
A graphical model
for sequential teams
Aditya Mahajan and Sekhar Tatikonda

Dept of Electrical Engineering
Yale University

Presented at: ConCom Workshop, June 27, 2009

A glimpse of the result

Structural results in sequential teams

◦ Example: MDP (Markov decision process)

B Controlled MC: Pr (xt | x1, . . ., xt−1, u1, . . ., ut−1) = Pr (xt | xt−1, ut−1)

B Controller: ut = gt(x1, . . ., xt,u1, . . ., ut−1)

B Reward: rt = ρt(xt,ut)

B Objective: Maximize E

{
T∑

t=1

Rt

}

◦ Structural results

B Without loss of optimality, ut = gt(xt)

Graphically . . . original

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Graphically . . . structural results

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Structural results in sequential teams

◦ Example: real-time source coding

B Source: First order Markov source {xt, t = 1, . . .}

B Real-time source coder: yt = ct(x1, . . ., xt,y1, . . ., yt−1)

B Finite memory decoder: x̂t = gt(yt,mt−1)

B mt = lt(yt,mt−1)

B Cost: dt = ρt(xt, x̂t)

Hans S. Witsenhausen, On the structure of real-time source coders,
Bell Systems Technical Journal, vol 58, no 6, pp 1437-1451, July-August 1979

◦ Structural Results

B Without loss of optimality, yt = ct(xt,mt−1)

Graphically . . . original

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Graphically . . . structural results

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

The main idea
◦ Represent a sequential team as a directed graph

◦ Simplify the graph

Sequential teams – Salient features

◦ A team is sequential if and only if there exists a partial order between the
system variables.

◦ There is no loss of optimality in restricting attention to non-randomizing
decision makers

◦ Data available at a DM can be ignored if it is independent of the future
rewards conditioned on other data at the DM

◦ Variables functionally determined from the data available at a DM can be
assumed to be observed at the DM.

Graphical models – Salient features

◦ Any partial order gives rise to a DAG (Directed Acyclic Graph)

◦ A DAFG can be used to efficiently check for conditional independence using
d-separation

◦ A DAFG can be used to efficiently check for conditional independence with
deterministic nodes using D-separation

Match between features of sequential
teams and graphical models

The rest is a matter of details . . .

The model

◦ Components of a sequential team

B A set N of indices of system variables {Xn, n ∈ N}.
Finite sets {Xn, n ∈ N} of state spaces of Xn

− A ⊂ N, variables generated by DM
− N \A, variables generated by nature
− R ⊂ N, reward variables

B Information sets {In, n ∈ N}, such that In ⊆ {1, . . ., n}. In =
∏

i∈In
Xi

B FN\A = {fn, n ∈ N \A}, where fn is a conditional PMF Xn given In

B Design: GA = {gn, n ∈ A}, where gn is a decision rule from In to Xn

The model

◦ Probability measure induced by a design

PGA(XN) =
∏

n∈N\A

fn(Xn|In)
∏
n∈A

I [Xn = gn(In)]

◦ Optimization problem

Minimize E

{∑
n∈R

Xn

}
, where the expectation is with respect to PGA .

Representation as a graphical model

◦ Directed Acyclic Factor Graph

◦ Nodes

B Variable node n ≡ system variable Xn

B Factor node ñ ≡ conditional PMF fn or decision rule gn

◦ Edges

B (i, ñ), for each n ∈ N and i ∈ In

B (ñ, n), for each n ∈ N

◦ Acyclic Graph

B Sequential team ⇒ partial order on variable nodes ⇒ acyclic graph

Graphical models – Terminology

◦ parents(n)

B {m : m→ n}

B Parents of a control (factor) node = data observed by controller
◦ children(n)

B {m : n→ m}

B Children of a control node = control action
◦ ancestors(n)

B {m : ∃ directed path from m to n}

B Ancestors of a control node = all nodes that affect the data observed
◦ descendants(n)

B {m : ∃ directed path from n to m}

B Descendants of a control node = all nodes affected by the control action

Graphical Models — Example

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Graphical Models — Variable nodes

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Reward nodes

Non-reward nodes

Graphical Models — Factor nodes

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Control Factors

Stochastic Factors

Graphical Models — Parents and Children

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Parents

Children

Control factor node

Graphical Models — Ancestors and descendents

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Ancestors

Descendants

Control factor node

Structural results

◦ The main idea

If some data available at a DM is independent of future rewards given the
control action and other data at the DM, then that data can be ignored

Can we automate this process?

Struct. result ≡ cond. independence

Graphical models can easily
test conditional independence

Conditional independence

◦ Three canonical graphs to verify x ⊥⊥ z | y

x f y g z x f y g z

x

f

y

z

Markov chain Hidden cause Explanation

◦ Blocking of a trail

A trail from a to b is blocked by C if ∃ a node v on the trail such that either:

◦ either → v→, ← v←, or ← v→, and v ∈ C

◦ → v← and neither v nor any of v's descendants are in C.

Conditional independence

◦ d-separation

A is d-separated from B by C if all trails from A to B are blocked by C

◦ Conditional independence

For any probability measure P that factorizes according to a DAFG,

A d-separated from B by C implies
XA is conditionally independent of XB given XC, P a.s.

◦ Efficient algorithms to verify d-separation

B Moral graph B Bayes Ball

Automated Structural results

◦ First attempt

B Dependent rewards: Rd(ñ) = R ∩ descendants(ñ)

B Irrelevant data: At a control node ñ, and parent i is irrelevant if Rd(ñ) is
d-separate from i given parents(ñ) ∪ children(ñ) \ {i}

B Requisite data: All parents that are not irrelevant

◦ Structural result

B Without loss of optimality, we can remove irrelevant data.

un = gn(requisite(ñ))

Structural Results for MDP — Step 1

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Structural Results for MDP — Step 1

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

◦ Pick node g3.

B Original u3 = g3(x1,x2,x3,u1,u2)

B requisite(g3) = {x3}

B Thus, u3 = g3(x3)

Structural Results for MDP — Step 2

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

Structural Results for MDP — Step 2

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

◦ Pick node g2.

B Original u2 = g2(x1,x2,u1)

B requisite(g2) = {x2}

B Thus, u2 = g2(x2)

Structural Results for MDP — Simplified

r1 r2 r3

f0 ρ1 f1 ρ2 f2 ρ3

x1 u1 x2 u2 x3 u3

g1 g2 g3

un = gn(requisite(ñ))

Does not work for all problems . . .
even when structural simplification is possible

A real-time source coding problem

Hans S. Witsenhausen, On the structure of real-time source coders,
Bell Systems Technical Journal, vol 58, no 6, pp 1437-1451, July-August 1979

◦ Mathematical Model

B Source: First order Markov source {xt, t = 1, . . .}

B Real-time source coder: yt = ct(x(1:t), y(1:t − 1))

B Finite memory decoder: x̂t = gt(yt,mt−1)

B mt = lt(yt,mt−1)

B Cost: dt = ρt(xt, x̂t)

Model for real-time comm — Does not simplify

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Need to take care of
deterministic variables!

Functionally determined nodes

◦ Functionally determined
B XB is functionally determined by XA if XB ⊥⊥ XN | XA

◦ Conditional independence with functionally determined nodes

B Can be checked using D-separation
B Similar to d-sep: in the defn of blocking change “in C” by “is func detm by C”

◦ Blocking of a trail (version that takes care of detm nodes)

A trail from a to b is blocked by C if ∃ a node v on the trail such that either:

◦ either → v→, ← v←, or ← v→, and v is functionally determined by C

◦ → v← and neither v nor any of v's descendants are in C.

Automated Structural results

◦ Second attempt

B Irrelevant data: Change d-separation by D-separation

B Requisite data: All parents that are not irrelevant

◦ Structural result

B Without loss of optimality, we can remove irrelevant data and add
appropriate functionally determined data

un = gn(requisite(ñ), functionally_detm(ñ) ∩ ancestors(Rd(ñ)))

Lets try this!

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 1

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 2

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 3

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 4

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 5

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 6

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 7

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 8

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 9

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 10

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 11

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 12

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 13

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for Dec MDP — Step 14

d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

Structural Results for real-time communication

◦ Graphically
d1 d2 d3

f1 ρ1 f2 ρ2 f3 ρ3

x1 y1 x̂1 m1 x2 y2 x̂2 m2 x3 y3 x̂3

c1 g1 l1 c2 g2 l2 c3 g3

◦ Mathematically

B Original Encoder: yt = ct(x1, . . ., xt,y1, . . ., yt−1)

B New encoder: yt = ct(xt,mt−1)

Automated Structural results

◦ Simplify Once

B For each control node
− Find irrelevant nodes and functionally determined nodes.
− Remove edges from irrelevant nodes, add edges from functionally

determined nodes.

◦ Find fixed point

B Keep on simplifying until the graph does not change

◦ Software Implementation

B A EDSL to find structural results
http://pantheon.yale.edu/~am894/code/teams/

Conclusion

Conclusion

An automated method to derive
structural results for sequential teams

◦ Future Directions

B Belief States
B Sequential decomposition

Thank you

