A graphical model for sequential teams

Aditya Mahajan and Sekhar Tatikonda Dept of Electrical Engineering Yale University

Presented at: ConCom Workshop, June 27, 2009

A glimpse of the result

Structural results in sequential teams

- Example: MDP (Markov decision process)
 - $\triangleright \quad \text{Controlled MC: } \Pr\left(x_{t} \,|\, x_{1}, \dots, x_{t-1}, u_{1}, \dots, u_{t-1}\right) = \Pr\left(x_{t} \,|\, x_{t-1}, u_{t-1}\right)$
 - $\triangleright \quad \text{Controller:} \ u_t = g_t(x_1, \dots, x_t, u_1, \dots, u_{t-1})$
 - ▷ Reward: r_t = ρ_t(x_t, u_t)
 ▷ Objective: Maximize E { ∑_{t=1}^T R_t }
- Structural results
 - \triangleright Without loss of optimality, $u_t = g_t(x_t)$

Graphically ... original

Graphically ... structural results

Structural results in sequential teams

- Example: real-time source coding
 - \triangleright Source: First order Markov source {x_t, t = 1,...}
 - ▷ Real-time source coder: $y_t = c_t(x_1, ..., x_t, y_1, ..., y_{t-1})$
 - \triangleright Finite memory decoder: $\hat{x}_t = g_t(y_t, m_{t-1})$

$$\mathbf{m}_t = \mathbf{l}_t(\mathbf{y}_t, \mathbf{m}_{t-1})$$

 $\triangleright \quad \text{Cost:} \ d_t = \rho_t(x_t, \hat{x}_t)$

 \triangleright

- Hans S. Witsenhausen, On the structure of real-time source coders, Bell Systems Technical Journal, vol 58, no 6, pp 1437-1451, July-August 1979
- Structural Results
 - \triangleright Without loss of optimality, $y_t = c_t(x_t, m_{t-1})$

Graphically ... original

Graphically ... structural results

The main idea

Represent a sequential team as a directed graph
 Simplify the graph

Sequential teams – Salient features

- A team is sequential if and only if there exists a partial order between the system variables.
- There is no loss of optimality in restricting attention to non-randomizing decision makers
- Data available at a DM can be ignored if it is independent of the future rewards conditioned on other data at the DM
- Variables functionally determined from the data available at a DM can be assumed to be observed at the DM.

Graphical models – Salient features

- Any partial order gives rise to a DAG (Directed Acyclic Graph)
- A DAFG can be used to efficiently check for conditional independence using d-separation
- A DAFG can be used to efficiently check for conditional independence with deterministic nodes using D-separation

Match between features of sequential teams and graphical models The rest is a matter of details

The model

- Components of a sequential team
 - ▷ A set N of indices of system variables { X_n , $n \in N$ }. Finite sets { X_n , $n \in N$ } of state spaces of X_n
 - $A \subset N$, variables generated by DM
 - $N \setminus A$, variables generated by nature
 - $R \subset N$, reward variables
 - ▷ Information sets {I_n, $n \in N$ }, such that $I_n \subseteq \{1, ..., n\}$. $\mathcal{I}_n = \prod_{i \in I_n} \mathfrak{X}_i$

 \triangleright $F_{N\setminus A} = \{f_n, n \in N \setminus A\}$, where f_n is a conditional PMF \mathcal{X}_n given \mathcal{I}_n

▷ Design: $G_A = \{g_n, n \in A\}$, where g_n is a decision rule from \mathcal{I}_n to \mathcal{X}_n

The model

• Probability measure induced by a design

$$\mathsf{P}^{\mathsf{G}_{\mathsf{A}}}(\mathsf{X}_{\mathsf{N}}) = \prod_{n \in \mathsf{N} \setminus \mathsf{A}} \mathsf{f}_{n}(\mathsf{X}_{n} | \mathsf{I}_{n}) \prod_{n \in \mathsf{A}} \mathsf{I}\left[\mathsf{X}_{n} = \mathfrak{g}_{n}(\mathsf{I}_{n})\right]$$

• Optimization problem

Minimize
$$E\left\{\sum_{n\in R}X_n\right\}$$
, where the expectation is with respect to P^{G_A} .

Representation as a graphical model

• Directed Acyclic Factor Graph

• Nodes

- \triangleright Variable node $n \equiv$ system variable X_n
- \triangleright Factor node $\tilde{n} \equiv$ conditional PMF f_n or decision rule g_n

• Edges

- \triangleright (i, \tilde{n}), for each $n \in N$ and $i \in I_n$
- \triangleright (\tilde{n}, n), for each $n \in N$

• Acyclic Graph

 \triangleright Sequential team \Rightarrow partial order on variable nodes \Rightarrow acyclic graph

Graphical models – Terminology

 \circ parents(n)

 $\triangleright \{\mathfrak{m} \colon \mathfrak{m} \to \mathfrak{n}\}$

- \triangleright Parents of a control (factor) node = data observed by controller
- $\operatorname{children}(\mathfrak{n})$
 - $\triangleright \{\mathfrak{m}:\mathfrak{n}\to\mathfrak{m}\}$
 - \triangleright Children of a control node = control action
- \circ ancestors(n)
 - \triangleright {m: \exists directed path from m to n}
 - \triangleright Ancestors of a control node = all nodes that affect the data observed
- \circ descendants(n)
 - \triangleright {m: \exists directed path from n to m}
 - \triangleright Descendants of a control node = all nodes affected by the control action

Graphical Models – Example

Graphical Models – Variable nodes

Graphical Models – Factor nodes

Graphical Models – Parents and Children

Graphical Models – Ancestors and descendents

Structural results

• The main idea

If some data available at a DM is independent of future rewards given the control action and other data at the DM, then that data can be ignored

Can we automate this process?

Struct. result ≡ cond. independence Graphical models can easily test conditional independence

Conditional independence

• Blocking of a trail

A trail from a to b is blocked by C if \exists a node v on the trail such that either:

- either $\rightarrow \nu \rightarrow$, $\leftarrow \nu \leftarrow$, or $\leftarrow \nu \rightarrow$, and $\nu \in C$
- $\circ \rightarrow v \leftarrow$ and neither v nor any of v's descendants are in C.

Conditional independence

• d-separation

A is d-separated from B by C if all trails from A to B are blocked by C

• Conditional independence

For any probability measure P that factorizes according to a DAFG,

A d-separated from B by C implies X_A is conditionally independent of X_B given X_C , P a.s.

• Efficient algorithms to verify d-separation

 \triangleright Moral graph \triangleright Bayes Ball

Automated Structural results

- First attempt
 - \triangleright Dependent rewards: $R_d(\tilde{n}) = R \cap descendants(\tilde{n})$
 - ▷ Irrelevant data: At a control node \tilde{n} , and parent i is irrelevant if $R_d(\tilde{n})$ is d-separate from i given parents $(\tilde{n}) \cup children(\tilde{n}) \setminus \{i\}$
 - ▷ Requisite data: All parents that are not irrelevant
- Structural result
 - ▷ Without loss of optimality, we can remove irrelevant data.

 $u_n = g_n(requisite(\tilde{n}))$

• Pick node g_3 .

- ▷ Original $u_3 = g_3(x_1, x_2, x_3, u_1, u_2)$
- \triangleright requisite(g₃) = {x₃}
- \triangleright Thus, $u_3 = g_3(x_3)$

• Pick node g_2 .

- \triangleright Original $u_2 = g_2(x_1, x_2, u_1)$
- \triangleright requisite(g₂) = {x₂}
- \triangleright Thus, $u_2 = g_2(x_2)$

Structural Results for MDP – Simplified

 $u_n = g_n(requisite(\tilde{n}))$

Does not work for all problems ... even when structural simplification is possible

A real-time source coding problem

- Hans S. Witsenhausen, On the structure of real-time source coders, Bell Systems Technical Journal, vol 58, no 6, pp 1437-1451, July-August 1979
- Mathematical Model
 - \triangleright Source: First order Markov source $\{x_t, t = 1, ...\}$
 - \triangleright Real-time source coder: $y_t = c_t(x(1:t), y(1:t-1))$
 - \triangleright Finite memory decoder: $\hat{x}_t = g_t(y_t, m_{t-1})$

 \triangleright Cost: $d_t = \rho_t(x_t, \hat{x}_t)$

Model for real-time comm – Does not simplify

Need to take care of deterministic variables!

Functionally determined nodes

- Functionally determined
 - \triangleright X_B is functionally determined by X_A if X_B $\perp \!\!\!\perp X_N \mid X_A$
- Conditional independence with functionally determined nodes
 - ▷ Can be checked using D-separation
 - ▷ Similar to d-sep: in the defn of blocking change "in C" by "is func detm by C"
- Blocking of a trail (version that takes care of detm nodes)
 - A trail from a to b is blocked by C if \exists a node v on the trail such that either:
 - either $\rightarrow \nu \rightarrow$, $\leftarrow \nu \leftarrow$, or $\leftarrow \nu \rightarrow$, and ν is functionally determined by C
 - $\rightarrow v \leftarrow$ and neither v nor any of v's descendants are in C.

Automated Structural results

- Second attempt
 - ▷ Irrelevant data: Change d-separation by D-separation
 - ▷ Requisite data: All parents that are not irrelevant
- Structural result
 - Without loss of optimality, we can remove irrelevant data and add appropriate functionally determined data

 $u_n = g_n(requisite(\tilde{n}), functionally_detm(\tilde{n}) \cap ancestors(R_d(\tilde{n})))$

Lets try this!

Structural Results for real-time communication

• Mathematically

- \triangleright Original Encoder: $y_t = c_t(x_1, \dots, x_t, y_1, \dots, y_{t-1})$
- \triangleright New encoder: $y_t = c_t(x_t, m_{t-1})$

Automated Structural results

• Simplify Once

- \triangleright For each control node
 - Find irrelevant nodes and functionally determined nodes.
 - Remove edges from irrelevant nodes, add edges from functionally determined nodes.

• Find fixed point

- ▷ Keep on simplifying until the graph does not change
- Software Implementation
 - ▷ A EDSL to find structural results

http://pantheon.yale.edu/~am894/code/teams/

Conclusion

Conclusion

An automated method to derive structural results for sequential teams

• Future Directions

- ▷ Belief States
- ▷ Sequential decomposition

IN THE THE THE THE THE THE THE THE THE

Thank you