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Abstract—In this paper a sequential team form for dynamic
teams is defined. A team form captures the properties of teams
that only depend on the independence relation between the system
variables but do not depend on the exact functional form of these
relationships or on the state space of the variables. A notion of
simplifying team forms is presented. We represent team forms
using a directed acyclic factor graph and present a graphical
model algorithm to simplify the team form.

I. INTRODUCTION

A. Motivation

Qualitative properties of optimal control laws play an

important role in stochastic control. Such properties allow

us to restrict attention to only a subclass of control laws,

thereby reducing the solution complexity. Such properties are

also called “structural results”. They have two distinct flavors,

which we will call structural results of the first and second

kind.

The first kind of structural results do not depend on the

specifics of the state spaces, the underlying probability measure,

and the cost function. For example, in MDPs (Markov decision

processes) without loss of optimality we can choose control

actions based on the current state of the process; in POMDPs

(partially observable Markov decision processes) without loss

of optimality we can choose control actions based on the

information state (also called the belief state) of the process.

These structural results hold under mild assumptions on the

underlying model. The nature of the process (discrete or

continuous valued), the specific form of the probability measure

(uniform, binomial, Gaussian, etc.), and the specific properties

of the cost function (concave, convex, monotone, etc.) are

immaterial. These results only depend on the process being

control Markov and the total cost being additive.

The second kind of structural results depend on the specifics

of the state space, the underlying probability measure, and the

cost function. For example, in LQG (linear quadratic Gaussian)

systems (i.e., systems with linear dynamics, quadratic cost,

Gaussian random variables and perfect recall at the controller)

without loss of optimality we can choose the control action

to be an affine function of the estimate of the state. If one of

the assumptions of the model is relaxed, the result ceases to

be true. Similar results exist in queuing theory which are only

true when the holding cost is linear in the queue size.

Both kinds of structural results are well studied for central-

ized stochastic control systems. However, structural results of

centralized systems break down in decentralized systems; For

decentralized systems, structural results are known for only a

few specific models [1]–[11]. These results are proved on a

case-by-case basis. No general framework to study structural

results of decentralized control systems exist. In this paper, we

present one such framework to derive structural results of the

first kind.

B. Literature Overview

In this paper, we restrict attention to sequential teams. Teams

are decentralized control systems in which all agents have

the same objective (in contrast to games and multi-objective

systems). In sequential teams, the order in which the agents

act does not depend on the actions of nature or other agents.

We briefly overview the different models for sequential teams

that have appeared in the literature.

Perhaps the most general model for decentralized control

systems is Witsenhausen’s intrinsic model [12] (for general non-

sequential multi-objective systems) and [13] (when restricted to

sequential teams). This model is extremely useful in resolving

the conceptual issues related with decentralized control systems.

However, this model does not include explicit observations, so

it is of limited value in establishing structural results.

A second class of models are the sequential team model and

the standard form considered in [14]. These models are equiv-

alent to the intrinsic model [12] and were used to show that

any sequential team problem can be sequentially decomposed

into nested subproblems. However, like the intrinsic model,

these models do not include explicit observations, so they are

of limited value in establishing structural results.

A third class of models is the model considered in [15]

which is also equivalent to the intrinsic model. This model

was used to show that any dynamic team (where the actions

of one agent affects the observations of others) can be

reduced to a static team (where the actions of any agent do

not affect the observations of others). This model includes

explicit observations, and as such can be useful in establishing

structural results. We will follow a slight variation of this

model. Our variation allows for a partial order on the agents

(the model in [15] assumed a total order), and expresses the
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joint probability in terms of factorization based on conditional

independences (the model in [15] expressed the joint probability

in terms of a product measure on primitive random variables).

We use graphical models to represent sequential teams.

Various graphical models for sequential teams already exist

in the literature. Witsenhausen [1] used a graphical model

where each node corresponds to a system dynamics function

or a control law. A directed edge from a node f to a node g
indicates that the output of f is an input of g. Ho and Chu [2]

used a directed tree to model partially nested teams. Each

node of the tree corresponds to an agent. A directed edge from

node i to node j indicates that the action of agent i affects

the observation of agent j. Yoshikawa [4] used a directed

multi-graph to represent a sequential team. As in [2], each

node corresponds to an agent. A solid directed edge from node

i to node j indicates that the action of agent i affects the

observation of agent j; a dashed directed edge from node i to

node j indicates that agent j knows all the data observed at

agent i.
None of the above models are appropriate for out purpose.

So, we use directed factor graphs to model sequential teams.

Factor nodes correspond to system dynamics functions and

control functions; variable nodes correspond to system variables.

A directed edge from variable x to factor f indicates that x
is an input to f ; a directed edge from factor f to variable x
indicates that x is an output of f . Such a directed factor graph

allows us to easily reason about the conditional independence

relations betweens the system variables.

C. Contribution

The contributions of this paper are twofold. Firstly, we

present a graphical representation of sequential teams. This

representation is easy to understand, and at the same time,

is general enough to model any finite horizon sequential

team (with unconstrained control laws). Secondly, we present

a methodology to simplify the team using its graphical

representation. This methodology can be automated using

standard algorithms from graphical models.

D. Notation

Given two sets A and B, A × B denotes their Cartesian

product. Given two measurable spaces (X ,X) and (Y,Y),
X⊗Y denotes the product sigma algebra on X × Y . Given

two measures µX on (X ,X) and µY on (Y,Y), µX ⊗ µY

denotes the product measure on (X × Y,X⊗Y).
Given any set M , XM denotes the vector {Xm : m ∈M}

while XM denotes the product space
∏

m∈M Xm and XM

denotes the product σ-algebra
⊗

m∈M Xm.

E. Organization

The rest of this paper is organized as follows. In Section! II

We present a model for sequential teams, define a team form,

and explain what we mean by simplification of a team form.

In Section III, we present some preliminaries on partial orders

and graphical models. In Section IV we show how to represent

a sequential team form as a graphical model. We discuss

completing a team form in Section V and simplifying a team

form in Section VI. We conclude in Section VII.

II. SEQUENTIAL TEAMS AND TEAM FORMS

A. Sequential teams

A sequential team consists of the following.

1) A collection of n system variables, Xk, k ∈ N where

N = {1, . . . , n}.
2) A collection {(Xk,Fk)}k∈N of measurable spaces. The

system variable Xk takes values in (Xk,Fk), k ∈ N .

The σ-algebras Fk, k ∈ N contain all singletons and are

either Borelian or countably generated.

3) A collection {Ik}k∈N of sets such that Ik ⊆ {1, . . . , k−
1}. Ik is the information set for variable Xk.

4) A set A ⊂ N of control agents. For k ∈ A, agent k
chooses the system variable Xk. Xk is the control action

of agent k.

5) The variables XN\A are chosen by nature according to

a collection {pk}k∈N\A of stochastic kernels where pk
is a stochastic kernel from (XIk ,FIk) to (Xk,Fk).

6) A set R ⊂ N . The variables XR are the reward variables.

A sequential team is denoted by the tuple

(N,A,R, {Ik}k∈N , {(Xk,Fk)}k∈N , {pk}k∈N\A). Given

a sequential team, the system designer has to choose control

strategy {gk}k∈A such that gk is a measurable function

from (XIk ,FIk) to (Xk,Fk). The choice of a control strategy

induces a probability measure on XN which is given by

P (dXN ) =
⊗

k∈N\A

pk(dXk|XIk)
⊗

k∈A

δgk(XIk
)(dXk) (1)

The design objective is to choose a control strategy {gk}k∈A

to maximize the expectation of
∑

k∈R Xk where the expecta-

tion is with respect to the induced probability measure given

by (1). The corresponding maximum value of this expectation

is the value of the team.

Remark: The optimal design problem described above

in an unconstrained optimization problem because the control

laws gk can be any measurable function from (XIk ,FIk) to

(Xk,Fk). Consequently, using randomized control laws does

not improve performance [13]. Hence, there is no loss of

generality in the above assumption that all control laws gk are

non-randomized.

B. Sequential team forms

A sequential team form is a tuple (N,A,R, {Ik}k∈N ), that

satisfies the first and third condition of the definition of a

team. A sequential team form along with measurable spaces

{(Xk,Fk)}k∈N and stochastic kernels {pk}k∈N specifies a

sequential team. In the rest of this paper, we will abbreviate

“sequential team form” to “team form”. In general, we can also

have nonsequential team forms.

Two team forms T = (N,A,R, {Ik}k∈N ) and T ′ =
(N ′, A′, R′, {I ′k}k∈N ′) are equivalent if the following condi-

tions hold:

1) N = N ′, A = A′, and R = R′;
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2) for all k ∈ N \A, we have Ik = I ′k;

3) for any choice of measurable spaces {(Xk,Fk)}k∈N and

stochastic kernels {pk}k∈N\A, the values of the teams

corresponding to T and T ′ are the same.

The first two conditions can be verified trivially. There is no

easy way to check the last condition.

A team form T ′ = (N ′, A′, R′, {I ′k}k∈N ′) is a simplification

of a team form T = (N,A,R, {Ik}k∈N ) if T ′ is equivalent

to T and
∑

k∈A

|I ′k| <
∑

k∈A

|Ik| .

T ′ is a strict simplification of T if T ′ is equivalent to T ,

|I ′k| ≤ |Ik| for k ∈ N , and at least one of these inequalities is

strict.

We are interested in the following question. Given a

sequential team form, can we simplify it? In this paper, we

present a methodology to simplify sequential team forms This

methodology is based on ideas from partial orders and graphical

models, so we briefly overview these areas in the next section.

III. PRELIMINARIES

A. Partial orders

A strict partial order ≺ on a set S is a binary relation that

is transitive, irreflexive, and asymmetric. A set with a partial

order on it is called a partially ordered set or a poset.

The reflexive closure � of a partial order ≺ is given by a �
b if and only if a ≺ b or a = b. The relation � is transitive,

reflexive, and antisymmetric. It is also called a non-strict partial

order. A non-strict partial order is total if for all a and b in S,

a � b or b � a.

Let A be a subset of a partially ordered set (S,≺). Then, the

lower set of A, denoted by
←−
A is defined as

←−
A := {b ∈ S : b �

a for some a ∈ A}. By duality, the upper set of A, denoted

by
−→
A is defined as

−→
A := {b ∈ S : a � b for some a ∈ A}.

For singleton sets {a}, we will denote
←−
{a} and

−→
{a} by ←−a

and −→a .

B. Directed graphs

A directed graph G is a tuple (N,E) where N is the set of

nodes and E ⊆ N×N is the set of edges. An edge (u, v) in E
is considered directed from u to v; u is in-neighbor or parent

of v, v a out-neighbor or child of u, and u and v are neighbors.

The set of in-neighbors of v, also called the in-neighborhood

of v, is denoted by N−
G (v); the set of out-neighbors of u, also

called the out-neighborhood of u, is denoted by N+
G (v); the

set of neighbors of u, also called the neighborhood of u, is

denoted by NG(u).
A path is a sequence of nodes such that each node has a

directed edge to the next node in the sequence. The first node

of a path is its start node, the last node is its end node. A

cycle is a path with the same start and end node. A trail is a

sequence of nodes such that each node is a neighbor of the

next node in the sequence.

A directed acyclic graph (DAG) is a directed graph with

no cycles. A DAG G(N,E) gives rise to a partial order ≺G

on its its nodes: for u, v in N , u ≺G v when there exists a

path from u to v. Thus, the induced partial order ≺G is the

transitive closure of the edge set E. The lower set ←−v of a

node v in N is equivalent to the set of all nodes u in N such

that there is a path from u to v. This set is also called the

ancestors of v. In addition, the lower set
←−
A of a subset A of

N is called the ancestral set of A. Similarly, the upper set −→u
of a node u in N is equivalent to the set of all nodes v in N
such that there is a path from u to v. This set is also called

the descendants of u. In addition, the upper set
−→
A of a subset

A of N is called the descendant set of A.

A bipartite directed graph is a directed graph whose nodes

can be divided into two disjoint sets N1 and N2 such that

E ⊆ (N1 ×N2) ∪ (N2 ×N1), that is, every edge has a node

in N1 and another in N2.

C. Graphical model

A graphical model is a graph that captures conditional

independence relation between random variables. In this paper,

we will use a directed acyclic factor graph (DAFG) as a

graphical model. A DAFG G(V, F,E) is an acyclic bipartite

directed graph with two kinds of nodes, variable nodes V and

factor nodes F . Each variable node v in V corresponds to a

random variable Xv. The random variable Xv takes values

in some measurable space (Xv,Fk). Each factor node f in F
corresponds to a stochastic kernel pf from (XN−

G
(f),FN−

G
(f))

to (XN+
G
(f),FN+

G
(f)). The joint probability measure on XV is

given by

P (dXV ) =
⊗

f∈F

pf (dXN
+
G
(f)|XN

−

G
(f)).

Such a joint measure is said to have a recursive factorization

according to the DAFG G. All joint measures that have a

recursive factorization according to a DAFG are denoted by

PG(V,F,E).

Given a joint probability measure P (dXV ) on XV , and sets

A, B, C ⊆ V , XA is independent of XB given XC if

P (XA |XB , XC) = P (XA |XC)

D. Graphical model with deterministic nodes

Traditionally, graphical models capture conditional inde-

pendence relation between random variables that hold for

all probability measures that have recursive factorization

according to a graph. In stochastic control problems, the

control actions are generated using non-randomized functions.

As such, in stochastic control problems, one is interested in

conditional independence relation between random variables

that hold for all probability measures where certain variables

are deterministic functions of their parent variables, while

others are stochastic functions of their parent variables. Such

conditional independence relations can be captured using DAFG

with deterministic nodes.

A DAFG G with deterministic nodes is a tuple (V, F,E,D)
where (V, F,E) is a DAFG and D ⊆ F is the set of deter-

ministic factors. When we draw a DAFG with deterministic
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nodes, we use circles to indicate variable nodes and squares

to indicate factor nodes. Deterministic factors are indicated by

solid squares whilst stochastic factors are indicated by hollow

squares. In the rest of this paper, we will call a DAFG with

deterministic nodes simply as a DAFG.

In a DAFG G(V, F,E,D), each variable v in V corresponds

to a random variable Xv , each stochastic factor node f in F \D
corresponds to a stochastic kernel pf from (XN−

G
(f),FN−

G
(f))

to (XN
+
G
(f),FN

+
G
(f)), and each deterministic node d in D cor-

responds to a measurable function gd from (XN−

G
(f),FN−

G
(f))

to (XN+
G
(f),FN+

G
(f)). The joint probability measure on XV is

given by

P (dXV ) =
⊗

f∈F\D

pf (XN+
G
(f)|XN−

G
(f))

×
⊗

f∈D

δgf (X
N

−

G
(f)

)(dXN+
G
(f)).

Such a joint measure is said to have a deterministic recursive

factorization according to the DAFG G (with deterministic

nodes). All joint measures that have deterministic recursive

factorization according to a DAFG are denoted by PG(V,F,E,D),

or, when there is no ambiguity, simply by PG .

Given a DAFG G(V, F,E,D) and sets A, B, C ⊆ V ,

XA is deterministically irrelevant to XB given XC if XA

is independent to XB given XC for all joint measures P (XV )
in PG . All variable nodes that are deterministically irrelevant

to XA given XC , denoted by R−
G (XA|XC), can be determined

in linear time in the size of the graph using a deterministic

generalization of d-separation called D-separation [17], [18].

E. Observations and functional observations

Given a DAFG G(V, F,E,D), a variable Xv is observed

at a factor node f if v ∈ N−
G (f). A variable Xv is func-

tionally observed at a factor node f if every variable node

in N−
G (N−

G (v)) is either observed or functionally observed

at f . The set of functional observations at a factor node is

denoted by O+
G (f) and equals to the set of variables that

are deterministically irrelevant to XV given XN
−

G
(f), i.e.,

O+
G (f) = R−

G (XV |XN−

G
(f)). A variable v is strict functional

observation at a factor node f , if v is not observed at f
but is functionally observed at f . The set of strict functional

observations at a factor node is denoted by O−
G (f) and equals

to the set of functional observations minus the in-neighborhood,

i.e., O−
G (f) = O+

G (f) \N
−
G (f).

IV. GRAPHICAL MODEL FOR A TEAM FORM

A team form T = (N,A,R, {Ik}k∈N ) can be represented as

a DAFG as follows. Let k0 denote (k, 0) and k1 denote (k, 1).
Now, consider a DAFG with V = N × {0}, F = N × {1},
E = {(k1, k0) : k ∈ N} ∪ {(i0, k1) : k ∈ N, i ∈ Ik}, and

D = A × {1}. Thus, for each system variable Xk, we have

a variable node k0 and a factor node k1 in the graph. The

variable node represents Xk and the factor node represents

the “function”, gk for control actions and pk for others, that

generates the variable node. For each k ∈ N , we add an edge

1 1

1 1

Plant Controller
St At

Fig. 1. A Markov decision process

R1 R2 R3

pf0 pρ1
pf1 pρ2

pf2 pρ3

S1 A1 S2 A2 S3 A3

g1 g2 g3

Fig. 2. The team form of a Markov decision process.

from the factor node k1 to the variable node k0. For i, k ∈ N
such that i ∈ Ik, we add an edge from the variable node i0

to the factor node k1. The factor nodes corresponding to the

control actions are deterministic. This DAFG G = (V, F,E,D)
along with the reward nodes R0 = R × {0} is a graphical

model for the team form T = (N,A,R, {Ik}k∈N ).
We assign a label to each node in the DAFG G. For an

abstract sequential team form, Xk is the label of k0, pk is the

label of k1, k ∈ N \A, and gk is the label of k1, k ∈ A. For

a specific sequential team form, we will use labels that are

natural to the setup. In the remainder of this paper, we will

the index and the label of nodes interchangeably.

Since G is a DAFG, it induces a partial order ≺G on its nodes.

As explained earlier, this partial order ≺G is the transitive

closure on the edge set E. When restricted to V × V , this

partial order ≺G induces a partial order ≺N on XN . Likewise,

when restricted to D × D, the partial order ≺G induces a

partial order ≺A on {gk}k∈A. Thus, for any sequential team

form, there is a partial order on the decision makers. This

is consistent with the result in [13] that a team problem is

sequential if and only if there is a partial order on the decision

makers.

To fix ideas, we consider some examples of sequential teams

and their corresponding graphical model.

Example 1 (Markov decision process): A Markov decision

process, shown in FigurE 1, consists of a plant and a controller.

The state St of the plant evolves according to

St+1 = ft(St, At,Wt), t = 1, . . . , T − 1 (2)

where At is the control action and Wt is plant disturbance. The

process {Wt, t = 1, . . . , T} is an independent process and is

also independent of S1. The controller observes the state of

the plant. It has perfect memory, so it remembers everything

that it has seens and done in the past, and choose a control

action At according to

At = gt(S1, . . . , St, A1, . . . , At−1)
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2 2

2 2

Plant

Controller 1

Controller 2

St

A1
t

A2
t

Fig. 3. A simple two agent team

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

Fig. 4. The team form of a simple two agent team.

At each time a reward Rt = ρt(St, At) is obtained. The

objective is to choose a control strategy (g1, . . . , gT ) so as to

maximize the expected value of
∑T

t=1 Rt.

The above model is a sequential team with n = 3T
variables—T state variables, T action variables, and T reward

varaibles. Instead of denoting these by an index N =
{1, . . . , n}, for ease of understanding we will denote them by

their labels. Thus, the team form corresponding to a Markov

decision process is given as follows.

1) XN = {S1, . . . , ST , A1, . . . , AT , , R1, . . . , RT }. The

control variables are XA = {A1, . . . , AT } and the reward

variables are XR = {R1, . . . , RT }.
2) For Xk = At ∈ XA, XIk = {S1, . . . ,St,

A1, . . . , At−1}; for Xk = Rt ∈ XR, XIk = {Xt, At};
and for Xk ∈ St ∈ XN\(A∪R), XIk = ∅ when t = 1,

and (Xt−1, At−1) otherwise.

This team form can be represented as a factor graph. This

factor graph is shown in Figure 2 for T = 3. pft and pρt
are

the stochastic kernels corresponding to the functions ft and

ρt.

Example 2 (A simple two agent team): Consider a simple

two agent team, shown in Figure 3, that consists of a plant

and two controller. {St, t = 1, . . . , T} denotes the state of the

plant and {Ai
t, t = 1, . . . , T} denotes the control actions of

the controller i, i = 1, 2. The plant is updated according to a

plant function ft,

St+1 = ft(St, A
1
t , A

2
t ,Wt), t = 1, . . . , T − 1 (3)

3 3

3 3

Plant

Controller 1

Controller 2

Shared
Randomness

St

A1
t

A2
t

Zt

Fig. 5. A simple two agent team with shared randomness

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

Fig. 6. The team form of a simple two agent team with common randomness.

where {Wt, t = 1, . . . , T} is a sequence of independent

random variables that are also independent of S1. Each

controller observes the state of the plant and has perfect

memory, so it remembers everything that it has seens and done

in the past. Controller i choose a control action Ai
t according

to

Ai
t = git(S1, . . . , St, A

i
1, . . . , A

i
t−1)

At each time a reward Rt = ρt(St, A
1
t , A

2
t ) is obtained.

The objective is to choose a control strategy (g11 , . . . , g
1
T ;

g21 , . . . , g
2
T ) so as to maximize the expected value of

∑T
t=1 Rt.

The above model is a sequential team with n = 4T
variables—T state variables, 2T action variables, and T reward

varaibles. As in the expample on Markov decision process,

instead of denoting the variables by an index, we denote them

by their labels. Thus, the team form corresponding to this

model is given as follows.

1) XN = {S1, . . . , ST , A
1
1, . . . , A

1
T , A

2
1, . . . , A

2
T ,

R1, . . . , RT }. The control variables are

XA = {A1
1, . . . , A

1
T , A

2
1, . . . , A

2
T } and the reward

variables are XR = {R1, . . . , RT }.
2) For Xk = Ai

t ∈ XA, XIk = {S1, . . . ,St,
Ai

1, . . . , A
i
t−1}; for Xk = Rt ∈ XR, XIk =

{Xt, A
1
t , A

2
t}; and for Xk ∈ St ∈ XN\(A∪R), XIk = ∅

when t = 1, and (Xt−1, A
1
t−1, A

2
t−1) otherwise.

This team form can be represented as a factor graph. This
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4 4

4 4

Source Encoder Receiver
St Yt Ŝt

Fig. 7. A real time communication system

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2

Fig. 8. The team form of a real time communication system.

factor graph is shown in Figure 4 for T = 2. pft and pρt
are

the stochastic kernels corresponding to the functions ft and

ρt.
Example 3 (Team with shared randomness): Consider a

two agent team, shown in Figure 5, which is similar to

Example 2 except that both agents observe a i.i.d. process

{Zt, t = 1, . . . , T} that is independent of {Wt, t = 1, . . . , T}
and S1. We call this process shared randomness. Thus,

controller i chooses a control action Ai
t according to

Ai
t = git(S1, . . . , St, A

i
1, . . . , A

i
t−1, Z1, . . . , Zt) (4)

The plant dynamics, the reward function, and the objective are

the same as in Example 2.

The above model is a sequential team with n = 5T
variables—T state variables, 2T action variables, T reward

variabls, and T shared randomness variables. As before, we de-

note the variables by their label. The team form corresponding

to this model is given as follows.

1) XN = {S1, . . . , ST , A
1
1, . . . , A

1
T , A

2
1, . . . , A

2
T ,

R1, . . . , RT , Z1, . . . , ZT }. The control and the

reward variables are the same as in Example 2.

2) For Xk = Ai
t ∈ XA, XIk = {S1, . . . ,St, A

i
1, . . . , A

i
t−1,

Z1, . . . , Zt}; for Xk = Zt, XIk = ∅; for Xk = Rt and

Xk = St, XIk is the same as in Example 2.

This team form can be represented as a factor graph. This

factor graph is shown in Figure 6 for T = 2. pft and pρt
are

the stochastic kernels corresponding to the functions ft and

ρt; pZt
the probability density function for Zt.

Example 4 (Real-time source coding): Consider a simple

real-time communication system, shown in Figure 7, that

consists of a source, an encoder and a decoder. This system

was originally studied in [19]. {St, t = 1, . . . , T} denotes

the source output; {Yt, t = 1, . . . , T} denotes the encoded

symbols; and {Ŝt, t = 1, . . . , T} denotes the decoder outputs.

The source is a first-order Markov source, so

P (St+1 |S1, . . . , St) = P (St+1 |St) = Qt(St+1|St).

The encoded symbols are generated according to

Yt = ct(S1, . . . , St, Y1, . . . , Yt−1).

The decoder is a finite memory decoder. {Mt, t = 1, . . . , T}
denotes the memory of the decoder. The decoder generates a

decoded symbol according to

Ŝt = gt(Yt,Mt−1),

and then updates its memory according to

Mt = lt(Yt,Mt−1).

At each time a distortion Dt = ρt(St, Ŝt). The ob-

jective is to choose a communication strategy (c1, . . . , cT ;
g1, . . . , gT ; l1, . . . , lT ) so as to minimize the expected value

of
∑T

t=1 Dt.

The above model is a sequential team with n = 5T
variables—T source outputs, T encoded symbols, T memory

contents, T decoded symbols, T distortion variables. As in

previous examples, we denote the variables by their index. The

team form corresponding to this model is given as follows.

1) XN = {S1, . . . , ST , Y1, . . . , YT ,M1, . . . ,MT ,
Ŝ1, . . . , ŜT , D1, . . . , DT }. The control variables

are XA = {Y1, . . . , YT ,M1, . . . ,MT , Ŝ1, . . . , ŜT } and

the reward variables are XR = {D1, . . . , DT }.
2) For Xk = Yt, XIk = {S1, . . . , St, Y1, . . . , Yt−1}; for

Xk = Mt, XIk = {Y1} when t = 1, and {Yt,Mt−1}
otherwise; for Xk = Ŝt, XIk = {Y1} when t = 1, and

{Yt,Mt−1} otherwise; for Xk = Dt, XIk = {St, Ŝt};
and for Xk = St, XIk = ∅ when t = 1, and {St−1}
otherwise.

This team form can be represented as a factor graph. This

factor graph is shown in Figure 8 for T = 3. pρt
is the

stochastic kernels corresponding to the function ρt.

V. COMPLETION OF A TEAM FORM

A team form T = (N,A,R, {Ik}k∈N ) is complete if for

k, l ∈ A, k 6= l, such that Ik ⊂ Il we have Xk ∈ Il.
Equivalently, a team form is complete if its graphical model has

no deterministic factor node with strict functional observations.

Any team form T = (N,A,R, {Ik}k∈N ) can be completed

as follows. Let G = (V, F,E,D) be its corresponding graphical

model. If for all f in D, O−
G (f) = ∅ then T is complete.

Otherwise, pick an f ∈ D such that O−
G (f) 6= ∅. Create a new

graphical model G′ = (V ′, F ′, E′, D′) with V ′ = V , F ′ = F ,

E ′ = E ∪{(v, f) : v ∈ O−
G (f)}, and D′ = D. If G′ is complete

then stop, otherwise repeat the above procedure with G′. Since

the number of vertices (and hence the maximum number of

possible edges) in the graphical model are finite, the above

process, which adds edges to the graph at each step, will always

terminate. The team form T ′ corresponding to the terminal

graphical model is called the completion1 of T .

1This notion of completion of a team form is similar to the notion of strict
expansion of an information structure used in [20].
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The competition of a team is not unique. Depending on the

order in which we complete the graphical model, we may end

up with different completions. Nevertheless, all of them are

equivalent to the original team form.

Proposition 1: All the completions of a team form are

equivalent to it.

Proof: Let T = (N,A,R, {Ik}k∈N ) be a team form and

T ′ = (N ′, A′, R′, {I ′k}k∈N ′) be (one of) its completion. The

procedure for completing a team form adds edges into the

deterministic factors of graphical model corresponding to T .

So, the first two properties of equivalence—(1) N ′ = N ,

A′ = A, R′ = R; and (2) for all k ∈ N \ A, I ′k = Ik—are

satisfied by construction. Thus, we only need to check the third

property. This means that we need to show that for any choice

of measurable spaces {(Xk,Fk)}k∈N and stochastic kernels

{pk}k∈N\A, the values of the teams corresponding to T and

T ′ are the same. To prove this, we show that each step of

the completion process does not change the value of the team.

Such a result will imply that the teams corresponding to the

starting and the terminal teams forms have the same value.

Let T1 = (N,A,R, {I1k}k∈N ) and T2 =
(N,A,R, {I2k}k∈N ) be the team forms corresponding

to two consecutive steps of the completion of T such that

by adding incoming edges to a node (k∗, 1) in the graphical

model of T1 we get the graphical model of T2. By construction,

I1k∗ ⊂ I2k∗ while for all other k ∈ A, k 6= k∗, I1k = I2k .

Consider any strategy {g1k}k∈A for T1. The control law gk
is a measurable function from (XI1

k
,FI1

k
) to (Xk,Fk). Since

I1k∗ ⊂ I2k∗ , the measurable space (XI1
k∗
,FI1

k∗
) is a natural

projection of (XI2
k∗
,FI2

k∗
); for all other k ∈ A, k 6= k∗, the

measurable spaces (XI1
k
,FI1

k
) and (XI2

k
,FI2

k
) are the same.

Therefore, for all k ∈ A, g1k is also a measurable function

from (XI2
k
,FI2

k
) to (Xk,Fk). Hence, any strategy {g1k}k∈A

for T1 is also a valid strategy for T2 and consequently, the

value of T1 is less than or equal to the value of T2.

Next consider a strategy {g2k}k∈A for T2. By construction,

there exists a function F such that XI2
k∗

= F (XI1
k∗
, {g2k}k∈A);

for all k ∈ A, k 6= k∗, I2k = I1k . Now consider a strategy

{g1k}k∈A such that g1k∗(XI1
k∗
) = g2k∗(F (XI1

k∗
, {g2k}k∈A)) and

for all other k ∈ A, k 6= k∗, g1k(·) = g2k(·). Then, the strategies

{g2k}k∈A in T2 and {g1k}k∈A in T2 induce the same joint

measure on XN which is given by (1), and therefore, have the

same performance. Thus, for any strategy of T2, we can find a

strategy in T1 that has the same performance. Consequently,

the value of T2 is less than or equal to the value of T1.

We have shown that the value of T1 should be less than

or equal to as well as greater than or equal to the value of

T2. Hence, the value of T1 and T2 must be the same. This

completes the proof of the third property of equivalence of

team forms.

We now reconsider the examples of Section IV and complete

their team forms.

Example 1 (continued): The team form of a Markov deci-

sion process, which is shown in Figure 2, is complete.

Example 2 (continued): The team form of the simple two

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

(a)

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

(b)

Fig. 9. Two of the completions of the team form of Figure 4

agent team, which is shown in Figure 4, is not complete. All

factor nodes have strict functional opbservations. Depending

on the order in which we proceed, we end up with different

completions. Let G1 denote the team form shown in Figure 6.

Suppose we start with factor node g22 . For this node, O−
G1
(g22) =

{A1
1}. So, we add an edge (A2

1, g
2
2) in G1 and get a new graph

G2. Now, suppose we pick g22 again in G2. Since O−
G2
(g22) =

{A1
2}, we add the edge (A1

2, g
2
2) in G2 to get G3. Next, lets pick

g21 in G3. For this node, O−
G3
(g21) = {A

1
1}. So, we add an edge

(A2
1, g

2
1) in G3 and get a new graph G4, which is complete. G4

is shown in Figure 9(a). The added edges are shown by thick

lines. Had we proceeded by picking g12 , g12 , and g11 , we would

get Figure 9(b) as the completion. Other orderings can result

in different completions.

Example 3 (continued): The team form of the simple two

agent team with common randomness, shown in Figure 6, is

not complete. As in Example 2, All control factor nodes have

strict functional observations. Depending on the order in which

we proceed, we end up with different completions. Since the

process {Zt} is observed by both the control stations, the

completions of this team form are similar to the completions

of the team form of Example 2. One of these completions is

shown in Figure 10.

Example 4 (continued): The team form of the real-time
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pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

Fig. 10. One of the completions of the team form of Figure 6

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2

Fig. 11. One of the completions of the team form of Figure 8

communication system, which is shown in Figure 8, is not

complete. To complete it we can proceed as follows. Since

M1 is a function of Y1, M1 is a strict observation at g1, c2
and c3. So, we add edges (M1, g1), (M1, c2), and (M1, c3) to

obtain a new graph G2. Now, in G2, M2 is a strict observation

at g2 and c3, so we can add the edges (M2, g2) and (M2, c3)
to obtain a new graph G3. The graph G3 is complete and is

shown in Figure 11. (The thick lines show the new edges).

Had we proceeded in a different order, we could have ended

with a complete graph with edges (Ŝ1, l1), (Ŝ2, l2), (Ŝ3, l3),
instead of the edges (M1, g1), (M2, g2) in G3.

VI. SIMPLIFICATION OF SEQUENTIAL TEAM FORM

In this section, we assume that the team form that we want

to simplify is complete. If not, we start with any one of its

completions. The simplification of team form is based on two

ideas.

1) For any control law gk, there is no loss of optimality in

ignoring the subset of available data that is independent

of future rewards (rewards that depend on Xk) given

R1 R2 R3

pf0 pρ1
pf1 pρ2

pf2 pρ3

S1 A1 S2 A2 S3 A3

g1 g2 g3

Fig. 12. Simplification of the team form of Figure 2

XIk and Xk.

2) For any B ⊂ A, we consider a problem with a planner b
that knows the information known to all agents in B and

uses this information to compute the control laws of all

agents in B. This problem with a planner is equivalent to

the original problem. Furthermore, if some information is

irrelevant to the planner then all agents in B can ignore

that information without any loss of optimality.

Due to lack of space, we only present the first simplification

here. The second simplification is presented in the extended

version of this paper [21].

Theorem 1: Let T = (N,A,R, {Ik}k∈N ) be a complete

team form and G = (V, F,E,D) its graphical model. Then,

without loss of optimality, we can choose Xk according

to Xk = gk(XM ) where XM = XIk \
(

R−
G (XR ∩

−→
Xk |

XIk , Xk) ∪ {Xk}
)

.

Proof: Fix the policy g−k of all controllers k′ ∈ A \ k.

Since the σ-fields {Fi}i∈N are either Borelian or countably

generated, the total cost conditioned on the information and

control action of controller k does not depend on gk [22]. So,

we can write

E
(gk,g−k)

{

∑

i∈R

Xi|XIk , Xk

}

= E
g−k

{

∑

i∈R

Xi|XIk , Xk

}

.

Partition the set of reward variables XR into two groups: XC =

XR ∩
−→
Xk and XR\C . Then

E
g−k

{

∑

i∈R

Xi|XIk , Xk

}

= E
g−k

{

∑

i∈C

Xi|XIk , Xk

}

+ Eg−k

{

∑

i∈R\C

Xi|XIk , Xk

}

. (5)

For any i ∈ R \ C, Xk 6≺ Xi, thus P g−k (dXi |XIk , Xk) =
P g−k (dXi |XIk) . Hence, the second term of (5) does not

depend on the choice of Xk. Thus, in order to choose an

optimal gk, we only need to consider the first term of (5). By

definition of deterministic irrelevant nodes, we can write

E
g−k

{

∑

i∈C

Xi

∣

∣

∣

∣

∣

XIk , Xk

}

= E
g−k

{

∑

i∈C

Xi

∣

∣

∣

∣

∣

XM , Xk

}

=: Fk(XM , Xk; g−k)
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g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

Fig. 13. Simplification of the team form of Figure 9(a)

where

XM = XIk \
(

R−
G (XC | XIk , Xk) ∪ {Xk}

)

.

For a fixed g−k, the optimization problem at controller k is

max
gk

E
(gk,g−k)

{

∑

i∈R

Xi

∣

∣

∣

∣

∣

XIk , Xk

}

= max
gk
{Fk(XM , Xk; g−k)}+ E

g−k







∑

i∈R\C

Xi

∣

∣

∣

∣

∣

∣

XIk







.

Thus, controller k has to solve

max
gk

Fk(XM , gk(XM , XIk\M ; g−k).

By the method described in [19, Appendix], for any g−k we

can choose a function ĝk(XM ) that is Fk/FM measurable such

that for any gk

Fk(XM , gk(XM , XIk\M ; g−k) ≤ Fk(XM , ĝk(XM )).

Thus, without loss of optimality, we can choose a control law

of the form

Xk = ĝk(XM )

which proces the result of the theorem.

Theorem 1 implies that in the graphical model, we can drop

the edges

{(i0, k1) : i ∈ R−
G (XR ∩

−→
Xk | XIk , Xk)}.

As stated in Section III-D, deterministic irrelevant nodes can

be determinied using D-separation. Thus, a team form can be

simplified as follows.

Let T = (N,A,R, {Ik}k∈N ) be a team form and G =
(V, F,E,D) be its graphical model. If for all f in D,

R−
G (XR ∩

−→
XN

+
G
(f) | XNG(f)) = XNG(f) then T is simplified

and we are done. Otherwise, pick a f in D such that

XM = R−
G (XR∩

−→
XN+

G
(f) | XNG(f)) ⊂ XNG(f). Create a new

graphical model G′ = (V ′, F ′, E′, D′) with V ′ = V,F ′ = F ,

E ′ = E \ {(x, f) : x ∈ XM}. and D′ = D. If G′ is simplified,

then stop; otherwise, repeat the above procedure with G′. Since

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g11

A1
1

g12

A1
2

g21

A2
1

g22

A2
2

R1

pρ1

R2

pρ2

Fig. 14. Simplification of the team form of Figure 10

the number of edges in the graphical model are finite, the above

process, which removes edges from the graph at each step,

will always terminate. Theorem 1 implies that the team form

T ′ corresponding to the terminal graphical model is equivalent

to T . Thus, T ′ is a simplification of T .

We now reconsider the examples of Section IV and simplify

their team forms.

Example 1 (continued): Let G1 be the team form shown in

Figure 2. Start with factor node g3. The irrelevant nodes for

{R3} given XNG1
(g3) are {S1, A1, S2, A2}. So, remove the

edges (S1, g3), (A1, g3), (S2, g3), (A2, g3) and label the new

graph G2. Now, pick factor node g2 in G2. The irrelevant nodes

for {R2, R3} given XNG2
(g2) are {S1, A1}. So, remove the

edges (S1, g2), (A1, g2) and label the new graph G3. G3 is

shown in Figure 12. No control factor nodes in G3 have any

irrelevant observations. This graphical model corresponds to a

team form where control actions are chosen according to

At = gt(St).

Thus, we have obtained the structural result for MDP [23]

using the above process.

Example 2 (continued): We start with the completion shown

in Figure 9(a). Label the corresponding graphical model be G1.

Start with factor node g22 . The irrelevant nodes for R2 given

XNG1
(g2

2)
are {S1, A

1
1, A

2
1}. So, remove the edges (S1, g

2
2),

(A1
1, g

2
2), and (A2

1, g
2
2) from G1 and label the resulting graph

G2. Now, pick factor node g12 in G2. Remove the edges (S1, g
1
2),

(A1
1, g

1
2), (A2

1, g
1
2), which are the edges from the irrelevant

nodes, from G2 and label the resultant graph G3, which is

shown in Figure 13. In the corresponding team form, control

actions are chosen according to

A1
t = g1t (St), A2

t = g2t (St, A
1
t ).

Example 3 (continued): Proceeding in a manner similar to

Example 2, we obtain a simplified graph shown in Figure 14.

In the corresponding team form, control actions are chosen
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D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2

Fig. 15. Simplification of the team form of Figure 11

according to

A1
t = g1t (St, Z1, . . . , Zt), A2

t = g2t (St, A
1
t , Z1, . . . , Zt).

The above example shows the limitation of Theorem 1. It can

be shown that both control stations can ignore (Z1, . . . , Zt);
but the simplification according to Theorem 1 cannot capture

this. To remove the corresponding edges, we need to look at a

coordinator for a subset of controllers. See [21] for details.

Example 4 (continued): Start with the completion shown in

Figure 11. Pick factor node g2. Edge (M2, g2) can be removed.

Then, pick node g1. Edge (M1, g1) can be removed. Observe

that these two edges were added during the completion step.

Next pick factor node c3. Edges (Y1, c3), (M1, c3), (Ŝ1, c3),
(Y2, c3), (Ŝ2, c3) can be removed. Pick factor c2. Edges (Y1, c2)
and (Ŝ1, c2) can be removed. The resultant graphical model

is shown in Figure 15. Thus, in the corresponding team form,

the quantized symbols are generated according to

Yt = ct(St,Mt−1).

We have obtained the structural results of real-time communi-

cation [19] using the above process.

VII. CONCLUSION

In this paper, we formalized a method for obtaining structural

results for team problems. We defined a team form as a

team where the measurable spaces and stochastic kernels are

unspecified. In this setup, structural results mean that we can

remove some elements from the information sets of controllers

without affecting the value of the team. We modeled a team

form a DAFG (directed acyclic factor graph). In a DAFG,

structural results mean that we can remove some incoming

edge to control factor nodes, without affecting the value of

the corresponding team. Such edges can be identified from the

conditional independence properties between appropriate set of

nodes in the graph. This model can be used as a pedagogical

tool for understanding structural results for sequential teams

as well as a computational tool for deriving such structural

results in an automated manner.
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