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Abstract— Dynamic games (also called stochastic games or
Markov games) are an important class of games for modeling
multi-agent interactions. In many situations, the dynamics and
reward functions of the game are learnt from past data and are
therefore approximate. In this paper, we study the robustness
of Markov perfect equilibrium to approximations in reward
and transition functions. Using approximation results from
Markov decision processes, we show that the Markov perfect
equilibrium of an approximate (or perturbed) game is always
an approximate Markov perfect equilibrium of the original
game. We provide explicit bounds on the approximation error
in terms of three quantities: (i) the error in approximating the
reward functions, (ii) the error in approximating the transition
function, and (iii) a property of the value function of the MPE
of the approximate game. The second and third quantities
depend on the choice of metric on probability spaces. We also
present coarser upper bounds which do not depend on the value
function but only depend on the properties of the reward and
transition functions of the approximate game. We illustrate the
results via a numerical example.

I. INTRODUCTION

Dynamic games (also called stochastic games or Markov
games) are a commonly used framework to model strategic
interaction between multiple players interacting in a dynamic
environment. Examples include applications in industrial or-
ganization, finance, political economics, and many others [1].
Starting with the seminal work of [2], several variations of
dynamic games have been considered in the literature [3].

In a dynamic game, the payoffs of players at any time
not only depends on their current joint action profile but
also on the current “state of the system”. Furthermore, the
state of the system evolves in a controlled Markov manner
conditioned on the current action profile of the players. It is
typically assumed that the state of the system and the action
profile of all players is publicly monitored by all players.
Attention is typically restricted to a refinement of subgame
perfect equilibria known as Markov perfect equilibria (MPE),
where all players play a Markov strategy (i.e., choose their
actions as a (possibly randomized) function of the current
state).

Games can also be classified based on the sum of per-
step payoffs of players as zero-sum or general-sum games.
The nature of results in these two cases are different as are
the tools used to prove them. The differences stem from
the fact that the best response mappings (called the Shapley
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operator) for two-player zero-sum games is a contraction [2].
Therefore, zero-sum games have a unique value (i.e., all equi-
libria in zero-sum games have the same value). Moreover, the
MPE (also called minimax equilibrium in the zero-sum case)
can be computed via recursive operations of the Shapley
operator [2], [4]. In contrast, the best response mapping for
general-sum games is not a contraction. Therefore, the exis-
tence of MPE needs to be proved using variations of Kaku-
tani’s fixed point theorem [5], [6]. Consequently, different
MPEs do not have the same value, which makes it difficult
to compute MPE. Various algorithms have been proposed
to compute MPE, including non-linear programming [7] and
homotopy methods [8], [9].

In many situations, the dynamics and reward functions
of the game are learnt from past data and are therefore
approximate. In this paper, we study the robustness of MPE
to the approximations in reward and transition functions.
Such robustness is well understood for Markov decision pro-
cesses (see [10] and follow-up work) and zero-sum dynamic
games [11], [12]. In this paper, we address the question of
robustness for general-sum dynamic games. In particular, we
show that if a dynamic game is approximated by another
game such that the reward functions and transitions of the
approximate game are close to those of the original game (in
an appropriate sense), then the MPE of the approximate game
is an approximate MPE of the original game. We quantify
the exact relationship between the degree of approximation
of the games and the approximation error in the MPE.
These results are useful for developing numerical methods
for dynamic games with continuous or large state and/or
action spaces.

Our notion of robustness is different from that of robust
control [13] and robust Markov perfect equilibrium [14],
both of which are Markov decision processes with uncertain
dynamics and are treated as zero-sum games where nature
acts as an adversary and picks the worst-case realization of
the transition dynamics.

Our notion of robustness is similar in spirit to [15] (also
see [16]), which shows that almost all dynamic games
have a finite number of MPEs and these equilibria can
be approximated by equilibria of nearby games. The result
of [15] is stronger than ours because we only show that
equilibria of nearby games are approximate equilibria of the
original game but we do not establish that they are also close
to the equilibria of the original game. However, the results
of [15] rely on continuity arguments and do not explicitly
characterize bounds on the size of the neighborhood. In
contrast, for any ε perturbation in payoffs and δ perturbation



in dynamics, we explicitly characterize an α such that the
MPE of the perturbed game is an α-MPE of the original
game.

Perhaps the result most similar to ours is [17], who
consider a more general model and allow the approximate
game to have a different state and action space than the
original game. Their main result is to show that any ε1-MPE
of the approximate game is an ε2-MPE of the original game
and an explicit relationship between ε1 and ε2 is established.
Our results are similar in spirit but the specific details are
different.
Notation. We use R to denote the set of real numbers, P(·)
to denote the probability of an event, and E[·] to denote the
expectation of a random variable.

We use calligraphic letters (e.g., S , A, etc.) to denote
sets, uppercase letters (e.g., S, A, etc.) to denote random
variables and lowercase letters (e.g., s, a, etc.) to denote
their realization. Superscripts index players and subscripts
index time. For example, ait denotes the action of player i at
time t. For sequence of variables {st}t≥1, we use the short
hand notation s1:t to denote the sequence (s1, . . . , st).

Given a function f : S → R, we use span(f) to denote
the span seminorm of f , i.e., span(f) = sups∈S f(s) −
infs∈S f(s). Given a metric space (S, d) and a function
f : S → R, we use Lip(f) to denote the Lipschitz constant
of f , i.e.,

Lip(f) = sup
s,s′∈S

|f(s)− f(s′)|
d(s, s′)

.

II. SYSTEM MODEL AND MAIN RESULT

For ease of exposition, we restrict the discussion in this
paper to models with finite state and action spaces. The
results extend to models with continuous state and action
spaces under standard technical assumptions on the existence
of equilibria in that setting.

A. Dynamic games

An infinite horizon dynamic game (also called
stochastic game or Markov game) is a tuple
〈N ,S, (Ai)i∈N ,P, (ri)i∈N , γ〉 where:
• N is the (finite) set of players.
• S is the (finite) set of possible states of the game. We

use St ∈ S to denote the state of the game at time t.
• (Ai)i∈N is the (finite) set of actions available to player i

at each time. we also use A =
∏
i∈N Ai to denote the

set of actions of all players. We use At = (Ait)i∈N to
denote the action profile of all players at time t. Given
an action profile At = (Ait)i∈N and a player j ∈ N ,
we use the notation A−jt = (Ait)i∈N\{j} to denote the
action profile of all players except j.

• P : S × A → ∆(S) is the controlled transition
probability of the state of the game. In particular, at any
time t, given a realization s1:t+1 of S1:t+1 and choice
of action profile a1:t of A1:t, we have

P(St+1 = st+1 | S1:t = s1:t, A1:t = a1:t)

= P(st+1 | st, at).

• ri : S×A → R denotes the per-step reward of player i.
• γ ∈ (0, 1) is the discount factor.
We assume that all players have perfect monitoring. At

time t, all players observe the current state St and simulta-
neously choose their respective actions. At the end of time
period t, all players observe all the actions, and the state of
the game evolves according to the transition kernel P.

Following [2], we assume that each player chooses its
action according to a time homogeneous Markov strategy.
Let Πi = {πi : S → ∆(Ai)} denote the set of all
Markov strategies for player i. Given a strategy profile
π = (πi)i∈N , where πi ∈ Πi, and an initial state s0, the
expected discounted total reward of player i is given by:

V i(πi,π−i)(s0)=(1−γ)E(πi,π−i)

[ ∞∑
t=0

γtri(St, At)

∣∣∣∣∣S0 = s0

]
,

(1)
where the expectation is with respect to the joint measure on
all the system variables induced by the choice of the strategy
profile of all players.

There are two solution concepts commonly used for dy-
namic games, which we state below.

Definition 1 (Markov Perfect Equilibrium) A Markov
strategy profile π = (πi)i∈N , where πi ∈ Πi, is called a
Markov perfect equilibrium (MPE) if for every initial state
s ∈ S, and every player i ∈ N ,

V i(πi,π−i)(s) ≥ V
i
(π̃i,π−i)(s), ∀π̃i ∈ Πi. (2)

A Markov perfect equilibrium can be viewed as a refine-
ment of subgame perfect equilibrium where all players play
Markov strategies. For games with finite state and action
spaces, a Markov perfect equilibrium always exists [5].

Definition 2 (Approximate Markov Perfect Equilibrium)
Given approximation level α = (αi)i∈N , where αi are
positive constants, a strategy profile π = (πi)i∈N , where
πi ∈ Πi, is called an α-approximate Markov perfect
equilibrium (α-MPE) if for every initial state s ∈ S , and
every player i ∈ N ,

V i(πi,π−i)(s) ≥ V
i
(π̃i,π−i)(s)− α

i, ∀π̃i ∈ Πi. (3)

B. Integral probability metrics
Our results rely of a class of metrics on probability spaces

known as integral probability metrics (IPMs) [18].

Definition 3 Let (X ,G ) be a measurable space and F de-
note a class of uniformly bounded measurable functions on
(X ,G ). The integral probability metric (IPM) between two
probability distributions µ, ν ∈ ∆(X ) with respect to the
function class F is defined as

dF(µ, ν) := sup
f∈F

∣∣∣∣∫
X
fdµ−

∫
X
fdν

∣∣∣∣.
Two specific forms of IPMs are used in this paper:
1) Total variation distance: If F is chosen as FTV :=
{f : span(f) ≤ 1}, then dF is the total variation
distance.



2) Wasserstein distance: If X is a metric space and F
is chosen as FW := {f : Lip(f) ≤ 1} (where the
Lipschitz constant is computed with respect to the
metric on X ), then dF is the Wasserstein distance.

Our approximation results are stated in terms of the
Minkowski functional of a function f (not necessarily in
F) with respect to a function class F, which is defined as
follows:

ρF(f) := inf{ρ ∈ R>0 : ρ−1f ∈ F}. (4)

A key implication of this definition is that for any function
f , ∣∣∣∣∫

X
fdµ−

∫
X
fdν

∣∣∣∣ ≤ ρF(f) · dF(µ, ν), (5)

The Minkowski functional of the two IPMs considered in
this paper are as follows:

1) Total variation distance: If F is chosen as FTV,∣∣∫
X fdµ−

∫
X fdν

∣∣ ≤ span(f)dF(µ, ν). Thus, for total
variation, ρFTV(f) = span(f).

2) Wasserstein distance: If F is chosen as FW,∣∣∫
X fdµ−

∫
X fdν

∣∣ ≤ Lip(f) · dF(µ, ν). Thus, for the
Wasserstein distance, ρFW(f) = Lip(f).

C. Approximate game

Definition 4 Given a function class F and positive constants
(ε, δ), a game Ĝ = 〈N ,S, (Ai)i∈N , P̂, (r̂i)i∈N , γ〉
is an (ε, δ)-approximation of the game G =
〈N ,S, (Ai)i∈N ,P, (ri)i∈N , γ〉 if the following conditions
are satisfied:

1) Reward approximation: For all i ∈ N , s ∈ S and
a ∈ A, we have |ri(s, a)− r̂i(s, a)| ≤ ε.

2) Transition approximation: For all s ∈ S and a ∈ A,
we have dF(P(· | s, a), P̂(· | s, a)) ≤ δ.

Our main result is the following.

Theorem 1 If game Ĝ is an (ε, δ)-approximation of game
G and π̂ is an MPE of Ĝ , then π̂ is also an α-MPE of G ,
where α = (αi)i∈N can be bounded as

αi ≤ 2

(
ε+

γδρF(V̂ i(π̂i,π̂−i))

1− γ

)
. (6)

See Sec. IV for the proof.

Remark 1 The approximation bound (6) on αi depends
on the expected discounted payoff profile of strategy π̂ in
game Ĝ . The only information needed about the original
game G are the modeling errors (ε, δ). If the approximate
game was estimated using sampling methods, then (ε, δ)
can be computed in terms of the number of samples using
concentration of measure arguments.

Next, we present easier to compute, but looser upper
bounds on αi.

Corollary 1 When F = FTV, then

αi ≤ 2

(
ε+

γδ span(r̂i)

(1− γ)

)
. (7)

The next bound holds for games where the transition
matrix and reward function are Lipschitz.

Definition 5 Suppose the state space S is a metric space
with metric d. Then, a game G is said to be (Lr, LP)-
Lipschitz if for any i ∈ N , s1, s2 ∈ S and a ∈ A,∣∣ri(s1, a)− ri(s2, a)

∣∣ ≤ Lrd(s1, s2),

dFW(P(·|s1, a),P(·|s2, a)) ≤ LPd(s1, s2).

Corollary 2 When F = FW and Ĝ is (Lr, LP)-Lipschitz
with γLP < 1, then

αi ≤ 2

(
ε+

γLrδ

(1− γLP)

)
. (8)

Remark 2 Although we have only elaborated on two spe-
cific choices of IPMs (total variation and Wasserstein dis-
tances), the result of Theorem 1 is applicable for any IPM.
Many other IPMs have been considered in the literature
including Kolmogorov distance, bounded Lipschitz metric,
and maximum mean discrepancy. See, for example, [18],
[19]. The choice of the metric often depends on the specific
properties of the model.

D. An illustrative example

Consider a setting where N = {1, 2}, S = {1, 2, 3},
A1 = A2 = {1, 2}, and γ = 0.9. We consider
two games: original game G and approximate game Ĝ
which differ in their reward functions and transition ma-
trices. We describe the transition matrices as {P(a)}a∈A,
where P(a) = [P(s′ | s, a)]s,s′∈S and describe the re-
ward functions as {r(s)}s∈S where r(s) is the bi-matrix
[(r1(s, (a1, a2)), r2(s, (a1, a2)))](a1,a2)∈A.

For the original game G , we have

r(1) =
[
(1.0,0.4) (0.7,1.0)
(0.3,1.0) (0.8,0.7)

]
, r(2) =

[
(0.6,0.7) (0.7,0.6)
(0.3,0.8) (0.2,0.2)

]
,

r(3) =
[
(0.2,0.6) (0.1,0.7)
(0.6,0.7) (0.5,0.3)

]
,

and

P((1, 1)) =
[
0.40 0.40 0.20
0.10 0.50 0.40
0.40 0.10 0.50

]
, P((1, 2)) =

[
0.30 0.40 0.30
0.20 0.20 0.60
0.30 0.35 0.35

]
,

P((2, 1)) =
[
0.25 0.25 0.50
0.30 0.30 0.40
0.20 0.20 0.60

]
, P((2, 2)) =

[
0.10 0.20 0.70
0.20 0.10 0.70
0.40 0.20 0.40

]
.

For the approximate game Ĝ , we have

r̂(1) =
[
(0.99,0.40) (0.69,1.00)
(0.30,0.99) (0.81,0.71)

]
, r̂(2) =

[
(0.59,0.70) (0.69,0.61)
(0.30,0.80) (0.19,0.21)

]
,

r̂(3) =
[
(0.19,0.59) (0.09,0.70)
(0.59,0.69) (0.50,0.30)

]
,

and

P̂((1, 1)) =
[
0.45 0.35 0.20
0.15 0.45 0.40
0.45 0.10 0.45

]
, P̂((1, 2)) =

[
0.25 0.45 0.30
0.25 0.15 0.60
0.35 0.30 0.35

]
,

P̂((2, 1)) =
[
0.25 0.30 0.45
0.35 0.30 0.35
0.25 0.20 0.55

]
, P̂((2, 2)) =

[
0.15 0.15 0.70
0.25 0.10 0.65
0.40 0.25 0.35

]
.

A MPE of Ĝ and the corresponding value functions
(computed by solving a non-linear program as described in



[7]) are as follows:

π̂1 =

0.33 0.67
1.00 0.00
0.00 1.00

 , π̂2 =

0.13 0.87
1.00 0.00
1.00 0.00

 , (9)

V̂ 1
π̂ =

0.6327
0.6170
0.6187

 , V̂ 2
π̂ =

0.7258
0.7148
0.7148

 . (10)

In (9), the strategy is described as πi = [πi(ai|s)]s∈S,ai∈Ai .
For strategy π̂ in (9), we compute the value functions

V iπ̂ for game G as described in Proposition 3 and the value
functions V i(∗,π̂−i) as described in Proposition 4 (see Sec. IV).
These are given by

V 1
π̂ =

0.6341
0.6192
0.6209

 , V 2
π̂ =

0.7252
0.7142
0.7154

 , (11)

V 1
(∗,π̂2) =

0.6394
0.6222
0.6241

 , V 2
(π̂1,∗) =

0.7280
0.7158
0.7171

 . (12)

Note that

α1
∗ = ‖V 1

(∗,π̂2) − V
1
π̂ ‖∞ = 0.005300, (13a)

α2
∗ = ‖V 2

(π̂1,∗) − V
2
π̂ ‖∞ = 0.002785. (13b)

Thus, π̂ is a (0.005300, 0.002785)-MPE of G .
Now, we compare α∗ with the bounds that we obtain using

Theorem 1.
1) We first consider the case when F = FTV. Note that

max
a∈A

max
s∈S

dFTV(P(·|s, a), P̂(·|s, a)) = 0.05,

and

max
a∈A

max
s∈S
|r(s, a)− r̂(s, a)| = 0.01.

Thus when F = FTV, Ĝ is a (0.01, 0.05)-
approximation of game G . Also note that span(V̂ 1

π̂ ) =
0.015684 and span(V̂ 2

π̂ ) = 0.010990. Then, from
Theorem 1, we have that

α ≤ 2× 0.01 + 2× 0.9× 0.05

[
0.015684
0.010990

]
=

[
0.0341
0.0299

]
.

Note that the above is an upper bound of α∗ obtained
in (13).

2) Now we equip the state space S with a metric d where
d(s, s′) = |s−s′| and consider the case F = FW. Note
that

max
a∈A

max
s∈S

dFW(P(·|s, a), P̂(·|s, a)) = 0.10.

Thus when F = FW, Ĝ is a (0.01, 0.10)-approximation
of game G . Also note that Lip(V̂ 1

π̂ ) = 0.015684 and
Lip(V̂ 2

π̂ ) = 0.010990. Then, from Theorem 1, we have
that

α ≤ 2× 0.01 + 2× 0.9× 0.10

[
0.015684
0.010990

]
=

[
0.0482
0.0398

]
.

Note that the above is an upper bound of α∗ obtained
in (13).

The above example shows that even when (ε, δ) are
significant, the bound of Theorem 1 is loose by only a small
multiplicative factor of 6–15.

III. PRELIMINARIES ON MDPS

A. MDP, Bellman Operators, and Dynamic Programming

A Markov Decision Process (MDP) is a tuple
〈S,A,P, r, γ〉 where
• S is the (finite) set of states of the environment. The

state at time t is denoted by St.
• A is the (finite) set of actions available to the agent.

The action at time t is denoted by At.
• P : S × A → ∆(S) is the controlled transition

probability. For any realization s1:t+1 of S1:t+1 and
choice a1:t of A1:t, we have

P(St+1 =st+1|S1:t=s1:t, A1:t=a1:t)=P(st+1|st, at).

• r : S ×A → R is the per-step reward function.
• γ ∈ (0, 1) is the discount factor.

It is assumed that the agent observes the state St and chooses
the action At according to a Markov strategy π : S → ∆(A).
The performance of a Markov strategy π starting from initial
state s0 ∈ S is given by:

Vπ(s0) = (1− γ)Eπ

[ ∞∑
t=0

γtr(St, At)

∣∣∣∣ S0 = s0

]
, (14)

where the expectation is with respect to the joint measure
on the system variables induced by the choice of strategy π.
A strategy π is called optimal if for any other Markov
strategy π̃, we have

Vπ(s) ≥ Vπ̃(s), ∀s ∈ S. (15)

In addition, given a positive constant α, a strategy π is called
α-optimal if

Vπ(s) ≥ Vπ̃(s)− α, ∀s ∈ S. (16)

Given an MDP M = 〈S,A,P, r, γ〉 and a Markov
strategy π, define the Bellman operators Bπ : R|S| → R|S|

and B∗ : R|S| → R|S| as follows: for any v ∈ R|S| and
s ∈ S

[Bπv](s)=
∑
a∈A

π(a|s)
[
(1− γ)r(s, a)+γ

∑
s′∈S

P(s′|s, a)v(s′)
]
,

(17)

[B∗v](s) = max
a∈A

[
(1− γ)r(s, a) + γ

∑
s′∈S

P(s′|s, a)v(s′)
]
.

(18)

Then, optimal and approximately optimal strategies can be
characterized using the Bellman operators as shown below.
These are standard results. See [20], for example.

Proposition 1 A Markov strategy π is optimal if and only if
there exists a value function V ∈ R|S| such that V = BπV
and V = B∗V.



Proposition 2 Given a Markov strategy π, let Vπ be the
unique fixed point of Vπ = BπVπ and let V∗ be the unique
fixed point of V∗ = B∗V∗. Then, the strategy π is α-optimal
if and only if Vπ ≥ V∗ − α.

We now present some basic properties of the value func-
tion which are used later.

Lemma 1 If V is the optimal value function of MDP M,
then

span(V ) ≤ span(r).

PROOF This result follows immediately by observing that
the per-step reward r(St, At) ∈ [min(r),max(r)]. �

We now define the notion of a Lipschitz MDP.

Definition 6 Let d be a metric on the state space S. The
MDP M is said to be (Lr, LP)-Lipschitz if for any s1, s2 ∈
S and a ∈ A, the reward function r and transition kernel P
of M satisfy the following∣∣r(s1, a)− r(s2, a)

∣∣ ≤ Lrd(s1, s2),

dFW(P(·|s1, a),P(·|s2, a)) ≤ LPd(s1, s2).

Lemma 2 If an MDP M is (Lr, LP)-Lipschitz and γLP <
1, and V is the optimal value function of M, then

Lip(V ) ≤ (1− γ)Lr
1− γLP

.

PROOF The result follows from [21, Theorem 4.2]. �

B. Robustness of MDPs to model approximation

Definition 7 Given a function class F and positive constants
(ε, δ), we say that an MDP M̂ = 〈S,A, P̂, r̂, γ〉 is an (ε, δ)-
approximation of the MDPM = 〈S,A,P, r, γ〉 if it satisfies
the following properties:

1) Reward approximation: For all s ∈ S, and a ∈ A,
we have |r(s, a)− r̂(s, a)| ≤ ε.

2) Transition approximation: For all s ∈ S, and a ∈ A,
we have dF(P(·|s, a), P̂(·|s, a)) ≤ δ.

The main approximation result for MDPs relevant for our
analysis is the following.

Theorem 2 Given a function class F and an MDP M =
〈S,A,P, r, γ〉, suppose M̂ = 〈S,A, P̂, r̂, γ〉 is an (ε, δ)-
approximation of M. Let π̂ be the optimal strategy of M̂
and V̂ be the corresponding value function. Then π̂ is an
α-optimal strategy of M with

α ≤ 2
(
ε+

γδρF(V̂ )

(1− γ)

)
. (19)

PROOF The result follows from [19, Theorem 24] applied
to MDPs. Also see, [10, Theorem 4.2]. �

We now present two instances of the result of Theorem 2,
which follow from Lemmas 1 and 2.

Corollary 3 If the function class F in Theorem 2 is FTV,
then

α ≤ 2
(
ε+

γδ span(r̂)

(1− γ)

)
.

Corollary 4 If the function class F in Theorem 2 is FW, and
the approximate MDP M̂ is (Lr, LP)-Lipschitz with γLP <
1, then

α ≤ 2

(
ε+

γδLr
(1− γLP)

)
.

IV. PROOF OF THE MAIN RESULTS

A. Bellman operators and characterization of Markov Per-
fect Equilibrium

Given a Markov strategy profile π = (πi)i∈N , state
s ∈ S, and action profile a = (ai)i∈N ∈ A, we use
the notation π(a|s) =

∏
i∈N π

i(ai|s) and π−i(a−i|s) =∏
j∈N\{i} π

j(aj |s).
Given a player i ∈ N and a Markov strategy profile π =

(πi, π−i), we define two Bellman operators as follows:
1) An operator Bi(πi,π−i) : R|S| → R|S| given as follows:

for any v ∈ R|S| and s ∈ S,

[Bi(πi,π−i)v](s) =
∑
a∈A

π(a|s)
[
(1− γ)ri(s, a)

+ γ
∑
s′∈S

P(s′|s, a)v(s′)
]
.

2) An operator Bi∗,π−i : R|S| → R|S| given as follows:
for any v ∈ R|S| and s ∈ S,

[Bi(∗,π−i)v](s) = max
ai∈Ai

[ ∑
a−i∈A−i

π−i(a−i|s)

×
[
(1− γ)ri(s, a) + γ

∑
s′∈S

P(s′|s, a)v(s′)
]]
.

Now, MPE and approximate MPE can be characterized
using the Bellman operators. These are standard results [3].

Proposition 3 A Markov strategy profile π = (πi)i∈N is an
MPE if and ony if there exist value functions V i ∈ R|S|, i ∈
N , such that for all i ∈ N , V i = Bi(πi,π−i)V

i, and V i =

Bi(∗,π−i)V
i.

Proposition 4 Given a Markov strategy profile π =
(πi)i∈N , for any i ∈ N , let V iπ be the unique fixed point of
V iπ = Bi(πi,π−i)V

i
π and let V i(∗,π−i) be the unique fixed point

of V i(∗,π−i) = Bi(∗,π−i)V
i
(∗,π−i). Then, the strategy profile π

is an α-MPE, α = (αi)i∈N , if and only if for all i ∈ N ,
V iπ ≥ V i(∗,π−i) − α

i.

B. Relationship between games and MDPs

Given a game G = 〈N ,S, (Ai)i∈N ,P, (ri)i∈N , γ〉 and
a Markov strategy π = (πi)i∈N , we can define MDPs
{Mi

π−i}i∈N as follows. For player i ∈ N , MDP Mi
π−i =

〈S,Ai,Piπ−i , riπ−i , γ〉, where the transition matrix Piπ−i :
S ×Ai → ∆(S) is given by

Piπ−i(s′|s, ai) =
∑

a−i∈A−i

π−i(a−i|s)P(s′|s, (ai, a−i)),

(20)



and the reward function riπ−i : S ×Ai → R is given by

riπ−i(s, ai) =
∑

a−i∈A−i

π−i(a−i|s)ri(s, (ai, a−i)). (21)

Note the Bellman operators Bi(πi,π−i) and Bi(∗,π−i) cor-
responding to game G and strategy π are the same as
Bellman operators of MDPMi

π−i . Therefore, by combining
Propositions 1 and 3, we have the following:

Corollary 5 A Markov strategy profile π = (πi)i∈N is an
MPE if and only if for every i ∈ N , the strategy πi is an
optimal strategy for MDP Mi

π−i .

Similarly, by combining Propositions 2 and 4, we have the
following:

Corollary 6 Given approximate levels α = (αi)i∈N , αi ∈
R≥0, a Markov strategy profile π = (πi)i∈N , is an α-MPE if
and only if for every i ∈ N , the strategy πi is an αi-optimal
strategy for MDP Mi

π−i .

C. Relationship between MDPs for a strategy profile

Suppose we are given a game G and its (ε, δ) approxima-
tion Ĝ . Moreover, suppose π̂ = (π̂i)i∈N is an MPE of Ĝ . Let
{M̂i

π̂−i} be the MDPs corresponding to game Ĝ and strategy
π̂. Similarly, let {Mi

π̂−i} be the MDPs corresponding to
game G and strategy π̂. Then, we have the following.

Lemma 3 For any player i ∈ N , MDP M̂i
π̂−i is an (ε, δ)

approximation of MDP Mi
π̂−i .

The proof is omitted due to space constraints.

D. Proof of the Theorem 1

Arbitrarily fix a player i ∈ N . Then, we have the
following.

1) From Cor. 5, since π̂ is an MPE of Ĝ , we have that
the strategy π̂i is optimal for MDP M̂i

π̂−i .
2) From Lemma 3, we know that MDP M̂i

π̂−i is an (ε, δ)
approximation of MDP Mi

π̂−i . Then, by Thm 2, we
get that strategy π̂i is an αi-optimal strategy for MDP
Mi

π̂−i , where αi is given by Thm. 2. (Also see Cor. 3
and 4).

3) Since the above results hold for all i ∈ N , Cor. 6
implies that strategy profile π̂ is an α-MPE of G , where
α = (αi)i∈N and αi is given by Thm. 2.

4) The specific formulas for α follow from Cor. 3 and 4.

V. CONCLUSION

In this paper, we show that MPE are robust to model
approximation. In particular, any MPE for an approximate
or perturbed game is an approximate MPE of the original
game. We provide bounds on the degree of approximation
based on the approximation error in the reward and transition
functions and properties of the value function of the MPE.
We also present coarser upper bounds, which do not depend
of the value function but only depend on the properties of
the reward and transition function of the approximate game.

Finding bounds on approximation error as a function of
model approximation is a critical step in developing sample

complexity bounds of model-based RL algorithms. There-
fore, we believe that the approximation results presented in
this paper can serve as a building block for model-based
MARL. The results are also useful to develop numerical
methods for computing approximate MPEs in games with
continuous or large state and/or action spaces.
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