A graphical model for sequential teams

Aditya Mahajan and Sekhar Tatikonda
Dept of Electrical Engineering
Yale University

Presented at: ConCom Workshop, June 27, 2009
A glimpse of the result
Structural results in sequential teams

- Example: MDP (Markov decision process)
 - Controlled MC: \(\Pr(x_t | x_1, \ldots, x_{t-1}, u_1, \ldots, u_{t-1}) = \Pr(x_t | x_{t-1}, u_{t-1}) \)
 - Controller: \(u_t = g_t(x_1, \ldots, x_t, u_1, \ldots, u_{t-1}) \)
 - Reward: \(r_t = \rho_t(x_t, u_t) \)
 - Objective: Maximize \(\mathbb{E}\left\{ \sum_{t=1}^{T} R_t \right\} \)

- Structural results
 - Without loss of optimality, \(u_t = g_t(x_t) \)
Graphically ... original
Graphically ... structural results
Structural results in sequential teams

○ Example: real-time source coding

▷ Source: First order Markov source \(\{x_t, t = 1, \ldots \} \)
▷ Real-time source coder: \(y_t = c_t(x_1, \ldots, x_t, y_1, \ldots, y_{t-1}) \)
▷ Finite memory decoder: \(\hat{x}_t = g_t(y_t, m_{t-1}) \)
▷ \(m_t = l_t(y_t, m_{t-1}) \)
▷ Cost: \(d_t = \rho_t(x_t, \hat{x}_t) \)

○ Structural Results

▷ Without loss of optimality, \(y_t = c_t(x_t, m_{t-1}) \)
Graphically \ldots original
Graphically . . . structural results
The main idea

- Represent a sequential team as a directed graph
- Simplify the graph
Sequential teams – Salient features

- A team is sequential if and only if there exists a partial order between the system variables.

- There is no loss of optimality in restricting attention to non-randomizing decision makers.

- Data available at a DM can be ignored if it is independent of the future rewards conditioned on other data at the DM.

- Variables functionally determined from the data available at a DM can be assumed to be observed at the DM.
Graphical models – Salient features

- Any partial order gives rise to a DAG (Directed Acyclic Graph)

- A DAFG can be used to efficiently check for conditional independence using d-separation

- A DAFG can be used to efficiently check for conditional independence with deterministic nodes using D-separation
Match between features of sequential teams and graphical models
The rest is a matter of details . . .
The model

- Components of a sequential team

 ▶ A set N of indices of system variables $\{X_n, n \in N\}$.
 Finite sets $\{X_n, n \in N\}$ of state spaces of X_n
 - $A \subset N$, variables generated by DM
 - $N \setminus A$, variables generated by nature
 - $R \subset N$, reward variables

 ▶ Information sets $\{I_n, n \in N\}$, such that $I_n \subseteq \{1, \ldots, n\}$. $I_n = \prod_{i \in I_n} X_i$

 ▶ $F_{N \setminus A} = \{f_n, n \in N \setminus A\}$, where f_n is a conditional PMF X_n given I_n

 ▶ Design: $G_A = \{g_n, n \in A\}$, where g_n is a decision rule from I_n to X_n
The model

- Probability measure induced by a design
 $$P^G_A(X_N) = \prod_{n \in N \setminus A} f_n(X_n|I_n) \prod_{n \in A} I[X_n = g_n(I_n)]$$

- Optimization problem

 Minimize $$E\left\{ \sum_{n \in R} X_n \right\}$$, where the expectation is with respect to $$P^G_A$$.
Representation as a graphical model

○ Directed Acyclic Factor Graph

○ Nodes

▷ Variable node $n \equiv$ system variable X_n
▷ Factor node $\tilde{n} \equiv$ conditional PMF f_n or decision rule g_n

○ Edges

▷ (i, \tilde{n}), for each $n \in N$ and $i \in I_n$
▷ (\tilde{n}, n), for each $n \in N$

○ Acyclic Graph

▷ Sequential team \Rightarrow partial order on variable nodes \Rightarrow acyclic graph
Graphical models – Terminology

- **parents**(n)
 - \(\{m : m \rightarrow n\} \)
 - Parents of a control (factor) node = data observed by controller

- **children**(n)
 - \(\{m : n \rightarrow m\} \)
 - Children of a control node = control action

- **ancestors**(n)
 - \(\{m : \exists \text{ directed path from } m \text{ to } n\} \)
 - Ancestors of a control node = all nodes that affect the data observed

- **descendants**(n)
 - \(\{m : \exists \text{ directed path from } n \text{ to } m\} \)
 - Descendants of a control node = all nodes affected by the control action
Graphical Models – Example
Graphical Models – Variable nodes

Reward nodes

Non-reward nodes
Graphical Models – Factor nodes

Control Factors

Stochastic Factors
Graphical Models — Parents and Children

Parents

Children

Control factor node
Graphical Models – Ancestors and descendants

Ancestors

Descendants

Control factor node
Structural results

- The main idea

 If some data available at a DM is independent of future rewards given the control action and other data at the DM, then that data can be ignored.

 Can we automate this process?
Struct. result \equiv cond. independence

Graphical models can easily test conditional independence
Conditional independence

- Three canonical graphs to verify $x \perp z \mid y$

- Blocking of a trail

A trail from a to b is blocked by C if \exists a node v on the trail such that either:

- either $\rightarrow v \rightarrow$, $\leftarrow v \leftarrow$, or $\leftarrow v \rightarrow$, and $v \in C$
- $\rightarrow v \leftarrow$ and neither v nor any of v's descendants are in C.
Conditional independence

- d-separation

 A is d-separated from B by C if all trails from A to B are blocked by C

- Conditional independence

 For any probability measure \(P \) that factorizes according to a DAFG,

 \[A \text{ d-separated from } B \text{ by } C \implies X_A \text{ is conditionally independent of } X_B \text{ given } X_C, \ P \text{ a.s.} \]

- Efficient algorithms to verify d-separation

 ▶ Moral graph ▶ Bayes Ball
Automated Structural results

○ First attempt

▷ Dependent rewards: \(R_d(\tilde{n}) = R \cap \text{descendants}(\tilde{n}) \)

▷ Irrelevant data: At a control node \(\tilde{n} \), and parent \(i \) is irrelevant if \(R_d(\tilde{n}) \) is \(d \)-separate from \(i \) given parents(\(\tilde{n} \)) \(\cup \) children(\(\tilde{n} \)) \(\setminus \{i\} \)

▷ Requisite data: All parents that are not irrelevant

○ Structural result

▷ Without loss of optimality, we can remove irrelevant data.

\[u_n = g_n(\text{requisite}(\tilde{n})) \]
Structural Results for MDP – Step 1
Structural Results for MDP – Step 1

Pick node g_3.

- Original $u_3 = g_3(x_1, x_2, x_3, u_1, u_2)$
- $\text{requisite}(g_3) = \{x_3\}$
- Thus, $u_3 = g_3(x_3)$
Structural Results for MDP – Step 2
Structural Results for MDP – Step 2

- Pick node \(g_2 \).

 - Original \(u_2 = g_2(x_1,x_2,u_1) \)
 - \(\text{requisite}(g_2) = \{x_2\} \)
 - Thus, \(u_2 = g_2(x_2) \)
Structural Results for MDP — Simplified
\[u_n = g_n(\text{requisite}(\tilde{n})) \]

Does not work for all problems . . .
even when structural simplification is possible
A real-time source coding problem

Mathematical Model

- Source: First order Markov source \(\{x_t, \ t = 1, \ldots \} \)
- Real-time source coder: \(y_t = c_t(x(1:t), y(1:t-1)) \)
- Finite memory decoder: \(\hat{x}_t = g_t(y_t, m_{t-1}) \)
- \(m_t = l_t(y_t, m_{t-1}) \)
- Cost: \(d_t = \rho_t(x_t, \hat{x}_t) \)
Model for real-time comm – Does not simplify
Need to take care of deterministic variables!
Functionally determined nodes

- **Functionally determined**
 - X_B is functionally determined by X_A if $X_B \perp X_N \mid X_A$

- **Conditional independence with functionally determined nodes**
 - Can be checked using **D-separation**
 - Similar to d-sep: in the defn of blocking change “in C” by “is func detm by C”

- **Blocking of a trail (version that takes care of detm nodes)**
 - A trail from a to b is blocked by C if \exists a node v on the trail such that either:
 - either $\to v \to$, $\leftarrow v \leftarrow$, or $\leftarrow v \to$, and v is functionally determined by C
 - $\to v \leftarrow$ and neither v nor any of v’s descendants are in $C.$
Automated Structural results

- Second attempt
 - Irrelevant data: Change d-separation by D-separation
 - Requisite data: All parents that are not irrelevant

- Structural result
 - Without loss of optimality, we can remove irrelevant data and add appropriate functionally determined data

\[u_n = g_n(\text{requisite}(\tilde{n}), \text{functionally}_\text{detm}(\tilde{n}) \cap \text{ancestors}(R_d(\tilde{n}))) \]
Let's try this!
Structural Results for Dec MDP – Step 1
Structural Results for Dec MDP – Step 2

d1 d2 d3
f1 ρ1 f2 ρ2 f3 ρ3
x1 y1 ˆx1 m1 x2 y2 ˆx2 m2 x3 y3 ˆx3
c1 g1 l1 c2 g2 l2 c3 g3
Structural Results for Dec MDP – Step 3
Structural Results for Dec MDP – Step 4
Structural Results for Dec MDP – Step 5
Structural Results for Dec MDP – Step 6
Structural Results for Dec MDP – Step 7
Structural Results for Dec MDP – Step 8
Structural Results for Dec MDP – Step 9
Structural Results for Dec MDP – Step 10
Structural Results for Dec MDP – Step 11
Structural Results for Dec MDP – Step 12
Structural Results for Dec MDP – Step 13
Structural Results for Dec MDP – Step 14

d
1
d
2
d
3

f
1
ρ
1

f
2
ρ
2

f
3
ρ
3

x
1
y
1
ˆx
1
m
1

x
2
y
2
ˆx
2
m
2

x
3
y
3
ˆx
3

C:
c
1
G:
g
1
L:
l
1
c
2
G:
g
2
L:
l
2
c
3
G:
g
3
Structural Results for real-time communication

○ Graphically

○ Mathematically

▷ Original Encoder: \(y_t = c_t(x_1, \ldots, x_t, y_1, \ldots, y_{t-1}) \)

▷ New encoder: \(y_t = c_t(x_t, m_{t-1}) \)
Automated Structural results

- Simplify Once
 - For each control node
 - Find irrelevant nodes and functionally determined nodes.
 - Remove edges from irrelevant nodes, add edges from functionally determined nodes.

- Find fixed point
 - Keep on simplifying until the graph does not change

- Software Implementation
 - A EDSL to find structural results
 http://pantheon.yale.edu/~am894/code/teams/
Conclusion
Conclusion

An automated method to derive structural results for sequential teams

○ Future Directions

▷ Belief States
▷ Sequential decomposition
Thank you