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Recent Successes of RL

How do we develop a theory for learning with strategic agents?

§ Algorithms based on comprehensive theory

§ Theory restricted almost exclusively to single agent 

environments or models reduced to single agent 

environments

§ Real world – strategic agents:
§ Industrial organization
§ Energy markets 
§ …



System Model: Markov/Stochastic/Dynamic games

§ 𝑛 players

§ Action space: 𝒜 = 𝒜!×…×𝒜"

§ Action profile: 𝐴# = 𝐴#!, … , 𝐴#" ∈ 𝒜

§ Game state: 𝑆# ∈ 𝒮

§ Game dynamics: 𝑆#$!~𝒫 ⋅ |𝑆# , 𝐴#
§ Per-stage reward of player 𝑖: 𝑟%: 𝒮×𝒜 → ℝ

§ Value (i.e. total reward of player 𝑖):

§ 𝑉% 𝑠 = 1 − 𝛾 𝔼 ∑#&'( 𝛾#𝑟% 𝑆# , 𝐴# |𝑆' = 𝑠



Solution Concept

Markov perfect equilibrium (MPE)

§ Refinement of Nash equilibrium, where all players play (time-homogeneous) Markov policies

§ Always exists for finite-state and finite-action games

§ Exists under mild technical conditions, in general

§ Various computational algorithms: non-linear programming, homotopy methods etc.

MPE of general-sum games is qualitatively different from zero-sum games and teams:

§ A dynamic game can have multiple MPEs

§ Different MPEs may have different payoff profiles



Problem Formulation

Learning MPE in games with unknown dynamics

§ Suppose that the game dynamics are unknown

§ … but we have access to a generative model (i.e. a system simulator) or historical data:

§ Can we learn an MPE or an approximate MPE?

Want to characterize

§ Robustness: How robust is an MPE to model approximations?

§ Sample complexity: How many samples do we need to learn an approximate MPE?

§ Regret: How much better could we have done, had we known the model upfront?



Review: Markov perfect equilibrium and approximation

Markov perfect equilibrium (MPE)

A Markov policy profile 𝜋 is a Markov perfect 

equilibrium if for all 𝑖 and 𝑠:

𝑉 )!,)"!
% 𝑠 ≥ 𝑉 +)! )"!

% 𝑠 , ∀ >𝜋%: 𝒮 → Δ 𝒜%

Approximate MPE

Given 𝛼 = 𝛼!, … , 𝛼" , a Markov policy profile 𝜋

is an 𝛼-approximate Markov perfect equilibrium

if for all 𝑖 and 𝑠:

𝑉 )!,)"!
% 𝑠 ≥ 𝑉 +)! )"!

% 𝑠 − 𝛼% , ∀ >𝜋%: 𝒮 → Δ 𝒜%

§ (Time-homogeneous) Markov policy profile 𝜋 = 𝜋!, … , 𝜋" , where 𝜋%: 𝒮 → Δ 𝒜%

§ Value of a Markov profile:         V), 𝑠 = 1 − 𝛾 𝔼) ∑#&'( 𝛾#𝑟% 𝑆# , 𝐴# |𝑆' = 𝑠



Challenges of RL in general-sum dynamic games

Model-based approaches side-step all such challenges

§ The Bellman operator (for single agent RL) and the minimax Bellman operator (for zero-sum 

games) are contractions – thereby providing convergence guarantees for learning algorithms

§ However, the Nash operator is not a contraction (Hu, Wellman 2003). Hence stricter conditions for 

convergence: All Q functions encountered in learning must satisfy one  of the following very strong 

assumptions(Bowling 2000):

§ has a NE where each player receives its maximum payoff

§ has a NE where no player benefits from the deviation of any player.

§ Value-based (critic only) algorithms cannot work! Shown by (Zinkevich, Greenwald, Littman 2006)



Quantifying an Approximate Model

𝑃, 𝑟

True model Approximate model

$𝑃, �̂� Is an MPE of the approximate model an 
approximate MPE of the true model?

𝜺, 𝜹 -approximation of a game

A game D𝒢 = ( G𝑃, �̂�) is an 𝜀, 𝛿 - approximation of game 𝒢 = (𝑃, 𝑟) if for all (𝑠, 𝑎):

𝑟 𝑠, 𝑎 − �̂�(𝑠, 𝑎) ≤ 𝜀 and  𝑑𝔉(𝑃 ⋅ 𝑠, 𝑎 , G𝑃 ⋅ 𝑠, 𝑎)) ≤ 𝛿

Definition depends on the choice of metric on  probability spaces



Robustness of MPE to model approximation

If D𝒢 = ( G𝑃, �̂�) is an 𝜺, 𝜹 -approximation of game 𝒢 = (𝑃, 𝑟) and P𝝅 is an MPE of R𝓖 then P𝝅 is an 𝜶-MPE of 𝓖

Instance dependent approximation bounds

Instance independent approximation bounds

𝛼% ≤ 2 𝜀 + ./#$
!

(!1.)
where   Δ3)

% = 𝑚𝑎𝑥4∈𝒮,7∈𝒜 ∑4∈𝒮 𝑃 𝑠9 𝑠, 𝑎 G𝑉3)
% − G𝑃(𝑠9|𝑠, 𝑎) G𝑉3)

%

When 𝑑𝔉 is the total-variation metric:  𝛼% ≤ 2 𝜀 + .: 4;7"(=̂!)
(!1.)

When 𝑑𝔉 is the Wasserstein metric:  𝛼% ≤ 2 𝜀 + .: >%)
!1. >&

, where 𝐿=, 𝐿? : Lip. constants of 𝑟, 𝑃



Learning with a generative model

How many samples do we need from the generative 
model to ensure that the MPE of the generated game 
is an α-MPE of the true game.

!𝑃 𝑠! 𝑠, 𝑎 =
#𝑁 𝑠!, 𝑠, 𝑎
#𝑁(𝑠, 𝑎)

Generative model
𝑆"

𝐴"
𝑆"#$

Main result

For any 𝛼 > 0, 𝑝 > 0, if we generate 𝑚 ≥ .
!1.

@ @ ABC @ 𝒮 ∏!'(
) 𝒜! " /;
F*

samples, 

then the MPE of the generated model is an 𝛼-MPE of the true model with probability 1 − 𝑝



Some remarks

Proof sketch

§ Robustness proofs: use approximation in MDPs
§ Sample complexity: bound Δ3)+

% = 𝑃 G𝑉3)+ − G𝑃G G𝑉3)+ (
using Hoeffding’s inequality

Tightness of the bounds

§ For MDPs, the bound is loose by a factor of 1/(1 − 𝛾)
§ Tighter bounds for MDPs rely on Bernstein inequality to bound 𝑣𝑎𝑟( G𝑉3)+) (Agarwal et al. 2020, Li et al. 

2020)
§ Similar bounds were adapted to zero-sum games (Zhang et al 2020) but the proof relies on the 

uniqueness of the minmax value.

Open question: How to establish tighter sample complexity bounds for general-sum games?



Conclusion

Model based methods side-step many of the conceptual challenges of learning in games

§ Key technical result: Novel and general characterization of robustness of MPE to model approximations

§ Future directions:

§ How to tighten sample complexity bounds?

§ How do we characterize regret?

§ What do we even mean by regret when there are multiple equilibria?
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