and show that the mean-field
Nash strategies only require the knowledge of the parameter
distribution in the population. Furthermore, we show that
these strategies lead to an ε−Nash equilibrium when applied
by the players in a finite game. This is consistent with typical
results obtained in the large literature on MFG, see, e.g., [17],
[18] for recent surveys.

Beauty-contest games with a continuum of players have
also been analyzed in [9], [11], but our analysis is different.
These papers consider the limit of the Nash equilibrium
strategy as the number of players go to infinity but do
not consider the rationalizability of using infinite population
strategies in finite population games. In contrast, we explic-
itly show that the infinite-population mean-field equilibrium
strategy is an ε-Bayesian Nash equilibrium in the finite
population game. It is also worth highlighting that [9],
[11] consider only the setup with homogeneous players and
assume an improper uniform prior on the unknown value



of the underlying parameter. In contrast, we model a game
with heterogeneous players and consider a Gaussian prior on
the unknown value of the parameter. Therefore, the results
of [9], [11] are not directly applicable to our model. Another
related paper is [19], which does not make explicit reference
to beauty-contest games but discusses from the MFG point of
view a simplified version of our problem with homogeneous
players, ρ = 1 and no common observation. In contrast, one
of our main motivations is to study the effect of varying ρ in
the population, see Section IV. Finally, beauty contest games
can also be analyzed as particular examples of aggregative
games [20], which are closely related to mean field games,
see [21] for a discussion of this connection.

The rest of the paper is organized as follows. In Sec. II,
we present the model of the general beauty-contest game
and characterize a Bayesian Nash equilibrium of the game.
In Sec. III, we present a mean-field approximation of the
Bayesian Nash equilibrium. In Sec. IV, we investigate the
impact of variation of aggregate population behavior on the
individual behavior. Finally, we conclude in Sec. V. All
proofs are provided in the appendix.

II. GENERAL BEAUTY-CONTEST GAMES

A. Specification of the Game

Consider a general-sum Bayesian game where N :=
{1, . . . , n} denotes the set of players and other components
are described below.

a) Nature: Let ω = (θ, v0, v1, . . . , vn) ∈ Rn+1 denote
the state of nature. We assume that ω is a vector of inde-
pendent Gaussian random variables where θ ∼ N (0, 1) and
v0 ∼ N (0, σ2

0) and vi ∼ N (0, σ2), for all i ∈ N .
b) Players: There are three parameters (αi, λi, ρi) as-

sociated with player i, i ∈ N , where αi ∈ [0, 1], λi ∈ [0, 1],
and ρi ∈ R. There is also a global parameter α0 ∈ [0, 1].
These parameters affect the player’s observations and cost.
For ease of notation, we use φi = (αi, λi, ρi) to denote the
parameters of player i and φ = (α0, φ1, . . . , φn) to denote
the parameters of all players.

Player i, i ∈ N , gets a signal (y0, yi) ∈ R2 given by

y0 = α0θ + v0 and yi = αiθ + vi. (1)

The signal y0 is common to all players while the signal yi
is only observed by player i. Player i chooses an action
ui ∈ R. Let u−i denote the profile of actions taken by all
players except player i and let

ū =
1

n

∑
i∈N

ui

denote the average of the actions chosen by all players.
The cost incurred by player i is given by

ci(θ, ui, u−i;φi) = (1− λi)(θ − ui)2 + λi(ui − ρiū)2. (2)

This cost is a weighted sum of two terms: how close is the
action taken by the player to the nature’s state θ and how
close is the action to ρi times the average of the actions of
the players. When λi = 1 and 0 < ρi ≤ 1 is identical for

all players, the cost reduces to that of the standard beauty-
contest game, where the objective for each player is to guess
a fraction of the average of all players. As described in the
introduction, various scenarios can be modelled by assuming
general (λi, ρi), which could also depend on the players.

c) Information structure: For our initial analysis, we
assume that the parameters φ of the players are common
knowledge to all players. We will relax this assumption later.
The information set of player i is therefore

Ii = {y0, yi, φ}.

Let gi denote the (measurable) strategy used by player i to
choose its action, i.e.,

ui = gi(y0, yi, φ).

Given a strategy profile g = (g1, . . . , gn), the expected
cost incurred by player i, i ∈ N , is given by

Ji(gi, g−i;φ) = Eω[ci(θ, g1(y0, y1, φ), .., gn(y0, yn, φ);φi)].
(3)

A strategy profile g is called a Bayesian Nash equilibrium
(BNE) if it satisfies the following property: for any player
i ∈ N and any strategy hi for player i, we have

Ji(gi, g−i;φ) ≤ Ji(hi, g−i;φ). (4)

We are interested in the following problem.

Problem 1 Given the parameters φ of the players and
the noise variances σ0 and σ, identify a Bayesian Nash
equilibrium strategy g.

B. Characterization of Bayesian Nash Equilibrium

We show that for almost all values of the parameters φ,
the beauty-contest game described above has a BNE in pure
strategies. To characterize this BNE, we define the constants

Hi =
α0σ

2

α2
0σ

2 + α2
iσ

2
0 + σ2

0σ
2
, Ki =

αiσ
2
0

α2
0σ

2 + α2
iσ

2
0 + σ2

0σ
2
,

Λi = (1− λi) + λi
(
1− ρi

n

)2
, Λi = λi

ρi
n

(
1− ρi

n

)
,

vectors η, κ ∈ Rn as

η = vec((1− λ1)H1, . . . , (1− λn)Hn),

κ = vec((1− λ1)K1, . . . , (1− λn)Kn),

and matrices A,B, B̄ ∈ Rn×n as

Aij =

{
Λi if i = j,

−Λi if i 6= j,

Bij =

{
Λi if i = j,

−ΛiKiαj if i 6= j,
B̄ij =

{
0 if i = j,

−ΛiHiαj if i 6= j.

Theorem 1 Suppose the following system of equations has
a solution:

Aa + B̄b = η, Bb = κ (5)

where a = vec(a1, . . . , an) and b = vec(b1, . . . , bn). Then
the strategy profile

gi(y0, yi, φ) = aiy0 + biyi, ∀i ∈ N, (6)



is a BNE of the beauty-contest game. Moreover, if A and B
are invertible, then the strategy profile (6) is the unique BNE
within the class of affine strategies. 2

C. Some Special Cases

a) No common observation: The setting where the
players have no common observation can be captured by
choosing α0 = 0. In this case Hi = 0 and Ki = αi/(α

2
i +

σ2). This implies that B̄ = 0 and η = 0. Hence, a = 0 is a
solution and b is given by the solution of

Bb = κ.

The corresponding BNE is gi(yi;φ) = biyi. Moreover, if A
and B are invertible, then this is the unique BNE among the
class of affine strategies.

b) No private observation: The setting where the play-
ers have no private observation can be captured by choosing
αi = 0. In this case, Ki = 0 and Hi = α0/(α

2
0 + σ2

0). This
implies that κ = 0 and B is diagonal. Hence, b = 0 and a
is given by the solution of

Aa = η.

The corresponding BNE is gi(y0;φ) = aiy0. Moreover, if A
is invertible, then this is the unique BNE among the class of
affine strategies.

c) Homogeneous players: Consider the setting where
all players are homogeneous, i.e., φi = (λi, αi, ρi) =
(λ, α, ρ) for all i ∈ N . Then Hi, Ki, Λi, and Λi do not
depend on i, so we drop the subscript i. In this setting, the
system of equations (5) has a symmetric solution where ai
and bi do not depend on i. We denote these by a and b and
they are given by

b =
(1− λ)K

Λ− (n− 1)ΛKα
, a =

(1− λ)H + (n− 1)ΛHαb

Λ− (n− 1)Λ
.

(7)

The solution does not exist if Λ = (n − 1)ΛKα or Λ =
(n − 1)Λ. Note however that in the special case ρ = 1
and λ < 1 a straightforward calculation shows that these
conditions cannot be satisfied and hence in this case a
symmetric solution always exists.

It can be verified that b < a when Λ < (n−1)ΛKα (and,
therefore, also less than (n−1)Λ because Kα < 1), and both
the private and the common observations have same channel
gain α and variance σ. Thus, the players put more weight
on the common signal than on their private signal. This is
consistent with the observations made in [9] for a slightly
different model.

In the special case when players have no common obser-
vation, H = 0 and therefore a = 0. In the special case when
the players have no private observation, K = 0 and therefore
b = 0, which implies a = (1− λ)H/(Λ− (n− 1)Λ).

III. MEAN-FIELD APPROXIMATION

There are two shortcomings of the BNE characterized
in Theorem 1. First, the equilibrium is derived under the
assumption that the parameters of all players are common

knowledge. This is a strong assumption and is unlikely to
hold in games with a large number of players. Second,
computing the equilibrium strategy requires solving two
systems of n linear equations, which can get computationally
expensive when the game has a large number of players.
To circumvent both these limitations, we characterize the
mean-field limit of the beauty-contest game and show that
the mean-field equilibrium is an ε-Nash equilibrium for the
finite player game.

Suppose that rather than being specified arbitrarily, the
parameters φ are modeled as realizations of a random alloca-
tion. In particular, it is assumed that α0 is chosen randomly
according to some distribution and each of the parameters
αi, λi, ρi are independent and identically distributed across
players and also independent of α0. Recall that αi and λi
have support [0, 1], For simplicity, we assume that ρi also
has finite support. In our analysis, the exact distribution of
these variables does not matter, just their means.

Given a strategy profile g = (g1, . . . , gn), we define the
expected cost of a generic player by

J̄i(gi, g−i) = Eφ[Ji(gi, g−i;φ)].

In this setting, we will approximate the BNE of Theorem 1
by its mean-field approximation. A strategy profile g =
(g1, . . . , gn) is called ε-Bayesian Nash equilibrium (ε-BNE)
if it satisfies the following property: for any player i ∈ N
and any strategy hi for player i, we have

J̄i(gi, g−i) ≤ J̄i(hi, g−i) + ε. (8)

A. Characterization of Mean-Field Equilibrium

Let λ̄, ρ̄, H̄ denote the mean of λi, ρi, Hi and let L̄ =
Eα0,αi

[Kiαi]. All these quantities exist because the random
variables have finite support.

Theorem 2 Suppose λ̄ρ̄L̄ 6= 1 and λ̄ρ̄ 6= 1, so that

M̄ :=
(1− λ̄)L̄

1− λ̄ρ̄L̄
, ā :=

[
(1− λ̄) + λ̄ρ̄M̄

]
H̄

1− λ̄ρ̄
are finite. Then the strategy profile ḡ = (ḡ1, . . . , ḡn) where

ḡi(y0, yi, φi) =
[
(1−λi)+λiρiM̄

]
(Hiy0 +Kiyi)+ρiλiāy0

is an ε-BNE for the n-player beauty contest game, where
ε ∈ O(1/

√
n). 2

Corollary 1 In the special case of no common observations,
let L̂ = Eαi

[α2
i /(α

2
i + σ2)] and M̂ = (1− λ̄)L̂/(1− λ̄ρ̄L̂).

If M̂ is finite, then the strategy profile ḡ = (ḡ1, . . . , ḡn),
where

ḡi(yi, φi) =
[
(1− λi) + λiρiM̂

]
Kiyi

is an ε-BNE for the n-player beauty contest game, with ε ∈
O
(
1/
√
n
)
. 2

Remark 1 The mean-field strategy identified in Theorem 2
exists only when M̄ and ā are finite, i.e., if λ̄ρ̄ 6∈ {1, 1/L̄}. In
the absence of common observation, the mean-field strategy
identified in Corollary 1 exists only when M̂ is finite, i.e.,
if λ̄ρ̄ 6= 1/L̄. These conditions are different from those



identified in Sec. II-B. Thus, there can be finite players games
such that the BNE of Theorem 1 does not exist but the mean-
field limit of Theorem 2 exists, and vice versa. 2

IV. EFFECT OF THE AGGREGATE POPULATION BEHAVIOR
ON INDIVIDUAL BEHAVIOR

We now consider the system from the point of view of a
specific player, say player i. Observe that the expected cost
of player i playing a strategy u∞i = ḡ(yi, φi, y0) is given by

Ci(u
∞
i , ḡ−i | y0, yi;φ)

:= Eω[ci(θ, u
∞
i , ḡ−i(y0, y−i);φ) | y0, yi]

= (u∞i )2 − 2
[
(1− λi)(Kiyi +Hiy0)

+ ρiλi
[
(Kiyi +Hiy0)M̄ + y0ā

]]
u∞i + S, (9)

where S is independent of u∞i . We consider the setting where
the “bullisness” ρ̄ or “social degree” λ̄ of the population
changes and the player adapts its individual ρi and λi such
that its expected cost (9) does not change. These results
illustrate the impact of aggregate population behavior on
individual behavior.

We consider a system where the channel noise σ0 =
σ = 1, the channel gains α0 = 0.5, αj ∼ unif[0, 1],
j ∈ N , (and, therefore, H̄ = 0.288 and L̄ = 0.184), the
average social degree λ̄ = 0.3, and the average bullishness
ρ̄ = 1.25. We take a generic player i whose parameters
φ◦i = (α◦i , λ

◦
i , ρ
◦
i ) = (0.5, 0.3, 1.25) and investigate two

scenarios:
• Scenario 1: We vary ρ̄ from 0.1 to 2.0 and compute

the value of ρi such that the expected cost of player i
remains the same as when its parameters were φ◦i .
Recall that the mean-field equilibrium exists as long as
ρ̄ 6∈ {1/λ̄, 1/λ̄L̄} = {3.333, 18.116}. Thus, the mean-
field equilibrium always exists in the specified range of
variation of ρ̄.

• Scenario 2: We vary λ̄ from 0.1 to 0.6 and compute
the value of λi such that that the expected cost of
player i remains the same as when its parameters were
φ◦i . The computed values of λi were in the range [0, 1].
Recall that the mean-field equilibrium exists as long
as λ̄ 6∈ {1/ρ̄, 1/ρ̄L̄} = {0.8, 4.348}. Thus, the mean-
field equilibrium always exists in the specified range of
variation of λ̄.

The results in Fig. 1 show that if the player wants to
maintain the same cost when ρ̄ or λ̄ are increased, then he
should decrease his ρi or λi.

V. CONCLUSION

We considered general beauty-contest games where play-
ers want to estimate a common parameter based on their
observation and, at the same time, be close to a multiplicative
factor of the average decision. We showed that the BNE in
affine strategies is characterized by the solution of a linear
system of equations. We then characterized the mean-field
approximation of the finite population BNE, which has the
advantage that the computing the equilibrium strategy of the
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Fig. 1: Variation of individual parameters with the aggregate
population parameters to keep the same expected cost.

players requires the knowledge of the parameter distribution
of the players, rather than their actual parameters. We show
that the mean-field approximation is an ε-BNE for the system
with a finite number of players.

The results were presented for scalar variables for con-
venience. They generalize to vector-valued variables in an
obvious manner. The model presented in this paper focused
on the static setting. Investigating the dynamic setting where
the decisions made my the agents evolve over time is an
interesting and important future direction.

APPENDIX

A. Proof of Theorem 1

We start by defining the interim expected cost of a player.
Given a player i ∈ N , an observation (y0, yi) ∈ R2 and an
action ui ∈ R of player i, and a strategy profile g−i of all
players other than i, the interim cost of player i is given by

Ci(ui, g−i | y0, yi;φ)

:= Eω[ci(θ, ui, g−i(y0, y−i);φ) | y0, yi].

The definition of BNE given in (4) is sometimes called
the ex-ante definition. An equivalent, interim definition, is
as follows: a strategy profile g = (g1, . . . , gn) is a Bayesian
Nash equilibrium (BNE) if for any players i ∈ N and any
observation (y0, yi) ∈ R2 of player i, we have that for all
ui ∈ R,

Ci(gi(y0, yi), g−i | y0, yi;φ) ≤ Ci(ui, g−i | y0, yi;φ).

We use the above definition of BNE to identify the
BNE in the class of affine strategies. First observe that
ci(θ, ui, u−i) is convex in ui. Since convexity is preserved
under expectation, Ci(ui, g−i | y0, yi;φ) is also convex in ui.
Now, to identify a BNE within the class of affine strategies,
we pick a arbitrary player, say i, and assume that all player
j 6= i are playing an affine strategy

gj(y0, yj ;φ) = ajy0 + bjyj + dj , (10)

where aj , bj and dj are constants (possibly depending on n
and φ). Now, consider the best response at player i. Since
the interim cost Ci(ui, g−i | y0, yi;φ) is convex in ui, the
best response u∗i is the solution of the first order optimality
conditions

∂

∂ui
Ci(ui, g−i | y0, yi;φ) = 0.



Lemma 1 Given a player i ∈ N , if all players j 6= i are
playing an affine strategy given by (10), then

∂

∂ui
Ci(ui, g−i | y0, yi;φ) = 2Λiui − 2Λ̄i

[∑
j 6=i

ajy0 + dj
]

− 2
[
(1− λi) + Λ̄i

∑
j 6=i

bjαj
]
(Hiy0 +Kiyi), (11)

where Hi, Ki, Λi, Λ̄i are as defined before Theorem 1.
Therefore, the interim best response of player i is given by

ui = Λ−1i
[
(1− λi) + Λi

∑
j 6=i

bjαj
]
(Hiy0 +Kiyi)

+ Λ−1i Λi
[∑
j 6=i

ajy0 +
∑
j 6=i

dj
]
. (12)

2

PROOF First observe that

∂

∂ui
E[(θ − ui)2 | y0, yi] = −2E[θ|y0, yi] + 2ui

= −2Hiy0 − 2Kiyi + 2ui. (13)

Now, note that ∂ū/∂ui = 1/n. Therefore,

∂

∂ui
E[(ui − ρiū)2 | y0, yi]

= 2
(
1− ρi

n

)
(ui − ρiE[ū | y0, yi]). (14)

Finally, for any player j 6= i who is playing a strategy of the
form (10), E[uj | y0, yi] = ajy0 + bjαj(Hiy0 +Kiyi) + dj .
Therefore,

E[ū | yi] =
1

n

[
ui+y0

∑
j 6=i

aj+(Hiy0+Kiyi)
∑
j 6=i

bjαj+
∑
j 6=i

dj
]
.

(15)
By combining (13)–(15), we get that (11). Setting

∂Ci/∂ui = 0, we get (12). �

Observe that the best response of player i given by (12)
is affine in (y0, yi). Thus, the class of affine strategies is
closed under best response. Now, there exist a BNE in affine
strategies if for all i ∈ N ,

ai = Λ−1i

[[
(1− λi) + Λi

∑
j 6=i

bjαj
]
Hi + Λi

∑
j 6=i

aj

]
, (16)

bi = Λ−1i
[
(1− λi) + Λi

∑
j 6=i

bjαj
]
Ki, (17)

and

di = Λ−1i Λi
∑
j 6=i

dj , (18)

Note that (18) can be written more compactly as

Ad = 0 (19)

and (16) and (17) can be written as compactly as (5). The
vector d = 0 is always a solution of (19). It is the unique
solution when A is invertible. Thus, any a = vec(a1, . . . , an)
and b = vec(b1, . . . , bn) satisfying (5) is a BNE and
if (5) has a unique solution and A is invertible, then the
corresponding solution is the unique solution within the class
of affine strategies.

B. Proof of Theorem 2

In the solution obtained in Theorem 1, the coefficients
ai and bi of player i depended on the parameters φ of the
entire population. In the limit of large number of players, we
assume that ai and bi converge to limiting functions a(φi)
and b(φi) and we identify these functions. Then we define

gi(y0, yi;φi) = a(φi)y0 + b(φi)yi

as the mean-field strategy and show that it is an ε-BNE.
First observe that limn→∞ Λi = 1. Moreover, since the

parameters are chosen independently across players, the
strong law of large numbers gives that

lim
n→∞

1

n− 1

∑
j 6=i

b(αj , λj , ρj)αj = E[b(α, λ, ρ)α] =: M̄,

where the convergence is in the almost sure sense. Note
that the strong law of large numbers holds here because all
random variables have finite support. Thus, in the limit as
n→∞, (17) simplifies to

b(αi, λi, ρi) =
[
(1− λi) + λiρiM̄

]
Ki, (20)

where Ki is the same as in Theorem 1. Since M̄ =
E[b(α, λ, ρ)α], M̄ must satisfy the following fixed point
equation:

M̄ = E
[[

(1− λi) + λiρiM̄
]
Kiαi

]
=
[
(1− λ̄) + λ̄ρ̄M̄

]
L̄, (21)

where the last equality follows because (α, λ, ρ) are inde-
pendent. Solving (21), we get

M̄ =
(1− λ̄)L̄

1− λ̄ρ̄L̄
. (22)

Subsisting (22) in (20) gives us the limiting function b(φi).
Similarly, in the limit as n→∞, Eq. (16) simplifies to

a(αi, λi, ρi) =
[
(1− λi) + λiρiM̄

]
Hi + λiρiā. (23)

Since ā = E[a(α, λ, ρ)], ā must satisfy the following fixed
point equation:

ā = E
[
[(1− λi) + λiρiM̄ ]Hi + λiρiā

]
=
[
(1− λ̄) + λ̄ρ̄M̄

]
H̄ + λ̄ρ̄ā (24)

where the last equality follows because (α, ρ, λ) are inde-
pendent. Solving for (24) we get

ā =

[
(1− λ̄) + λ̄ρ̄M̄

]
H̄

1− λ̄ρ̄
. (25)

Substituting (25) in (23) gives us the limiting function
a(φi). Combining this with the function b(φi) identified
in (20) and (22), gives the mean-field strategy ḡ specified
in Theorem 2.

Now to establish the ε-BNE property for this strategy, we
arbitrarily pick a player, say i, and assume that all players
other than i are playing strategy ḡj . From (16)-(17), the best



response strategy g∗i of player i is g∗i (yi) = a∗i y0 + b∗i yi
where the gains are given by

a∗i = Λ−1i
[[

(1− λi) + Λi
∑
j 6=i

b(φj)αj
]
Hi + Λ̄i

∑
j 6=i

a(φj)
]
,

b∗i = Λ−1i
[
(1− λi) + Λi

∑
j 6=i

b(φj)αj
]
Ki.

Let ū−i denote
(∑

j 6=i uj
)
/(n − 1). Then ui − ρiū =(

1− ρi
n

)
ui − ρi

(
1− 1

n

)
ū−i. Now observe that

J̄i(ḡi, ḡ−i)− J̄i(g∗i , ḡ−i)
= Eω,φi [(1− λi)

(
(θ − a(φi)y0 − b(φi)yi)2

)
]

− (θ − a∗i y0 − b∗i yi)2

+ Eω,φi

[
λi

(((
1− ρi

n

)
(a(φi)y0 + b(φi)yi)− ρi(n−1)

n ū−i
)2

−
((

1− ρi
n

)
(a∗i y0 + b∗i yi)−

ρi(n−1)
n ū−i

)2)]
.

(26)

Consider now the first term of (26):

Eω,φi

[
(1− λi)

(
(θ − a(φi)y0 − b(φi)yi)2

)]
− (θ − a∗i y0 − b∗i yi)2

= Eω,φi

[
(1− λi)(2θ − (a(φi) + a∗i )y0 − (b(φi) + b∗i )yi)

×
(
(a(φi)− a∗i )y0 + (b(φi)− b∗i )yi

)]
≤ k1Eω,φi [|a(φi)− a∗i |] + k2Eω,φi [|b(φi)− b∗i |] (27)

where k1 and k2 are constants. In the last inequality we
used the fact that |a(φi) + a∗i | and |b(φi) + b∗i | are bounded.
Similarly, we can bound the second term of (26) as

Eω,φi

[
λi

(((
1− ρi

n

)
(a(φi)y0 + b(φi)yi)− ρi

(
1− 1

n

)
ū−i
)2

−
((

1− ρi
n

)
(a∗i y0 + b∗i yi)− ρi

(
1− 1

n

)
ū−i
)2)]

≤ k3Eω,φi
[|a(φi)− a∗i |] + k4Eω,φi

[|b(φi)− b∗i |] (28)

where k3 and k4 are constants.
Now, observe that Λi = (1 − λi) + λi(1 − ρi/n)2 ∈ 1 +

O(1/n). Thus, Λ−1i = 1 +O(1/n). Thus,

b∗i ∈
[
(1− λi) + λi

ρi
n

(
1− ρi

n

) ∑
j 6=i

b(φj)αj
]
Ki +O

(
1
n

)
.

∈
[
(1− λi) + λi

ρi
n−1

∑
j 6=i

b(φj)αj
]
Ki︸ ︷︷ ︸

=:b̂i

+O
(
1
n

)
(29)

Since b(φj)αj ∈ R, from [22, Theorem 1], we have that

Eω,φi

[∣∣∣∣ 1

n− 1

∑
j 6=i

b(φj)αj − M̄
∣∣∣∣] ≤ k5√

n− 1
,

where k5 is a constant which depends on the support of the
random variables. With b(φi) and b̂i defined in (20) and (29),
we have

Eω,φi
[|b(φi)− b̂i|] = Eω,φi

[k5λiρiKi√
n− 1

]
∈ O

(
1√
n

)
. (30)

Substituting (30) in (29), we get that

Eω,φi
[|b(φi)− b∗i |] ∈ O

(
1√
n

)
. (31)

By a similar argument, we can show that

Eω,φi
[|a(φi)− a∗i |] ∈ O

(
1√
n

)
. (32)

Substituting (31) and (32) in (26), we get that

J̄i(ḡi, ḡ−i)− J̄i(g∗i , ḡ−i) ∈ O
(

1√
n

)
,

Thus, the mean-field strategy is an ε-BNE.
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