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Recent Successes of RL

» Algorithms based on comprehensive theory

» Theory restricted almost exclusively to single agent
environments or models reduced to single agent
environments

= Real world - strategic agents:

» Industrial organization
= Energy markets

How do we develop a theory for learning with strategic agents?




System Model: Markov/Stochastic/Dynamic games

= nplayers

= Action space: A = (AX ... XA")

= Action profile: 4, = (4}, ...,A}) € A

= Gamestate:S; €S

=  Game dynamics: S; 1 ~P (- |Ss, Ap)

= Per-stage reward of player i:r': SXA — R

= Value (i.e. total reward of player i):

" Vi(s)=(1- V)IE[Z?O:O ytri(St,At)|So = 5]




Solution Concept

Markov perfect equilibrium (MPE)

= Refinement of Nash equilibrium, where all players play (time-homogeneous) Markov policies

= Always exists for finite-state and finite-action games
=  Exists under mild technical conditions, in general

= Various computational algorithms: non-linear programming, homotopy methods etc.

MPE of general-sum games is qualitatively different from zero-sum games and teams:

= A dynamic game can have multiple MPEs

» Different MPEs may have different payoff profiles




Problem Formulation

Learning MPE in games with unknown dynamics

= Suppose that the game dynamics are unknown
= ... but we have access to a generative model (i.e. a system simulator) or historical data:

= Can we learn an MPE or an approximate MPE?

Want to characterize

= Robustness: How robust is an MPE to model approximations?

= Sample complexity: How many samples do we need to learn an approximate MPE?

» Regret: How much better could we have done, had we known the model upfront?




Review: Markov perfect equilibrium and approximation

= (Time-homogeneous) Markov policy profile = = (r?, ..., ™), where n’: § - A(AY)

= Value of a Markov profile: VE(S) = (1 = PEL 220 viri(Se, A |So = s]

Markov perfect equilibrium (MPE) Approximate MPE

A Markov policy profile i is a Markov perfect Given a = (a?, ..., a™), a Markov policy profile
equilibrium if for all i and s: is an a-approximate Markov perfect equilibrium
V(ini’n—i)(s) > V(iﬁi n-i)(S); vith: S - A(AY) if for all i and s:

V(int,n—i)(s) > V(iﬁi iy (8) — @, Vit S - A(A')




Challenges of RL in general-sum dynamic games

= The Bellman operator (for single agent RL) and the minimax Bellman operator (for zero-sum
games) are contractions - thereby providing convergence guarantees for learning algorithms
= However, the Nash operator is not a contraction (Hu, Wellman 2003). Hence stricter conditions for
convergence: All Q functions encountered in learning must satisfy one of the following very strong
assumptions(Bowling 2000):
= has a NE where each player receives its maximum payoff
= has a NE where no player benefits from the deviation of any player.

= Value-based (critic only) algorithms cannot work! Shown by (Zinkevich, Greenwald, Littman 2006)

Model-based approaches side-step all such challenges




Quantifying an Approximate Model

True model Approximate model

Is an MPE of the approximate model an
approximate MPE of the true model?

(g, 8)-approximation of a game

A game G = (P,7) isan (g, §) - approximation of game G = (P, 1) if for all (s, a):
lr(s,a) —#(s,a)| < & and dz(P(-Is,a),P(|s,a)) <6

\ Definition depends on the choice of metric on probability spaces




Robustness of MPE to model approximation

If G = (P,#) is an (&, §)-approximation of game G = (P, r) and 7 is an MPE of G then 7 is an a-MPE of G

Instance approximation bounds

l

at <2 (e +( _")> where AL = maxsegaeddzseg[P(s s, a)VL — P(s'|s, )V ]|

Instance approximation bounds

When dy is the total-variation metric: a' < 2 (g 4 Yo span() Sp“"(fl))
1-v)

When dg is the Wasserstein metric: at <2 (e + % )r) ) where L., Lp : Lip. constants of r, P
=Y)Lp




Learning with a generative model

How many samples do we need from the generative
Generative model Sii1 model to ensure that the MPE of the generated game
is an a-MPE of the true game.

#N(s',s,a)
#N(s,a)

P(s'|s,a) =

2 n i
Forany a > 0,p > 0, if we generate m > [( 14 ) 2 log(2I|(ITi4|A")n) /P

1-y a?
then the MPE of the generated model is an a-MPE of the true model with probability 1 — p

] samples,




Some remarks

= Robustness proofs: use approximation in MDPs
= Sample complexity: bound A, = ||PVz, — BnVz, ||  using Hoeffding's inequality

Tightness of the bounds

= For MDPs, the bound is loose by a factor of 1/(1 — y)
= Tighter bounds for MDPs rely on Bernstein inequality to bound var(?ﬁm) (Agarwal et al. 2020, Li et al.

2020)
= Similar bounds were adapted to zero-sum games (Zhang et al 2020) but the proof relies on the

uniqueness of the minmax value.

Open question: How to establish tighter sample complexity bounds for general-sum games?




Conclusion

Model based methods side-step many of the conceptual challenges of learning in games

= Key technical result: Novel and general characterization of robustness of MPE to model approximations
» Future directions:

»= How to tighten sample complexity bounds?

» How do we characterize regret?

» What do we even mean by regret when there are multiple equilibria?
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