
A Graphical Modeling Approach to Simplifying

Sequential Teams

Aditya Mahajan and Sekhar Tatikonda

Department of Electrical Engineering, Yale University, New Haven, CT -06520, USA

{aditya.mahajan,sekhar.tatikonda}@yale.edu

Abstract—A graphical model for sequential teams is presented.
This model is easy to understand, and at the same time, is general
enough to model any finite horizon sequential team with finite
valued system variables and unconstrained decision rules. The
model can also be represented as a directed acyclic factor graph.
This representation makes it easier to visualize and understand
the functional dependencies between different system variables.
It also helps in identifying data that is irrelevant for a decision
maker to take an optimal decision. Such irrelevant data can
be identified using algorithms from graphical models. Thus, the
structural properties of optimal decision makers in this model for
a sequential team can be identified in an automated manner using
the directed acyclic factor graph representation of the sequential
team.

I. INTRODUCTION

In this paper we consider decentralized systems consisting

of multiple decision makes that have a common objective. A

common object implies that the agents cooperate with one

another. Due to this cooperation, such systems are also called

decentralized teams. Within the class of decentralized teams,

we restrict attention to systems that operate in discrete time,

are synchronous (i.e., all decision makers have a common

clock), and are sequential (i.e., the decision makers act in the

same order along all sample paths of the underlying random

variables). Moreover, we assume that only one decision maker

acts at each time and that each decision maker acts once.

Sequential teams are multi-stage decision problems in which

the action of a decision maker constitutes a stage. A natu-

ral solution concept for multi-stage decision problems is to

sequentially decompose the problem into a series of nested

optimization subproblems with one subproblem corresponding

to one stage. This process is called sequential decomposition.

The literature on sequential decomposition of sequential teams

can be broadly classified into three categories: (i) General

information structures: Sequential decomposition for arbitrary

finite horizon sequential teams is considered in [1]. Sequen-

tial decomposition for arbitrary two agent finite and infinite

horizon sequential teams is considered in [2]. (ii) Specific

assumptions on information structures: Sequential decompo-

sition of multi-agent teams under various assumptions on the

underlying information structure of the agents has been consid-

ered in [3]–[10]. (iii) Models arising in specific applications:

Sequential decomposition of the following applications have

been considered: decentralized Wald problem in [11]; real-

time communication in [12]–[16]; networked control system

in [17]; multi access channels in [18]. In many instances of a

sequential decomposition, a critical first step is to find struc-

tural/qualitative properties of optimal decision rules. Normally,

finding structural properties requires ingenuity and application

specification insight into the problem. In this paper, we present

an automated algorithm to derive such structural properties.

There are two types of structural properties: (i) removing

redundant data; and (ii) compressing available data using

sufficient statistics. Structural properties simplify a sequential

team problem in two ways. The first simplification holds

for any sequential team problem. The structural properties

imply that, without any loss of optimality, we can restrict

attention to decision rules that satisfy the structural properties.

This restriction reduces the search space for optimal decision

rules, thereby, reducing the solution complexity. The second

simplification only holds for problems where decision makers

correspond to a fixed number of control stations making

decisions at different times. In such problems, the structural

results may imply that we can restrict attention to decision

rules that have a time-invariant domain. This restriction en-

ables extending a sequential decomposition of a finite horizon

problem to that of an infinite horizon problem. These simplifi-

cations make structural properties desirable. However, finding

structural properties is difficult and typically requires ingenuity

and application specific insight into the problem.

We focus on the first type structural property and identify

conditions under which redundant data can be ignored while

taking a decision. In this paper, we present a method to find

structural properties of arbitrary sequential teams. This method

does not rely on model specific details, rather infers the

structural properties from the functional dependence between

the system variables. This functional dependence is captured

using directed factor graphs, and the structural properties can

be derived using standard algorithms from graphical modeling.

Influence diagrams are an existing graphical modeling

framework that capture the functional dependencies between

system variables in decision problems [19]. However, influence

diagram models assume a classical information structure.

In contrast, the model presented int his paper allows for

a non-classical information structure. Furthermore, influence

diagrams determines structural results and sequential decom-

position in one go. In sequential teams with non-classical

information structure, usually a series of structural results

need to be derived before a sequential decomposition can be

obtained (see [16], [18] for examples.) For that reason, we

believe that it is better to separate the derivation of structural

results from the derivation of a sequential decomposition.

The two main contributions of this paper are: (i) We present

a model of sequential teams that is easy to understand, and at

the same time, is general enough to model any finite horizon

sequential team with finite valued variables and unconstrained

decision rules. (ii) We present a algorithm that derives struc-

tural results for this model. This gives an automated method

to simplify sequential teams.

The rest of this paper is organized as follows. In Section II

we present a model for sequential teams and show how such

a model can be represented as a directed acyclic factor graph.

In Section III we present structural results for the model

of Section II and present a algorithm to determine these

structural results by restructuring the graph corresponding to

the sequential team. We give a few examples in Section IV

and conclude in Section V.

II. MODELLING AND PROBLEM FORMULATION

A. Sequential teams

A sequential team consists of the following components.

• A finite set N , two subsets A and R of N , and a partial

order ≺ on N . The set N indexes system variables, the set

A indexes decision makers (DMs), and the set R indexes

the rewards.

• A collection {Xn, n ∈ N} of finite sets representing state

spaces of system variables Xn. For any subset S of N ,

let XS := (Xn, n ∈ S).
• A collection {In, n ∈ N} of subsets of N such that for

all i ∈ In, i ≺ n. In denotes
∏

i∈In
Xn.

• A collection FN\A = {fn, n ∈ N \ A} of stochastic

kernel kernels, such that fn is a stochastic kernel from

In to Xn, n ∈ N \A. These stochastic kernels represent

the system dynamics.

The design objective is to choose decision functions GA :=
(gn, n ∈ A), where gn is a function from In to Xn, n ∈ A,

so as to maximize E
{
∑

n∈R Xn

}

. The expectation is with

respect to a joint measure PGA on XN which is given by

PGA(XN) =
∏

n∈N\A

fn(Xn|In)
∏

n∈A

1 [Xn = gn(In)] . (1)

B. Some remarks on the model

The sequential team model of [1] with finite system variable

and finite primitive random variables can be reduced to the se-

quential team model defined above. The model of [1] assumes

a total order on all agents. When the system variables and

primitive random variables are finite valued, the σ-algebras

Jt defined in [1] are finite. So, these σ-algebras can be

generated by finite partitions. The atoms of these partitions

can be considered as the data observed by the DMs. This gives

rise to a sequential team model of the type defined above.

The sequential form of the intrinsic model defined in [20]

when finite system and finite primitive random variables can

be reduced to the sequential model defined above. The intrinsic

model is sequential if and only if there is a partial order on

all system variables. When the system variables and primitive

random variables are finite valued, the σ-algebras Jα defined

in [20] are finite. So, as in the model of [1], these σ-algebras

can be generated by a finite partition and the atom of these

partitions can be considered as the data observed by the DMs.

This gives rise to a sequential team model of the type defined

above.

The sequential team problem defined above is an un-

constrained optimization problem where the decision rules

{gn, n ∈ A} can be any function from In to Xn. Hence, using

randomized decision rules will not improve performance [20].

So there is no loss of generality in assuming that all decision

rules are deterministic.

C. A graphical model for decentralized teams

The sequential team defined above can also be modeled as

a labelled directed acyclic factor graph (DAFG). A DAFG is

a bipartite graph with two types of nodes, variable nodes and

factor nodes, that are connected by directed edges. Formally,

a DAFG G is a tuple (V,F , E), where V is the set of variable

nodes, F is the set of factor nodes, and E is the set of directed

edges, which is a subset of (V × F) ∪ (F × V). Each node

has a label {0, 1}; for variable node, a label 1 indicates that

it is a reward node; for factor nodes, a label 1 indicates that

it is a decision rule factor. Moreover, the graph is acyclic, so

E has no directed cycles.

A sequential team can be represented as a DAFG

G(V,F , E). The variable nodes V and the factor nodes F are

both indexed by N . To avoid confusion, we will use a tilde

above the number to indicate the index of a factor node. The

variable nodes with index in R have a label 1, others have a

label 0; the factor nodes with index in A have a label 1, others

have a label 0. The set of edges E is given by {(i, ñ) : i ∈ In,

n ∈ N} ∪ {(i, ñ) : i ∈ In, n ∈ A} ∪ {(ñ, n) : n ∈ N} Thus,

there is a variable node corresponding to each system variable

and a factor node corresponding to each stochastic kernel

and decision rules. These nodes are connected to indicate

the functional dependencies between them. Furthermore, there

is only one incoming edge at each variable node, and only

one outgoing edge from each factor node. When we draw a

DAFG, we use circles to indicate variable nodes and squares

to indicate factor nodes. We indicate reward variables by solid

circles and decision rule factors by solid squares.

We will use some terminology from graphical models. If

there is an edge between node a and node b, then a is said to

be parent of b and b a child of a, and a and b are neighbors.

The set of parents of b is denoted as pa(b), the set of children

of a as ch(a), the set of neighbors of a as ne(a). There is a

path from a to b if there exists nodes a = a0, a1, . . . , ak = b

such that (ai−1, ai) ∈ E , i = 1, . . . , k. There is a trail from

a to b if there exists nodes a = a0, a1, . . . , ak = b such

that either (ai−1, ai) ∈ E or (ai, ai−1) ∈ E , i = 1, . . . , k.

The nodes a such that there is a path from a to b are called

ancestors an(b) of b. The nodes b such that there is a path

from a to b are called descendants de(a) of a.

D. An example

To fix ideas, we consider the simplest sequential team,

namely a Markov decision process (MDP), and show how to

model it by a DAFG. A MDP consists of a plant and a control

station. The control station observes the state of the plant and

takes a control action based on all past plant observations and

all past control actions. At each time an instantaneous reward

that depends on the current state of the plant and the current

control action is received. The control objective is to choose

control laws to maximize the total expected reward.

We consider a MDP that operates for three time steps. First,

we describe a mathematical model for the MDP; then, we

construct a DAFG corresponding to that model.

Let x1, x2, x3 denote the state of the plant, u1, u2, u3

denote the control actions, and r1, r2, r3 denote the rewards.

A partial order ≺ on these variables is given by x1 ≺ u1 ≺
x2 ≺ u2 ≺ x3 ≺ u3, and xi ≺ ri, ui ≺ ri, i = 1, 2, 3.

The plant dynamics are given by stochastic kernels f0(x1),
f1(x2|x1, u1), and f2(x3|x2, u2). The rewards are given by

ρ1(r1|x1, u1), ρ2(r2|x2, u2), and ρ3(r3|x3, u3). The control

station acts at three time instances. Therefore, the system

has three decision makers, DM 1, DM 2, and DM 3. DM i

generates control action ui according to the following rules.

u1 = g1(x1),

u2 = g2(x1, x2, u1),

u3 = g3(x1, x2, x3, u1, u2).

Now, we construct a DAFG corresponding to the above

MDP model. For ease of representation, we will index the

variable and factor nodes by the name of the variable. The

DAFG has 9 variable nodes: x1, x2, x3, u1, u2, u3, r1, r2,

r3, and 9 factor nodes: f0, f1, f2, g1, g2, g3, ρ1, ρ2, ρ3. The

variable nodes r1, r2, r3 are reward nodes, and the factor

nodes g1, g2, g3 are decision rule factors. Directed edges are

added between the nodes to indicate functional dependencies

between the nodes. The resulting DAFG is shown in Fig. 1.

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Fig. 1: A DAFG corresponding to a MDP that operates for

three time steps.

The design objective is to choose decision rules GA, which

are shown by solid squares, to maximize the expected value

of the sum of the reward variables, which are shown by solid

circles.

In this paper, we simplify the design of sequential teams by

transforming the corresponding DAFG. These graph transfor-

mations are based on properties of measures that recursively

factorize with respect to a DAFG. In the next section, we

explain these measures and their properties.

E. Recursive factorization of probability measures

Given a DAFG corresponding to a sequential team, a joint

measure on XN is said to recursively factorize according to the

DAFG G if there exists stochastic kernels F̂N\A = {f̂n, n ∈

N \A} and functions ĜA = {ĝn, n ∈ A} such that

Q(XN) =
∏

n∈N\A

f̂n(ch(ñ)|pa(ñ))
∏

n∈A

1 [ch(ñ) = ĝn(pa(ñ))]

(2)

where the equality holds Q almost surely.

The joint measure PGA on XN , which is given by (1),

is of the form (2). So, any choice of decision rules GA

induces a joint measure PGA on XN that recursively factorizes

according to the DAFG G.

We now define some properties of graphical models which

are invariant for any measure Q that recursively factorizes

according to G. The variables XJ are said to be irrelevant to

XL given XK in G, denoted by XJ ⊥⊥G XL | XK , if for any

probability measure Q that recursively factorizes according to

G
Q(XJ |XK , XL) = Q(XJ |XK)

The set of all variables that are irrelevant to XJ given XK

are called irrelevant variables and denoted by ir(XJ |XK). The

set of variable nodes that are irrelevant to XN given XK are

called nodes functionally determined by XK and denoted by

fd(XK). Thus, fd(XK) = ir(XN |XK).
For any probability Q that recursively factorizes according

to G, the conditional probability Q(XJ |XK) can be expressed

in terms of the marginals of (2). In this ratio of marginals,

some product terms are common that will get cancelled. The

remaining terms indicate the factor nodes that are needed

to compute the conditional probability Q(XJ |XK). These

factor nodes are called requisite factor nodes and denoted

by re(XJ |XK). Furthermore, the subset ob(XJ |XK) of XK

whose values are needed to compute the conditional probabil-

ity Q(XJ |XK) are called observation variables. The notion of

requisite factor nodes is similar to that of requisite probability

nodes defined in [22]. The only difference is that we explicitly

keep track of the factors.

The effective observations for XJ given XK , denoted by

ef(XJ |XK), are the subset of nodes functionally determined

by XK whose parents are requisite factors for XJ given XK .

Formally,

ef(XJ |XK) = {n ∈ fd(XK) : pa(n) ∈ re(XJ |XK)} \XK

All the sets defined for XJ given XK defined above,

ir(XJ |XK), re(XJ |XK), ob(XJ |XK), and ef(XJ |XK), can

be determined using D-separation [23], which is an extension

of d-separation [24] when there are deterministic functions. D-

separation in DAFG can be checked in linear time, either using

a variation of breadth first search [23] or using a variation of

the Bayes Ball algorithm [22]. Therefore, the sets ir(XJ |XK),
re(XJ |XK), ob(XJ |XK), and ef(XJ |XK) can be determined

in linear time.

F. Total order on decision makers

In the result presented in this paper, we need a total order

on all decision makers. In general, there are many total orders

compatible with the partial order ≺. Given any partial order, a

total order compatible with that partial order can be obtained

using topological sort [21], which has a complexity linear in

the number of nodes and edges.

III. STRUCTURAL RESULT

All the data available at a decision maker may not be

necessary to take an optimal decision. In this section, we find

conditions to identify the redundant data at a decision maker.

We also find conditions under which effectively observed

data can be used by the decision maker. Then, we present a

graphical test to check these conditions, and a graph transform

to prune the redundant data and add effectively observed data

at each DM.

A. Statement of the structural result

Structural results for DM n, n ∈ A, can be derived by

fixing the decision rules for all other DMs. With respect to

DM n, the reward variables can be partitioned into two sets,

dependent reward variables Rd(ñ) and independent reward

variables Ri(ñ). These sets are defined as

Rd(ñ) := de(ñ) ∩R, Ri(ñ) := R \Rd(ñ).

The main result of this paper is the following.

Theorem 1: In the sequential team model of Section II-A,

the decision rules are of the form

un = gn(pa(ñ)).

However, there is no loss of optimality in choosing rules of

the form

un = gn

(

ob(Rd(ñ)|ne(ñ)) \ {un},

ef(Rd(ñ)|pa(ñ)) \ de(ñ)
)

(3)

Proof: The proof is along the lines of the proof of the

three step lemma of [25]. We fix the decision rules all DMs

other than DM n, and look at the problem from the point of

view of DM n. Since for any r ∈ Ri(ñ), ñ 6≺ r, the choice

of gn does not influence the values of Ri(ñ). Thus,

max
gn

E
GA,FN\A

{

∑

Xi∈R

Xi

∣

∣

∣

∣

∣

pa(ñ)

}

= E
GA\(de(ñ)∪{ñ}),FN\(A∪de(ñ))







∑

Xi∈Ri(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ)







+ max
gn

E
GA,FN\A







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ)







Now, the second term can be simplified as follows.

E
GA,FN\A







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ)







(a)
= E

GA,FN\A







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ), un







(b)
= E

re(Rd(ñ)| ne(ñ))







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ), un







(c)
= E

re(Rd(ñ)| ne(ñ))\{gn}







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

pa(ñ), un







(d)
= E

γ







∑

Xi∈Rd(ñ)

Xi

∣

∣

∣

∣

∣

∣

ob(Rd(ñ)|ne(ñ)), un







(e)
=: Fγ(ob(Rd(ñ)|ne(ñ)) \ {un}, un)

In the above expression, (a) follows from un = gn(pa(ñ));
(b) follows from the definition of requisite factors; (c) follows

from policy independence of conditional expectation [26]; (d)
follows from definition of observation variables; the term γ

is (d) is a short hand for re(Rd(ñ)|ne(ñ)) \ {gn}; and the

function Fγ in (e) is for notational convenience.

Now, let U = un, Y = ob(Rd(ñ)|ne(ñ)) \ {un}, and Z =
pa(ñ) \ Y . Then, the optimization problem at DM n is

max
gn

Fγ(Y, gn(Y,Z)).

Now, let ĝ(Y) = arg maxU Fγ(Y,U) where ties are broken

according to arbitrary but fixed rule. Then,

F (Y, ĝ(Y)) ≥ Fγ(Y,U) = F (Y, gn(Y, Z)) (4)

for all U , Y , and Z. When the decision space Y belongs to

an infinite space, we need to worry about measurability of ĝ.

In that case, a measurable ĝ that satisfies (4) can be chosen

by breaking ties in a specific manner. For example, see [25],

[27].

Equation (4) implies that we can choose an optimal decision

rule ĝ for DM n such that

un = ĝ(ob(Rd(ñ)|ne(ñ)) \ {un}).

The choice of ĝ depends on γ. Furthermore, the variables

ef(Rd(ñ)|pa(ñ))\de(ñ) depend only on γ and do not depend

on un or gn. Since, all functions in γ are fixed, the DM n can

compute ef(Rd(ñ)|pa(ñ)) \ de(ñ) and use them for taking a

decision. Thus, without loss of optimality all DMs can restrict

attention to decision rules of the form (3).

B. Graphical algorithm for structural results

We need to identify de(ñ), pa(ñ), Rd(ñ), ob(Rd(ñ)|ne(ñ))
and ef(Rd(ñ)|pa(ñ)) to reduce the decision rule at DM n

to the form (3). The sets de(ñ), pa(ñ) and Rd(ñ) can

be computed efficiently from the graphical model. The sets

ob(Rd(ñ)|ne(ñ)) and ef(Rd(ñ)|pa(ñ)) can be computed

in linear time [22], [23]. Thus, we can efficiently find the

structural results of all DMs using a graphical algorithm,

which we call graph restructuring. This algorithm is shown in

Algorithm 1. We pick DMs in an descending order according

to ≺, and apply the structural results of Theorem 1 to each

DM one by one. The graph restructuring algorithm can be

applied multiple times until it does not change the DAFG.

This algorithm is called graph simplification and shown in

Algorithm 2.

Algorithm 1 Graph restructuring algorithm

1: function RESTRUCTURE GRAPH (G(V,F , E), A, R)

2: As ← topological sort(A)

3: Ar ← reverse(As)

4: for all ñ ∈ Ar do

5: Pa ← pa(ñ)
6: U ← {un}
7: Ne ← Pa ∪U

8: De ← de(ñ)
9: Rd ← De ∩R

10: Ob ← ob(Rd |Ne) \U

11: Ef ← ef(Rd |Pa) \De

12: for all a ∈ Pa \Ob do

13: E ← E \ {(a, ñ)}
14: end for

15: for all a ∈ Ef \De do

16: E ← E ∪ {(a, ñ)}
17: end for

18: G ← G(V,F , E)
19: end for

20: return G
21: end function

Algorithm 2 Graph simplification algorithm

1: function SIMPLIFY GRAPH(G, A, R, max count)

2: count ← 0
3: repeat

4: count ← count + 1

5: G′ ← G
6: G ← restructure graph(G, A, R)

7: until (G = G′) or (count = max count)

8: return G
9: end function

To understand this algorithm, lets consider the MDP of

Section II-D. After sorting the DMs, we get g3, g2, g1.

For DM g3, pa(g3) = {x1, u1, x2, u2, x3}, Rd(g3) = {r3},
ob(Rd(g3)|ne(g3)) = {x3, u3}, and ef(Rd(g3)|pa(g3)) = ∅.
Thus, the edges (x1, g3), (u1, g3), (x2, g3), and (u2, g3) are re-

moved and no edges are added. The resultant DAFG is shown

in Fig. 2(a). For DM g2 in this DAFG, pa(g2) = {x1, u1, x2},
Rd(g2) = {r2, r3}, ob(Rd(g2)|ne(g2)) = {x2, u2}, and

ef(Rd(g2)|pa(g2)) = ∅. Thus, the edges (x1, g2) and (u1, g2)
are removed. The resultant DAFG is shown in Fig. 2(b). For

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

(a) Graph restructuring to node g3 of MDP of Fig 1.

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

(b) Graph restructuring to node g2 of MDP of part (a).

Fig. 2: Intermediate steps of graph restructuring algorithm to

MDP shown in Fig. 1.

DM g1 in this DAFG, pa(g1) = {x1}, Rd(g1) = {r1, r2, r3},
ob(Rd(g1)|ne(g1)) = {x1, u1}, and ef(Rd(g1)|ne(g1)) = ∅.
Thus, no edge is removed or added. Thus, DAFG of Fig. 1

can be reduced to DAFG of Fig. 2(b) without any loss of

optimality.

The first step of Algorithm 1, which reverse sorts the DMs

according to the partial order ≺, is optional. If we pick DMs in

an arbitrary order, the graph simplification algorithm will take

more steps before it converges. In Algorithm 2, we believe

that after a finite number of steps G′ should be equal to G.

However, we have not been able to prove this so far. Thus, to

ensure the correctness of the algorithm, we limit the number

of iterations to max count.

IV. SOME ILLUSTRATIVE EXAMPLES

A. A two agent sequential team

Consider a sequential team with two control stations that

runs for 2 time steps. First, we describe a mathematical model

for this sequential team; next, we construct a DAFG corre-

sponding to that model; then, we apply the graph simplification

algorithm on this DAFG.

Let x1, x2 denote the state of the plant, u1,1, u1,2 de-

note the control actions of station 1, u2,1, u2,2 denote the

control actions of station 2, and r1, r2, denote the rewards.

The plant dynamics are given by stochastic kernels f0(x1),
f1(x2|x1, u1,1, u2,1). The rewards are given by stochastic ker-

nels ρ1(r1|x1, u1,1, u2,1), ρ2(r2|x2, u1,2, u2,2). The two con-

trol stations act for two time instances. Therefore, the system

has four decision makers, DM (1,1), DM (1,2), DM (2,1), and

DM (2,2). DM (i, j) generates control action ui,j according

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(a) DAFG corresponding to a simple two agent team.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(b) First pass of graph simplification. Graph restructuring at factor
g2,2 of the DAFG of part (a). Edge (u2,1, g2,2) is removed and
edges (u1,1, g2,2) and (u1,2, g2,2) are added.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(c) First pass of graph simplification. Graph restructuring at factor
g2,1 of the DAFG of part (b). Edge (u2,1, g1,2) is added.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(d) First pass of graph simplification. Graph restructuring at factor
g1,2 of the DAFG of part (c). Edge (u1,1, g2,1) is added.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(e) Second pass of graph simplification. Graph restructuring at
factor g2,2 of the DAFG of part (d). Edge (u2,1, g2,2) is added
and edges (x1, g2,2) and (u1,1, g2,2) are removed.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(f) Second pass of graph simplification. Graph restructuring at
factor g1,2 of the DAFG of part (e). Edges (x1, g1,2) and
(u1,1, g1,2) are removed.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(g) Third pass of graph simplification. Graph restructuring at
factor g2,2 of the DAFG of part (f). Edge (u2,1, g2,2) is removed.

r1 r2

f0 g1,1 ρ1 f1 g1,2 ρ2

x1 u1,1 u2,1 x2 u1,2 u2,2

g2,1 g2,2

(h) Third pass of graph simplification. Graph restructuring at
factor g1,2 of the DAFG of part (g). Edge (u2,1, g1,2) is
removed.

Fig. 3: A DAFG corresponding to a simple two station sequential team and its simplification.

to the following rules.

u1,1 = g1,1(x1), u2,1 = g2,1(x1),

u1,2 = g1,1(x1, x2, u1,1), u2,2 = g2,1(x1, x2, u2,1).

A DAFG corresponding to this model is shown in Fig. 3(a).

For ease of notation, we represent the graph nodes by names of

the variables and the functions, rather than an index. For this

DAFG, a total order on the DMs is {g1,1, g2,1, g1,2, g2,2}. The

simplification of this model, including the intermediate steps,

is shown in Fig. 3(b)–(h). The graph simplication requires

three passes before settling on a result. A third pass could have

been avoided if we had kept track of nodes which were deteled

in the previous passes. For example, while running graph

restructuring at DM g2,2 the edge (u2,1, g2,2) was deleted in

the first pass, added back in the second pass, and deleted again

in the third pass. Had we not adding this edge back in the

second pass, the third pass would have been avoided. This

suggests a possible fine tuning of graph restructuring algorithm

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

(a) DAFG corresponding to a real-time source coding system.

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

(b) Graph simplification of the DAFG of part (a). Edges (m1, c3), (m2, c3), (m1, c2) are added and edges
(x1, c3), (x2, c3), (x1, c2) are deleted.

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

(c) Graph simplification of the DAFG of part (b). Edges (y1, c3), (y2, c3), (m1, c3), (y1, c2) are removed.

Fig. 4: Graph simplification of a DAFG of a real-time source coding system.

at the cost of keeping track of the results of previous passes.

Fig. 3(h) shows that there is no loss optimality in choosing

control laws of the form

u1,1 = g1,1(x1), u2,1 = g2,1(x1, u1,1),

u1,2 = g1,1(x2), u2,2 = g2,1(x2, u1,2).

This structural result can also be derived analytically by

following the same reasoning as the graph simplification.

B. Real time source coding

Consider the real-time source coding problem described

in [25] that operates for 3 time steps. The system variables

are given as follows. Let x1, x2, x3, denote the outputs of a

Markov source. These are encoded casually and in real-time

by an encoder to produce encoded symbols y1, y2, y3. These

encoded symbols are observed by a finite memory receiver.

The receiver updates its memory m1, m2, and generates source

estimates x̂1, x̂2, x̂3 causally and in real-time. A distortion d1,

d2, d3, is incurred at each step. A partial order on these system

variables is given by x1 ≺ x2 ≺ x3, y1 ≺ y2 ≺ y3, m1 ≺ m2,

xi ≺ yi ≺ x̂i ≺ di, i = 1, 2, 3, and yi ≺ mi ≺ x̂i+1, i = 1, 2.

The system stochastic kernels and decision rules are given

as follows. The source output is given by stochastic kernels

f1(x1), f2(x2|x1), f3(x3|x2). The distortions are given by

ρ1(d1|x1, x̂1), ρ2(d2|x2, x̂2), ρ3(d3|x3, x̂3). The decision rules

at the encoder and receiver are given by

y1 = c1(x1), x̂1 = g1(y1)

y2 = c2(x1, x2, y1) x̂2 = g2(y2, m1)

y3 = c2(x1, x2, x3, y1, y2) x̂3 = g3(y3, m2)

m1 = l1(y1) m2 = l2(y2, m1)

The objective is to choose c1, c2, c3, g1, g2, g3, l1, and l2
to minimize the total expected distortion (which is the same

as maximizing the negative of total expected distortion).

A DAFG corresponding to the above model is shown

in Fig. 4(a). For ease of notation, we represent the

graph nodes by the names of the variables and func-

tions, rather than an index. For this DAFG, a total or-

der on the DMs is {c1, g1, l1, c2, g2, l2, c3, g3}. For DM g3,

ob(Rd(g3)|ne(g3)) = ne(g3) and ef(Rd(g3)|pa(g3)) =
∅. Thus, we do not add or remove any edges. For

DM c3, ob(Rd(c3)|ne(c3)) = {x3, y1, y2, y3, u3} and

ef(Rd(c3)|pa(c3)) = {m1, m2}. Thus, we remove edges

(x1, c3) and (x2, c3) and add edges (m1, c3) and (m2, c3).
Continuing this way, for DM l2 and g2, we neither add nor

remove any edges; for DM c2, edge (x1, c1) is removed and

edge (m1, c1) is added. For DMs l1, g1, and c1, no edges are

added or removed. The resultant DAFG is shown in Fig. 4(b).

We once again apply the graph simplification algorithm to the

DAFG of Fig. 4(b). In this second pass, the edges (y1, c3),
(y2, c3), (m1, c3), (y1, c2) are removed. The resultant DAFG

is shown in Fig. 4(c), which shows that there is no loss of

optimality in restricting attention to the encoding rules of the

form

y1 = c1(x1), y2 = c2(x2, m1), y3 = c3(c3, m2).

This is the same as the structural results proved analytically

in [25].

Notice that both these example required multiple passes to

settle on a structural result. This supports our proposal of

separating structural results from sequential decomposition.

The second and higher rounds of structural results will be

missed by algorithms like those in influence diagrams that

performs strucutral results and sequential decomposition in a

single step.

V. CONCLUSION

We present a model for sequential teams that can be repre-

sented as a DAFG. This model can be used as a pedagogical

tool for understanding structural results for sequential teams

as well as a computational tool for deriving such structural

results in an automated manner. Broadly, there are two types

of structural results in sequential teams, namely, removing

redundant data and compressing available data. In this paper,

we present an algorithm based on graphical models that can

indentify redundant data available at a decision maker. We

believe that an algorithm for compressing available data a

decision maker can also be identified.

ACKNOWLEDGEMENTS

The first author is grateful to Demosthenis Teneketzis,

Ashutosh Nayyar, and Achilleas Anastasopoulos for extensive

discussions that crystalized the ideas presented in this paper.

We also thank Achilleas Anastasopoulos and Ashutosh Nayyar

for detailed feedback on an earlier draft of this paper and for

extensive testing of a software implementation of the algorithm

presented in this paper.

REFERENCES

[1] H. S. Witsenhausen, “A standard form for sequential stochastic control,”
Mathematical Systems Theory, vol. 7, no. 1, pp. 5–11, 1973.

[2] A. Mahajan, “Sequential decomposition of sequential dynamic teams:
applications to real-time communication and networked control sys-
tems,” Ph.D. dissertation, University of Michigan, Ann Arbor, MI, 2008.

[3] Y.-C. Ho and K.-C. Chu, “Team decision theory and information
structures in optimal control problems–Part I,” IEEE Trans. Autom.

Control, vol. 17, no. 1, pp. 15–22, 1972.

[4] P. Varaiya and J. Walrand, “On delayed sharing patterns,” IEEE Trans.

Autom. Control, vol. 23, no. 3, pp. 443–445, 1978.
[5] T. Yoshikawa, “Decomposition of dynamic team decision problems,”

IEEE Trans. Autom. Control, vol. 23, no. 4, pp. 627–632, Aug. 1978.
[6] G. Casalino, F. Davoli, R. Minciardi, P. Puliafito, and R. Zoppoli,

“Partially nested information structures with a common past,” IEEE

Trans. Autom. Control, vol. 29, no. 9, pp. 846–850, Sep. 1984.
[7] M. Aicardi, F. Davoli, and R. Minciardi, “Decentralized optimal control

of Markov chains with a common past information set,” IEEE Trans.

Autom. Control, vol. 32, no. 11, pp. 1028–1031, 1987.
[8] J. M. Ooi, S. M. Verbout, J. T. Ludwig, and G. W. Wornell, “A separa-

tion theorem for periodic sharing information patterns in decentralized
control,” IEEE Trans. Autom. Control, vol. 42, no. 11, pp. 1546–1550,
Nov. 1997.

[9] A. Mahajan, A. Nayyar, and D. Teneketzis, “Identifying tractable
decentralized control problems on the basis of information structures,” in
proceedings of the 46th Allerton conference on communication, control

and computation, Sep. 2008, pp. 1440–1449.
[10] S. Yüksel, “Stochastic nestedness and the belief sharing information

pattern,” IEEE Trans. Autom. Control, 2009, to appear.
[11] D. Teneketzis and Y. Ho, “The decentralized Wald problem,” Information

and Computation (formerly Information and Control), vol. 73, no. 1, pp.
23–44, Apr. 1987.

[12] J. C. Walrand and P. Varaiya, “Optimal causal coding—decoding prob-
lems,” IEEE Trans. Inf. Theory, vol. 29, no. 6, pp. 814–820, Nov. 1983.

[13] V. S. Borkar, S. K. Mitter, and S. Tatikonda, “Optimal sequential vector
quantization of Markov sources,” SIAM Journal of Optimal Control,
vol. 40, no. 1, pp. 135–148, Jan. 2001.

[14] A. Mahajan and D. Teneketzis, “Optimal design of sequential real-time
communication systems,” submitted to IEEE Trans. Inf. Theory, Jan.
2006.

[15] ——, “On the design of globally optimal communication strategies for
real-time communcation systems with noisy feedback,” IEEE J. Sel.

Areas Commun., May 2008.
[16] A. Nayyar and D. Teneketzis, “On jointly optimal real-time encoding

and decoding strategies in multiterminal communication systems,” in
proceedings of 47th IEEE Conference of Decision and Ccontrol, Dec.
2008.

[17] A. Mahajan and D. Teneketzis, “Optimal performance of networked
control systems with non-classical infromation structures,” SIAM Journal

of Control and Optimization, vol. 48, no. 3, pp. 1377–1404, May 2009.
[18] A. Anastasopoulos, “Engergy-delay tradeoff in multiple access chan-

nels,” 2009, submitted.
[19] J. A. Tatman and R. D. Shachter, “Dynamic programming and influ-

ence diagrams,” Systems, Man and Cybernetics, IEEE Transactions on,
vol. 20, no. 2, pp. 365–379, Mar./Apr. 1990.

[20] H. S. Witsenhausen, “The intrinsic model for discrete stochastic control:
Some open problems,” in Control Theory, Numerical Methods and

Computer System Modelling, ser. Lecture Notes in Economics and
Mathematical Systems, A. Bensoussan and J. L. Lions, Eds. Springer
Verlag, 1975, vol. 107, pp. 322–335.

[21] A. B. Kahn, “Topological sorting of large networks,” Communications

of the ACM, vol. 5, no. 11, pp. 558–562, 1962.
[22] R. D. Shachter, “Bayes-ball: The rational pastime (for determining

irrelevance and requisite information in belief networks and influence
diagrams),” in proceedings of the fourteenth conference in Uncertainty

in Artificial Intelligence, 1998, pp. 480–487.
[23] D. Geiger, T. Verma, and J. Pearl, “Identifying independence in Bayesian

networks,” Networks, vol. 20, no. 5, pp. 507–534, 1990.
[24] ——, “d-separation: from theorem to algorithms,” in Proceedings on

the fifth Workshop on Uncertainity in Artificial Intelligence, Windsor,
Ontario, 1989, pp. 118–125.

[25] H. S. Witsenhausen, “On the structure of real-time source coders,” Bell

System Technical Journal, vol. 58, no. 6, pp. 1437–1451, July-August
1979.

[26] ——, “On policy indepdence of condtional expectation,” Information

and Control, vol. 28, pp. 65–75, 1975.
[27] D. Teneketzis, “On the structure of optimal real-time encoders and

decoders in noisy communication,” IEEE Trans. Inf. Theory, pp. 4017–
4035, Sep. 2006.

