
Sequential team form
and its simplification using graphical models

Aditya Mahajan and Sekhar Tatikonda
Yale University

Allerton, September 30, 2009



Outline

◦ Sequential team

◦ Team form

◦ Simplification of team form

◦ Representation of team form as a graphical model

◦ Automated simplification of the graphical model



Multi-agent decentralized systems: a classification

Multi-agent
systems

Dynamic
systems Teams

Sequential

Non-classical
info. struct.

Static
systems Games

Non-seq

Classical
info. struct.

Information available
to the agents

Objective

Order of
agents’ actions

Information structures



Multi-agent decentralized systems: a classification

Multi-agent
systems

Dynamic
systems Teams

Sequential

Non-classical
info. struct.

Static
systems Games

Non-seq

Classical
info. struct.

Information available
to the agents

Objective

Order of
agents’ actions

Information structures
Sequential multi-stage teams with

non-classical information structures



Notation

For a set M

◦ Variables: XM = (Xm : m ∈M).

◦ Spaces: XM =
∏
m∈M

Xm

◦ σ-algebras: FM =
⊗
m∈M

Fm



Model for a sequential team

◦ A collection of n system variables, (Xk, k ∈ N) where N = {1, . . . , n}

◦ A collection {(Xk,Fk)}k∈N of measurable spaces.

◦ A collection {Ik}k∈N of information sets such that Ik ⊂ {1, . . . , k− 1}.

◦ A set A ⊂ N of controllers/agents.

◦ A set R ⊂ N of rewards.

◦ The variables XN\A are chosen by nature according to stochastic kernels
{pk}k∈N\A where pk is a stochastic kernel from (XIk,FIk) to (Xk,Fk).



Objective

◦ Choose a strategy {gk}k∈A such that the control law gk is a measurable
function from (XIk,FIk) to (Xk,Fk).

◦ Joint measure induced by strategy {gk}k∈N

P(dXN) =
⊗

k∈N\A

pk(dXk|XIk)
⊗
k∈A

δgk(XIk
)(dXk)

◦ Choose a strategy to maximize

EgA

{∑
i∈R

Xi

}
This maximum reward is called the value of the team



Generality of the model

This model is a generalization of the model presented in

Hans S. Witsenhausen, Equivalent stochastic control problems,
Math. Cont. Sig. Sys.-88

which in turn in equivalent to the intrinsic model presented in

Hans S. Witsenhausen, On information structures, feedback and causality,
SICON-71

which is as general as it gets.



Team form

A (sequential) team form is the team problem
where the measurable spaces {(Xk,Fk)}k∈N and the
stochastic kernels {pk}k∈N\A are not pre-specified.

T = (N,A, R, {Ik}k∈N): system variables, control variables, reward variables, and
the information sets are specified.



Equivalence of team forms

Two team forms T = (N,A, R, {Ik}k∈N) and T′ = (N′, A′, R′, {I′k}k∈N′) are equivalent if
the following conditions hold:

1. N = N′, A = A′, and R = R′;

2. for all k ∈ N \A, we have Ik = I′k;

3. for any choice of measurable spaces {(Xk,Fk)}k∈N and stochastic kernels
{pk}k∈N\A, the values of the teams corresponding to T and T′ are the same.

The first two conditions can be verified trivially. There is no easy way to check
the last condition.



Simplification of team forms

A team form T′ = (N′, A′, R′, {I′k}k∈N′) is a simplification of a team form
T = (N,A, R, {Ik}k∈N) if

T′ is equivalent to T

and
∑
k∈A

|I′k| <
∑
k∈A

|Ik| .

T′ is a strict simplification of T if T′ is equivalent to T, |I′k| 6 |Ik| for k ∈ N, and
at least one of these inequalities is strict.



Given a team form, can we simplify it?

Asking for simplification of a team form is same as asking for
structural properties that do not depend on the nature of the
process (discrete or continuous values), the specific form of
probability measure (Gaussian, uniform, binomial , etc.) and
the specific properties of cost function (convex, monotone, etc.)



Some Preliminaries



Partial Orders

A strict partial order ≺ on a set S is a binary relation that is transitive,
irreflexive, and asymmetric. i.e., for a, b, c in S, we have

1. if a ≺ b and b ≺ c, then a ≺ c (transitive)
2. a ̸≺ a (irreflexive)
3. if a ≺ b then b ̸≺ a (asymmetric)

The reflexive closure ≼ of a partial order ≺ is given by

a ≼ b if and only if a ≺ b or a = b



Partial Order

Let A be a subset of a partially ordered set (S,≺). Then, the lower set of A,
denoted by ←−A is defined as

←−
A := {b ∈ S : b ≼ a for some a ∈ A}.

By duality, the upper set of A, denoted by −→
A is defined as

−→
A := {b ∈ S : a ≼ b for some a ∈ A}.



Sequential teams and partial orders

Hans S. Witsenhausen, On information structures, feedback and causality,
SICON-71

Hans S. Witsenhausen, The intrinsic model for discrete stochastic control:
Some open problems, LNEMS-75

A team problem is sequential if and only if
there is a partial order between the agents



Partial orders can be
represented by directed graphs
So, sequential teams can be

represented as directed graphs



Representing teams using directed graphs

Hans S. Witsenhausen, Separation of estimation and control for discrete time
systems, Proc. IEEE-71.
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In general, the data available for control do not form a field 
basis.  However, for linear systems  with strictly classical pattern, one 
has an exceptional situation illustrating the following assertion. 

Assertion I : If, for every ( t ,  k), ( Yts, q , k ,  4) is a field basis, then 
the given  feedback control problem is equivalent to a feedforward 
control problem. 

A feedforward control problem is one in which the data available 
depend only on the primitive random variables w and not upon the 
control variables applied [ 131. Such an equivalence plays a key role 
in some of the separation results for classical linear systems [78]. 

A more common type of equivalence is the following. 
Assertion 2 :  Suppose that for some pair ( t ,  k )  there is a function 

4 such that, for all w and y ,  

(Yrt,k, = ~ ( Y Y ,  uut yu,) 

with Y c x& U c  Ut,k Then the given pattern is equivalent to the 
one in which (E;& Ut,& is replaced by ( Y ,  U). 

This can be seen  from the substitution 

Y 3 Y n  uu) = Y W Y Y ,  h J 7  Yu,)) 
Y:” = $, for (7, 4 # ( t ,  k) 

noting that 

YE, = Yu,. 

In particular, a station with  perfect  recall  need not store the 
values of the control variables that it generates.  However, both the 
form of an optimal policy and its determination may be simpler 
when  explicit dependence upon past controls is  allowed.  Essentially, 
this is so because dependence upon the values of control variables 
can make relevant conditional distributions independent of the cor- 
responding control laws [19]. 

Two conditioning bases ( Y ,  U, L), (Y*, U*, L*) for a variable z 
are called equivalent if for all designs y feasible  with the information 
pattern, and for almost all o, one has agreement of the conditional 
distributions. That is, 

F(Yr, uu, Y J  = F*(yr- urn YL*) 

where both sides are distribution valued functions of w and y. 
To decrease the reliance upon knowledge of previous control 

laws one might at first be tempted to invoke the following incorrect 
substitution principle: if ( Y ,  U, L) is a conditioning basis  for z and 
( t ,  k )  belongs to both U and L, then ( Y ,  U, L - ( ( t ,  k)}) is an equivalent 
conditioning basis. In fact, one must take into account the arguments 
of 7: as specilied by the information pattern. If they are not among the 
available data, then simultaneous knowledge of the value u: and the 
law y: may provide valuable inferences about these arguments 
which  would  be  impossible if either the value or the law  were un- 
known. The correct substitution principle is as f01lows.~ 

Assertion 3: Suppose ( Y ,  U, L)is a conditioning basis  for z and one 
has (t,  k)E U n L ,  x , k c  y ,  u t , k C  u. Then ( y ,  u, L), ( y ,  u-{(t, k)) ,  L), 
and ( Y ,  U, L-  {( t ,  k ) } )  are equivalent conditioning bases  for z. 

Using the substitution principle, one can sometimes obtain con- 
ditional distributions that  are independent of the design. The most 
important situations of this kind are special  cases of the following 
assertion, where L:s=((O, K)EU,IK#~,  t -n<O<t } .  (For K=l or 
n= 1, L:,,=@.) 

Assertion 4: For an n-step  delayed sharing pattern and any 
(t ,  k)E  UT+^ the triple ( x , k ?  U t , k ?  c,& and the triple (nf=1 nf= ut.&, 0) are both conditioning bases  for xt-” .  

See [19] for an early appearance of the idea involved here. 

PROCEEDINGS OF THE E, NOVEMBER 1971 

Note that the two bases mentioned in Assertion 4 are not 

As a special  case, for n = 1 the distribution of the latest state x,- 
equivalent when K> 1, n > 1. 

given the data available to station k at time t is independent of the 
design. This fact is the keystone of much of the existing stochastic 
control theory. The case n= 1 includes the strictly classical pattern 
[87] and (trivially) team theory. 

D.  Data Flow Diagrams 
The diagram in  which the  plant  and the controller are each 

represented by a “black box” does not convey anything about the 
prevailing information pattern.  The  more detailed diagrams re- 
quired to  do this become rapidly unwieldy but there is a certain 
didactic value in drawing them for simple cases.  They are explicit 
data flow diagrams. In these diagrams a box represents a function 
and lines carry values  of functions that may appear as arguments 
(inputs) to other fimctions (boxes). The essential point is that a box 
may not be used more than once, that is,  each  time step has a sep- 
arate set of boxes. Thus in general there will be T boxes for (l), T M  
boxes for (2) and TK boxes for (8). The latter set of boxes is to be 
“filled”  with admissible functions 7: by the designer. The input lines 
to these  boxes represent graphically the information pattern 

For example, consider a delayed sharing pattern with n = 1, 
K=  T= 2 which leads to the diagram of Fig. 1. The primitive random 
variables appear as inputs. The control variables $do not appear as 
inputs but the control laws y: (which  may  be considered similar to 
programs to be loaded in the control computers) are inputs, though 
of a quite different kind, since they are  put in by the designer  before 
the system starts operating. 

When  specific  systems are under discussion the data flow diagram 
may show, instead of a simple  box for a functionf, some details of 
the structure of functionfusing boxes for more elementary functions 
from whichfis built up. 

E. Alternative Formulations 

( yt.k, q , k ) *  

An apparently more general formulation is obtained by taking 
(2) as 

fl = f l (x t -2 ,  q, 4 - 1 , .  . ., e l )  (2’) 

for t >  1. 

stitution of (1) would immediately yield the form (2’). 
Note  that if one had x,- instead of x,- as argument here, sub- 

Authorized licensed use limited to: Yale University. Downloaded on March 11, 2009 at 13:57 from IEEE Xplore.  Restrictions apply.



Representing teams using directed graphs

Yu-Chi Ho and K’ai-Ching Chu, Team Decision Theory and Information
Structures in Optimal Control Problems—Part I, TAC-72.
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I 
I 

I 

N-2 

Fig. 2. 

GROUP I G R O U P  II 
Fig. 3. 

zf = linear in ( E ,  ul, . . -, ui-l) 

for some H i  and  Dij  and for all i, where none of the matrices 
D f j  are zero matrices. We note  from (9) that 25 is imbedded 
in zi as components if j < i. We stress  this  fact  by drawing 
a memory-communication  line segment, (dotted line)  from 
j to i on the precedence diagram.  Intuitively,  this suggests 
that,  whatever j knows is  either  remembered by i (in the 
case of one  player  acting as a. different DIU at different 
times) or is passed on to i (when we have different. players). 
The precedence diagram  with  its memory-communication 
line for this example is shown in Fig. 2. Note, since zj  in- 
cludes z + ~ ,  it is not necessary to  have a  dotted-line  segment 
joining nodesj + 1 and j - 1. 

The precedence diagram  with  its memory-communica- 
tion lines will be called the information structure  diagram. 
It. is  a  graphic  representation of (3). The information 
struct,ure  diagram  is  essential  to the analysis of informa- 
tion  transmission and causal  relations. Any linear  dynamic 
system of (6) and (7) (time  varying or not)  can  be  put  in 
our normalized form of (3) by a  method  similar to  that of 
Example 2. Linear  dynamic processes without  perfect 
memory or with  only  partial  feedback  fit naturally  into 
our structure. A general  example of a 1inea.r-Gaussian t,eam 
problem  is  found in  Example 3. 

Example 3: 

The information structure diagram is displayed in Fig. 3. 
(lo) Members  one,  two, and seven are starting decision makers of 

the  team; members five, six, a.nd eight, are  the terminating 
decision makers. In  the sequel we shall  index  t.he  members 
in such a wag  t,hat if j is a  precedent of i, t,hen j < i. 

Each decision maker  makes  a decision at.  a single time 
moment. The information zi is made  available  for the  ith 
member just. before he makes  his decision. In  practice some- 
one  may  have to make  a decision more than once  at. differ- 
ent. times, then  either  the information  available on a.11 
these occasions is the same, and  then  these decisions are 
considered as a single one picked from a product set, or 
else the informa.tion available  is not. the same, and  then  one 
can  assume sepa.rat e members for each occasion. 

We define the class of admissible  control Ian-s for the  ith 
DM, T i ,  as the  set of all Borel-measurable  functions y i :  

. Note  that  for fixed yi E rr, i = 1, . . *, N ,  (3) in- 
duces for each i a sub-u-algebra Zi  c 5, and zi are well- 
defined random  variables  measurable  with respect to &. 
Let ui take  value  in Ui = Rki, then we have  a u-algebra F1 
on U t  such that. yi- l (Sf)  = Zi. Note  that with the  excep 
tion of the st,atic  team,  Example 1, St,  Z t  V i, are dependent, 
on  the choice of y = 171, - * , yN]. Therein  lie the major 
difficulties of the solution of dynamic team problems. 
Fortunat.ely,  for  a  large class of such  problems  with special 
information  st,ructures, this difficulty can  be  circumvented. 

p i  --t RLi 

C. Payoff Function 

function 
The common goal for all members is to minimize the 

J(y1, ' a * ,  -yN) = E[$] = E [ + U T & U  + U T S f +  UTC],  

where Q is symmetric posit.ive definite and ut are given by 
(2) and  the expectation is taken with respect to  the a priori 
5. Mat,rices Q, S and vector c are of appropriat,e dimen- 
sions and  are known to all the members. As st,ated  earlier, 
with the particular choice for  the class of admissible  control 
laws, all uf are well-defined random  variables and  the 

Authorized licensed use limited to: Yale University. Downloaded on April 1, 2009 at 15:59 from IEEE Xplore.  Restrictions apply.



Representing teams using directed graphs

Tseneo Yoshikawa, Decomposition of Dynamic Team Decision Problems,
TAC-78.

628 IEEE TRANSACTIONS ON AUTOhtAllC CONTROL, VOL. AC-23, NO. 4, AUGUST 1978 

1 

I j3 \ I  

Fig. 1. Precedence diagram. 

Definition I :  DMi  is aprecedent of DMj, DMi+DMj, if 1) iRj, or 2) 
there exist r, s, . . . , t, such that iRr, rRs,. . . , tRj. 

For this precedence relation to satisfy the causality and to be de- 
terministic, we assume that if DMi+DMj, then DMjjDMi does not 
hold. The following  example  shows  a  case in which  this  assumption  is 
not satisfied. 

Example I :  Consider  a  team  with  2  DM's, n = ri= m, = 1, and 

For 5>0, 2R1, and for <<O, 1R2. Hence, DMI+DMZ and DM2+ 
DM 1.  Therefore, the precedence  relation depends on the value 5 and is 
not deterministic. In order to avoid  such  a case, the above  assumption is 
made. 

Now  the  concept of nestedness relation of information [IO], which 
plays an important role in the  following  sections, will be introduced. 

Definition 2: Information zi of DMi  is said to be nested in informa- 
tion zj of DMj, DMi--+DMj, if there exists  a measurable functiong such 
that for any 5, 

The  precedence diagram of Ho and Chu  [13],  with just a  slight 
modification, is very convenient to show the precedence  relation and the 
nestedness relation graphically. In this diagram a  node  i  represents the 
DMi, an arrow (4) from node i to node j represents  the relation 
DMijDMj,  and an broken arrow (-+) represents the relation DM.-+ 
DMj. An arrow (or broken arrow) from node i to node j may  be 
ommited  in  case node j can be reached  from node i by tracing  a set of 
arrows  (or broken arrows). For instance, Fig. 1 shows  the  precedence 
diagram of a  team for which N=4, n = 2 ,  ml=rn2=1, m3=2, m4=3, 
ri= 1, [=col [&,.$I and 

z,=5:, z2=52+u1 

z3=colKl>u21, z'%=co~[51,52+~1,u:]. 

Notice that even if DMijDMj,  DMj--+DM is  possible as is  shown in 
the following  example. 

Example 2: Consider  a  team  with  ZDM's, n = ri = m, = 1, and 

zl=5 
z2=5+u,. 

Obviously DM 1+DM2. Let 

f l2 (5 )  5+ Yl(5) 

for any Y = {Y,,Y~}, then 

z 2 = f l 2 ( 4  

Hence, DM2--+DM 1.  Fig.  2  shows the precedence  diagram of this team. 

111. hDEPENDENT PARTTTION 

In this section the concept of independent partition (i-partition) is 
introduced, and  it is shown that a  team  problem  with an i-partition can 
be decomposed into several independent subproblems.  Let G { DMi, 
i = 1 , 2 , - . . , N )  and Gi, i=1 ,2 , - . . ,K ,  be subsets of G. 

Fig. 2. Precedence diagram of Example 2. 

I 
_--- .. 

\ 

(a) (b) 

Fig. 3. Precedence relation between groups. (a) G2++Gl. (b) G2i+G,, G+G2 

Definition 3: (GI, G2; . . , GK) is a partition of G if 

K u Gi=G, Ginc,=O, ij=1,2,.--,K, i#j. (8 )  
i=  I 

A partition of G just divides G into several  groups of DM's. 
Definition 4: Let Gi, cj c G, Gi n 9 = 0. c j  is said to be a nonprece- 

dent g r o q  of Gi, %+G,, if DMj' is not a  precedent of  DMi' for any 
DMi' E Gi and DM] E cj. 

Examples of G2+GI are given  in  Fig.  3 (broken arrows are  not shown 
since  the relation G2+G, is independent of the nestedness relation of 
information). It is clear that if G,.*G,, uGj col[uj.;  DMT E 91 does not 
affect zGi CO~[Z,-; DMi'E G,]. 

Definition 5: A partition (GI, G2, . . , GK) is an i-partition of G if 

(a) Gi-+G,, i+j, ij= 1,2; ', K (9) 

and 

In words, an i-partition is  a partition for which  there is no precedence 
relation  between any pair of groups and the total cost function is given 
by the sum of the cost function for each group. Note that 5 is common to 
all groups and there is no assumption on the form of F(0. Also note that 
i-partition depends on the structure of cost function as well as the 
information structure of the team. An example of i-partition is given in 
the following. 

Exmnple 3: A team G = (DM,  i = 1,2,3,4} with the precedence dia- 
gram shown in Fig.  3(b), and with 

w=w1(5,~l ,u3+w2(5,u3,~4)  

has an i-partition (G,, G& where G, = (DMI, DM2) and G2 = 
(DM3,DM4}. 

Let yGi = { 7,-; DMi' E Gi},  then we have Theorem 1. 
Z?zeorem 1: Let  a  team G have an i-partition (G,,G,-. .,G,). If 

Subproblem i  {minimize EyGi[wi(&uGi)] with respect to yci}, i =  
1 , 2 , . . . , K ,  has an optimal solution y&, then y * = { y & ,  i=1,2,.--,K) is 
an optimal solution of the original  problem. 

ProoJ From condition (b) of Definition 5, 

Since, from condition (a), zi is a function only of 6 and uGi, 

Therefore, 

Authorized licensed use limited to: Yale University. Downloaded on April 1, 2009 at 15:36 from IEEE Xplore.  Restrictions apply.



Representing teams using directed graphs

Steffen L. Lauritzen and Dennis Nilsson, Representing and Solving Decision
Problems with Limited Information, Management Science-2001.

h1 h2 h3 h4 u4t1 t2 t3d1 d2 d3u1 u2 u3
Figure 1: LIMID representation of the ID version of PIGS. The full previous treatment and test

history is available when decisions must be taken.

descendantof n1 andn1 is anancestorof n2. The set of descendants and the set of ancestors ofn
is denotedde(n) andan(n) respectively.

The arcs in a LIMID have a different meaning depending on the type of node they go into.

If chance noder1 (connotingrandom variable) is a parent of chance noder2, it indicates that the

distribution of (the random variable)r2 is specified conditionally on the value ofr1. A decision

noded is a parent of chance noder if the distribution ofr can depend on decisiond. A decision

noded1 is a parent of decision noded2 if the choice of alternative for decisiond1 is known to the

decision maker when decisiond2 is taken and may influence that decision. When chance noder is

a parent of a decision noded it indicates that the value ofr will be known when decisiond is taken

and might influence that decision. Finally arcs into value nodes represent the decision maker’s

(expected) utility given the states of its parents. Value nodes cannot have children.

Example 2 (Diagrams for PIGS) To represent the ID version of PIGS by a LIMID, we let hi,
(i = 1; : : : ; 4) denote the (chance) variables which indicate whether the pig is healthyor unhealthy

in the ith month andti, (i = 1; 2; 3) represent the corresponding test results, which are said to be

positiveif they indicate presence of the disease, and otherwisenegative. The nodesdi, (i = 1; 2; 3)

5



None of these fit our requirements
perfectly. So, we use DAFG

(Directed Acyclic Factor Graphs)



A graphical model for sequential team forms

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2



A graphical model for sequential team forms

Directed Acyclic Factor Graph G = (V, F, E) for T = (N,A, R, {Ik}k∈N)

V = N× {0}, F = N× {1}

E = {(k1, k0) : k ∈ N} ∪ {(i0, k1) : k ∈ N, i ∈ Ik}

◦ Vertices

Variable Node k0 ≡ system variable Xk

Factor node k1 ≡ stochastic kernel pk or control law gk.

◦ Edges

(k1, k0) for each k ∈ N

(i0, k1) for each k ∈ N and i ∈ Ik



An Example: Real-time communication

Hans S. Witsenhausen, On the structure of real-time source coders, BSTJ-79

Source Encoder ReceiverSt Yt Ŝt

Mt−1

First order Markov source {St, t = 1, . . . , T }.

Real-Time Encoder: Yt = ct(S
t, Yt−1)

Real-Time Finite Memory Decoder: Ŝt = gt(Yt,Mt−1)

Mt = lt(Yt,Mt−1)

Instantaneous distortion ρ(St, Ŝt)

Objective: minimize E
{ T∑

t=1

ρ(St, Ŝt)
}



An Example: Real-time communication

D1 D2 D3
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Y1 M1 Y2 M2 Y3
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An Example: Real-time communication
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An Example: Real-time communication

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2



Checking conditional independence

Dan Geiger, Thomas Verma, and Judea Pearl, Identifying independence in
Bayesian networks, Networks-90.

Conditional independence can be
efficiently checked on a directed graph.

Given a DAFG G = (V, F, E,D) and sets A,B,C ⊂ V , XA is irrelevant to XB

given XC if XA is independent to XB given XC for all joint measures P(dXV) that
recursively factorize according to G.

Data irrelevant to XA given XC is

R−
G (XA|XC) = {k ∈ C : Xk is irrelevant to XA given XC}



Back to simplification of team forms



Completion of a team

A team form T = (N,A, R, {Ik}k∈N) is complete if for k, l ∈ A, k ̸= l, such that
Ik ⊂ Il we have Xk ∈ Il. (If l knows the data available to k, then l also knows the
action taken by k).

If a team is not complete, it can be completed by sequentially adding “missing
links”

Depending on the order in which we proceed, we can end up with different
completions. However,

all completions of a team form are equivalent.



Completion of a team form

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2



Completion of a team

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3

c1 g1 c2 g2 c3 g3

Y1 M1 Y2 M2 Y3

l1 l2



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)



Removing irrelevant nodes

Recall Given a DAFG G = (V, F, E,D) and sets A,B,C ⊂ V , XA is irrelevant to XB

given XC if XA is independent to XB given XC for all joint measures P(dXV) that
recursively factorize according to G and

R−
G (XA|XC) = {k ∈ C : Xk is irrelevant to XA given XC}

For any k ∈ A in a team form T = (N,A, R, {Ik}k∈N),

replacing XIk by XIk \
(
R−
G (XR ∩

−→
Xk | XIK, Xk) \ Xk

)
does not change the value of the team.



Removing irrelevant nodes

D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3
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l1 l2
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D1 D2 D3

pf1 pρ1 pf2 pρ2 pf3 pρ3

S1 Ŝ1 S2 Ŝ2 S3 Ŝ3
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Removing irrelevant nodes

D1 D2 D3
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c1 g1 c2 g2 c3 g3
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Yt = ct(St,Mt−1)



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR ∩

−→
X k given (XIk, Xk)

(Note: The resultant team form is equivalent to the original)



Does not always work



Another Example: Shared randomness

Plant

Controller 1

Controller 2

Shared
Randomness

St

A1
t

A2
t

Zt

Plant: St+1 = ft(St, A
1
t , A

2
t ,Wt)

Shared Randomness: {Zt, t = 1, . . . , T }

independent of plant disturbance and observation noise.

Control Station 1: A1
t = g1

t(S
t, A1,t−1, Zt) Control Station 2: A2

t = g2
t(S

t, A2,t−1, Zt)

Instantaneous cost: ρt(St, A1
t , A

2
t)



Another Example: Shared randomness

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g1
1

A1
1

g1
2

A1
2

g2
1

A2
1

g2
2

A2
2

R1

pρ1

R2

pρ2



Another Example: Shared randomness (Step 1)

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g1
1

A1
1

g1
2

A1
2

g2
1

A2
1

g2
2

A2
2

R1

pρ1

R2

pρ2



Coordinator for a subset of agents

For a, b ∈ A, consider a coordinator that observes XC := XIa ∩ XIb and chooses
partial functions ĝa : XIa\C → Xa and ĝb : XIb\C → Xb.

Agent a and b simply carry out the computations prescribed by ĝa and ĝb

Remove irrelevant incoming edges at the coordinator!

Equivalently, at agents a and b, remove edges from nodes that are irrelevant to
XR ∩

−→
X {a,b} given (XC, X{a,b}).



Coordinator for a subset of agents

For any B ⊂ A in a team form T = (N,A, R, {Ik}k∈N)

and any b ∈ B, let XC =
∩
b∈B

XIb . Then, replacing

XIb by XIb \
(
R−
G (XR ∩

−→
X B | XC, XB) \ XB

)
does not change the value of the team



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR ∩

−→
X k given (XIk, Xk)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes
irrelevant to XR ∩

−→
X B given (

∪
b∈B

XIb, XB).

(Note: The resultant team form is equivalent to the original. Furthermore, this
computation can be carried out efficiently on a lattice of shared information.)



Another Example: Shared randomness (Step 3)
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Another Example: Shared randomness (Step 3)
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Another Example: Shared randomness (Step 2)

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g1
1

A1
1

g1
2

A1
2

g2
1

A2
1

g2
2

A2
2

R1

pρ1

R2

pρ2



Another Example: Shared randomness (Step 1)

pZ1

Z1

pZ2

Z2

pf0 S1 pf1 S2

g1
1

A1
1

g1
2

A1
2

g2
1

A2
1

g2
2

A2
2

R1

pρ1

R2

pρ2
A1

t = g1
t(St)

A2
t = g2

t(St, A
1
t)



Simplification of team forms

Step 1: Complete the team form.

(Note: All completions of a team form are equivalent to the original)

Step 2: At control factor node k, remove incoming edges from nodes irrelevant to
XR ∩

−→
X k given (XIk, Xk)

(Note: The resultant team form is equivalent to the original)

Step 3: At all nodes of any subset B of A, remove incoming edges from nodes
irrelevant to XR ∩

−→
X B given (

∪
b∈B

XIb, XB).

(Note: The resultant team form is equivalent to the original. Furthermore, this
computation can be carried out efficiently on a lattice of shared information.)



Conclusion

Team form for sequential teams, equivalence and simplification of team forms.

Representing a team form as a DAFG

Carrying out the simplification of the team form on the DAFG. This process can
be automated.

Future Directions

Sequential decomposition of a team form on a DAFG (The sequential
decomposition of Witsenhausen’s standard form can be carried out efficiently on
a DAFG).

Adding belief states / information states (need to study conditional independence
properties and define an appropriate notion of simplification)



Thank you


