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Abstract— We consider a model for optimal decision referrals
in human-automation teams performing binary classification
tasks. The automation observes a batch of independent tasks,
analyzes them, and has the option to refer a subset of them to a
human operator. The human operator performs fresh analysis
of the tasks referred to him. Our key modeling assumption is
that the human performance degrades with workload (i.e., the
number of tasks referred to human). We model the problem as
a stochastic optimization problem. We first consider the special
case when the workload of the human is pre-specified. We show
that in this setting it is optimal to myopically refer tasks which
lead to the largest reduction in the conditional expected cost
until the desired workload target is met. We next consider the
general setting where there is no constraint on the workload.
We leverage the solution of the previous step and provide a
search algorithm to efficiently find the optimal set of tasks to
refer. Finally, we present a numerical study to compare the
performance of our algorithm with some baseline allocation
policies.

I. INTRODUCTION

In recent years there has been a significant interest in
developing collaborative systems where automated agents
team with human operators to perform a collaborative task
such as monitoring an environment [1] or an industrial
control system [2], manipulating objects [3], identifying dy-
namic threats or searching for objects in military and public
safety applications [4], etc. To enable effective collaboration
between an automated agent and a human operator, it is
critical to design appropriate information sharing strategies
that can lead to optimal decisions by the team. In this
paper, we develop such a strategy for binary classification
tasks performed by a human operator with the help of an
automated decision support system (DSS).

The literature developing quantitative models for collab-
orative decision-making and workload distribution in mixed
human-automation teams with hierarchical structure is rela-
tively limited, despite the increasing use of such systems [5]–
[7]. In contrast, much work has been done on distributed and
collaborative decision-making in purely automated systems
[8]–[11]. In the classical distributed or decentralized hypoth-
esis testing problem, multiple sensors or decision makers
receive observations depending on the true state of nature,
which is the same for all of them. They might transmit either
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all or part of this information to a central entity making
the final decisions, or they might try to achieve a consensus
decision without a central coordinator. However, this litera-
ture does not take into account the impact on the decision
maker performance of various human characteristics such
as cognitive workload, fatigue, trust or belief in automation
capability [2], [12]–[14].

Important factors to consider when forming human-
automation teams are the dependence of human performance
on workload [15] and an appropriate allocation of tasks
between the automation and human operators [16]. There
has been some work on decision queues where a sequence
of general tasks arrive at a human operator, modeled as
a server with utilization-dependent performance [17]. Two
important classes of problems in this context relate to task
release policies stabilizing the queues [18]–[21] and optimal
time or attention allocation policies for human operators
[22]. However, in these papers the nature of the tasks is
abstracted, so that the solutions proposed do not typically
apply to collaborative decision-making problems.

In [12], a problem of allocating independent classification
tasks between a human and an automated decision system is
considered. The human’s decision performance depends on
her workload, whereas her willingness to follow the task
allocation suggested by the DSS depends on her trust in
the capability of the automation. A collaborative decision-
making architecture closer to the situation considered in
this paper is studied in [23], [24]. A mixed-initiative team
consisting of a DSS and a human performs classification
tasks by following a two-step strategy: for a given task
the DSS first examines the data, then either immediately
makes a classification decision or refers the task to the
human operator. The human acts as a second classifier,
whose performance is task dependent. Such an architecture
allows the optimization of the overall system performance
by focusing the limited cognitive resources of the human
operator on the tasks that are most difficult for the DSS.

The human-automation decision-making architecture con-
sidered in this paper is similar to that of [23]. One important
difference is that we consider a finite set of tasks available
from the start, whereas [23] focuses on a generic task in
a steady-state environment. As a result, our definition of
workload is different: it corresponds to all the tasks actually
handled by the operator in our set-up, whereas it can be more
easily interpreted as a probability of task referral by the DSS
in [23]. Moreover, the analysis we perform here is general
and does not depend on assuming specific probabilistic
models (e.g., Gaussian or binary observations), as in [23].
The decision-making algorithm for the DSS that we develop



here is also provably optimal, whereas [23] optimizes the
parameters of a specific task referral heuristic, for specific
classification error costs.

The rest of the paper is organized as follows. In Section II,
we present the system model and problem formulation for
decision referrals. In Section III, we present an algorithm to
obtain the optimal policy for decision referrals. In Section
IV, we compare the performance of the proposed algorithm
with a few baseline allocation schemes. We conclude in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a DSS consisting of an automation and a
human performing binary classification on a batch of tasks.
The batch consists of K independent identically distributed
tasks and we use K := {1, . . . ,K} to denote the entire
batch. Each task k ∈ K has a binary state Hk ∈ {H0,H1}.
The automation and the human receive an observation for
each task. We use Y1,k ∈ Y1 and Y2,k ∈ Y2 to denote
the observations received by the automation and the human,
respectively, for task k ∈ K. These observations are random
variables which depend on the true state Hk.

The states H1:K are independent across tasks, the obser-
vations Y1,1:K and Y2,1:K are independent and identically
distributed across tasks, and for every task k ∈ K, the
observations Y1,k and Y2,k are conditionally independent
given Hk.

The DSS operates as follows. First, the automation sees
the observations Y1,1:K of the entire batch and, for each task
k ∈ K, decides to either classify the task as H0 or H1 or
to refer (i.e., transfer) the task to the human. Let N ⊆ K
denote the indices of the tasks referred to the human. The
human then sees the observations {Y2,n}n∈N of the tasks
referred to her and classifies each of the referred task n as
H0 or H1.

A. Observation models

We assume that the automation has a static observation
model P1 : {H0,H1} → ∆(Y1). In particular,

P(Y1,1, . . . , Y1,K) =
∏
k∈K

∑
i∈{0,1}

πiP1(Y1,k|Hi)

where πi = P(Hk = Hi) denotes the prior on the state of
task k ∈ K, and is same for all tasks.

In contrast, the human observation model depends on his
workload, which is defined as the fraction w = |N |/|K|∈
[0, 1] of tasks referred to her by the automation. In partic-
ular, we assume that there is an observation model P2 :
{H0,H1} × [0, 1]→ ∆(Y2) such that

P({Y2,n}n∈N ) =
∏
n∈N

∑
i∈{0,1}

πiP2(Y2,n|Hi, w)

where w = |N |/|K| is the workload (or taskload). The
workload dependent observation model can capture a degra-
dation of observation performance for the human as the
workload increases, since the operator must dedicate less
time or cognitive resources to each individual task.

We now present two examples of observation models for
the automation and the human.

Example 1: Suppose H0 = 0 and H1 = d0. The observa-
tions of the automation are given by

Y1,k = Hk +N1,k, k ∈ K, (1)

where N1,1:K is an independent Gaussian process, indepen-
dent of H1:K , with N1,1:K ∼ N (0, σ2

1). In contrast, the
observations of the human are given by

Y2,n = Hn +N2,n, n ∈ N , (2)

where {N2,n}n∈N is also an independent Gaussian process,
which is independent of H1:K as well as N1,1:K . To capture
the performance degradation of the human with workload,
we assume that for some σ2 such that σ2

2 ≤ σ2
1 < 2σ2

2 ,

N2,n ∼ N (0, (1 + w)σ2
2), n ∈ N .

The above model has two salient features. First, the
observation noise of the human increases as a function of
workload. Second, under low workload, the observation noise
of the human is no worse than that of the automation. But at
high workload, the automation has lower observation noise
than the human. Thus, it is not universally better to allocate
all the tasks to the automation or the human.

Example 2: As in Example 1, we consider H0 = 0, H1 =
1, and the observation model of the automation is the same as
in Example 1. However, the observation model of the human
is now given as follows. For any n ∈ N ,

Y2,n|{Hn = H0} ∼ N (0, σ2
2)

Y2,n|{Hn = H1} ∼ N (d0(1− w), σ2
2).

As in Example 1, in Example 2 it becomes harder for the
human to differentiate between the two hypothesis as the
workload increases, but the actual mechanism is different.

B. Cost and Performance

Let Dk denote the final classification decision on task k ∈
K (made either by the automation or the human). We assume
that for each task k ∈ K the system incurs a cost C̄(Dk, Hk)
where

C̄(Dk, Hk) =


ctp if (Hk, Dk) = (H1,H1),

cfp if (Hk, Dk) = (H0,H1),

ctn if (Hk, Dk) = (H0,H0),

cfn if (Hk, Dk) = (H1,H0).

(3)

In addition, the system incurs a cost cm for each task referred
to the human.

Thus, if the automation decides to refer the set N ⊆ K of
tasks to the human and makes a classification decision Dk

on tasks k ∈ K \ N and the human makes a classification
decision Dn on tasks n ∈ N referred to it, then the system
incurs a cost (from the point of view of the DSS) given by

J(D1:K ,N , Y1,1:K) =
∑

k∈K\N

∑
i∈{0,1}

p1i,kC̄(Dk, Hi)

+ |N |cm +
∑
n∈N

∑
i∈{0,1}

p1i,nC̄(Dn, Hi) (4)



where p1i,k is the posterior on the state Hk given the
observation Y1,k, i.e.,

p1i,k = P(Hk = Hi|Y1,k), i ∈ {0, 1}, k ∈ K.

Note that the automation does not know the decisions
{Dn}n∈N made by the human and needs to form a posterior
belief on them. For that matter, we introduce a model for the
decisions made by the human.

C. Human Decision Model
We impose the following assumption on the decision

making of the human.
Assumption 1: For each task n ∈ N , the human decides

between H0 and H1 based only on the observation Y2,n. In
particular, the human does not have access to the automa-
tion’s observation Y1,n. The human also does not account
for the fact that the automation referred the task to her after
observing the batch Y1,1:K .

Assumption 1 can be justified based for example on the
limited time that the operator has to make a decision. Note
also that even in situations where the raw data received for
classification by the automation and the human could be
the same (for example, a picture or a text message), Y1,n
and Y2,n would still typically differ. These random variables
generally represent the high-level features detected in the raw
data by the automation’s signal processing pipeline or the
human’s cognitive process respectively, on which the final
decision would be based. Hence, it is reasonable to assume
that the human does not have access to or means to interpret
the features Y1,n detected by the automation.

Let P2,tp(w) and P2,fp(w) denote the false and true
positive probabilities of the human’s decision when operating
at a workload of w, i.e.,

P2,tp(w) = P(D2,n = H1|Hn = H1, w), ∀n ∈ N , (5a)
P2,fp(w) = P(D2,n = H1|Hn = H0, w), ∀n ∈ N . (5b)

In practice, these probabilities can be obtained through
preliminary calibration experiments with the human operator
[12], [25]. Alternatively, we discuss below through two
examples how these functions can be obtained from first-
principle reasoning.

1) Threshold-Based Classification Rule: Assume H0 <
H1 are scalar values and that the human uses a threshold-
based decision rule to make a decision, i.e., for every
workload w ∈ [0, 1] there exists a threshold τ(w) such that
for task n ∈ N , the human’s decision with observation Y2,n
is given by

Dn =

{
H0, if Y2,n < τ(w),

H1, if Y2,n ≥ τ(w).
(6)

Then, the true and false positive probabilities are given by

P2,tp(w) = P(Y2,n ≥ τ(w)|Hn = H1),

P2,fp(w) = P(Y2,n ≥ τ(w)|Hn = H0),

which can be computed by the automation from the
knowledge of the threshold τ and the observation model
P(Y2,n|Hn). We present one such example below.

Example 3: Consider the observation models of Example
1 and 2. Let Q(x) := 1√

2π

∫∞
x
e−z

2/2dz denote the tail
distribution function of the standard normal distribution. For
the model of Example 1,

P2,fp(w) = Q
(

τ(w)

σ2
√

1 + w

)
, P2,tp(w) = Q

(
τ(w)− d0
σ2
√

1 + w

)
.

For the model of Example 2,

P2,fp(w) = Q
(
τ(w)

σ2

)
, P2,tp(w) = Q

(
τ(w)− d(w)

σ2

)
.

A threshold-based rule does not have to be implemented
on Y2,n however. For example, if the human behaved as an
optimal Bayes classifier, she would choose between H0 and
H1 by using a standard Bayes likelihood ratio test [26]. One
way to write the resulting decision rule is

Dn =

{
H0, if p21,n(w) < ρth,

H1, if p21,n(w) ≥ ρth,
(7)

where p21,n(w) denotes the posterior probability of task n
having state H1 given the observation Y2,n and workload w,
i.e., p2i,n(w) := P(Hn = Hi|Y2,n, w) and

ρth =
cfp − ctn

cfp − ctn + cfn − ctp
,

where ctp , cfp and so on are the classification decision costs
given by (3). As a result, we can write the probabilities (5)
as

P2,tp(w) = P(p21,n(w) ≥ ρth|Hk = H1),

P 2
2,fp(w) = P(p21,n(w) ≥ ρth|Hk = H0).

For example, in the observation model of Example 1,
standard calculations show that the decision rule (7) can be
rewritten as a threshold-based rule (6) on Y2,k with

τ(w) =
d0
2

+
(1 + w)σ2

2

d0
ln

(
(cfp − ctn)π0
(cfn − ctp)π1

)
.

and hence P2,fp and P2,tp can be expressed again in terms
of the Q function.

2) Softmax Decision Rule: Human decision making under
uncertainty need not be Bayesian or deterministic with a
fixed classification threshold. A possible model discussed
in [13], [27] is the softmax rule, which is probabilistic and
depends on the relative expected costs of various actions.
This decision rule for the human is written as follows. For
task n ∈ N , define

Pn(w) = S
(
p21,n(w)ctp + p20,n(w)cfp

)
,

with S the sigmoid function S(x) = 1
1+e−x . Then, the

decision of the human is

Dn =

{
H1, w.p. Pn(w),

H0, w.p. 1− Pn(w).

Again, it is possible to compute the functions in (5) from
this rule and an observation model for Y2,n|Hn.



D. The optimization problem

The DSS does not need to know the complete model
according to which the human makes the decision; rather
it simply needs to know the probabilities P2,tp(w) and
P2,fn(w) given by (5). Given the probabilities, the expected
performance (averaged over the decisions made by the hu-
man) is given by

J̄(N , {Dk}k∈K\N , {p1i,1:K}i∈{0,1})

=
∑

k∈K\N

∑
i∈{0,1}

p1i,kC̄(Dk, Hi)

+ |N |cm + Γ2(N , |N |/|K|), (8)

where

Γ2(N , w) =
∑
n∈N

(
p11,n[P2,tp(w)ctp + (1− P2,tp(w))cfn ]

+ p10,n[P2,fp(w)cfp + (1− P2,fp(w))ctn ]
)
.

(9)

We are interested in the following optimization problem.
Problem 1: Given the posterior beliefs {p1i,k}k∈K, i ∈

{0, 1} of the automation, and the decision distribu-
tion P2,tp ;P2,fp : [0, 1] → [0, 1] of the hu-
man, determine N and {Dk}K\N so as to maximize
J̄(N , {Dk}k∈K\N , {p1i,1:K}i∈{0,1}) given by (8).

III. MAIN RESULTS

In this section, we present an algorithm to find the optimal
solution to Problem 1. The main idea of our algorithm is as
follows. In Section III-A we present an efficient solution for
the sub-problem where the constraint |N | to a pre-specified
value. Then, in Section III-B, we present an algorithm that
searches for the optimal solution by iterating over |N |∈
{0, 1, . . . ,K}.

A. Optimal Allocation under Fixed Workload

Suppose the workload w (or equivalently, the number |N |
of tasks to be referred) is pre-specified, and the DSS has to
choose which |N | tasks to refer to the human. For ease of
notation, let p1k = [p10,k, p

1
1,k], and define

C̄1(Dk, p
1
k) =

∑
{0,1}

p10,kC̄(Dk, Hi) (10)

and

Γ̄2(p1k, w) = p11,k [P2,tp(w)ctp + (1− P2,tp(w))cfn ]

+ p10,k [P2,fp(w)cfp + (1− P2,fp(w))ctn ] .
(11)

First, observe that if a task k is not referred to the human,
the the automation Bayes optimal decision Dk for task k is
given by

Dk =

{
H0, if C̄1(p1k,H0) ≤ C̄1(p1k,H1),

H1, otherwise.
(12)

and the expected cost for task k is

C̄∗1 (p1k) = min{C̄1(p1k,H0), C̄1(p1k,H1)}. (13)

Thus,

J̄(N , {Dk}k∈K\N , p11:K)

≥
∑

k∈K\N

C̄∗1 (p1k) + |N |cm +
∑
n∈N

Γ̄2(p1n, w)

=
∑
k∈K

C̄∗1 (p1k)−
∑
n∈N

G(p1n, |N |/|K|), (14)

where

G(p1k, w) = C̄∗1 (p1k)− Γ̄2(p1k, w)− cm. (15)

Note, the equality is achieved when the decisions
{Dk}k∈K\N are chosen according to (12). Thus, for a
fixed |N |, J̄(N , {Dk}k∈K\N , p11:K) is minimized when N
is chosen to maximize

Ḡ(N ) :=
∑
n∈N

G(p1n, |N |/|K|). (16)

Here, Ḡ(N ) is the total cost of ‘offloading’ the set of tasks
N to the human. The total cost J̄(N , {Dk}k∈K\N , p11:K) is
minimized when N is the set of states with the |N | highest
G−indices. This gives us the following result.

Lemma 1: For a pre-specified workload w = |N |/|K|,
it is optimal to allocate the tasks with the highest |N |
G−indices given by (15).

Proof: The proof follows immediately from the dis-
cussion.

Fig. 1. Numerical Example (with ctp = ctn and cfp = cfn ): The red hill is
the classification cost of the automation, C̄∗

1 (p1k), as a function of posterior
probability p11,k of hypothesis H1. The blue lines show the expected
classification cost for the human, Γ̄2(p1k, w), w ∈ {1/K, ...,K/K}. Batch
size K = 20. The cost reduction for offloading is G(p1k, w), which is the
difference between the red and blue functions.

Fig. 1 can be used to illustrate the idea of G−index. Each
task is a point p11,k ∈ [0, 1], and the G−index is difference
between the automation’s classification cost (in red) and
the human classification cost (in blue) which depends on



workload. As the workload increases the cost of human
decisions also goes up (slope increases). The total cost would
be reduced if tasks with greater G−index values are referred
to the human.

B. Optimal Workload Distribution

The task allocation strategy of Lemma 1 is optimal for
a pre-specified workload w, but is not optimal in general.
However, since there are only K + 1 possible values of
workload w, we can simply do a brute force search over all
of them to find the optimal w. As argued above, minimizing
the total expected cost is equivalent to minimizing

Ḡ∗(w) = min
N :|N |

= wK, (17)

over w ∈ {0, 1/K, . . . , 1}. Thus, the optimal workload w
can be identified by evaluating G∗(w) for all choices of w.
The complete algorithm is shown in Algorithm 1.

Algorithm 1: Optimal task allocation — Exhaustive
workload search

Input: Posterior probabilities of tasks
{
p11:K

}
Output: w∗, [aw

∗

1 , aw
∗

2 , . . . , aw
∗

K ]
for w ∈ {0, 1/K, 2/K, . . . , 1} do

Initialize awk = 0,∀k = 1, 2, . . . ,K.
Compute

[
G(p1k, w)

]
k∈K .

Indices [i1, ..., iK ]← Sort ⇓
(
[G(p1k, w)]k∈K

)
.

Allocate first wK tasks to human:
awi1 = 1, . . . , awiwK

= 1.
Compute total cost reduction for workload w:

Ḡ(w) :=
iwK∑
k=i1

G(p1k, w).

end
w∗ ← arg max Ḡ(w).
return w∗; [aw

∗

1 , aw
∗

2 , . . . , aw
∗

K ].

Theorem 1: For an arbitrary batch of K tasks with cor-
responding posterior probabilities [p11:K ], Algorithm 1 gives
the optimal workload w∗ and task allocation

[
aw
∗

k

]
k∈K .

Proof: From Lemma 1 we see that for fixed work-
load w, the optimal allocation has wK tasks assigned to
the human. As the first term

∑K
k=1 C

∗
1 (p1k) in (14) re-

mains constant, the workload value maximizing the term∑
n∈N Γ̄2(p1n)+cm over the entire batch minimizes the cost.

This value w∗ is found by Algorithm 1 by exhaustive search
over all possible workload values.

To close this section, we consider a special situation where
the optimal decision rule for the automation has an intuitive
form.

Corollary 1: If the human behaves as an optimal Bayes
classifier, the priors are uniform P(Hk = H1) = P(Hk =
H0) and the decision costs satisfy ctp = ctn = 0 and cfn =
cfp , it is optimal for a given workload value w to allocate wK
tasks to the human with the lowest values of

∣∣∣p11,k − 1
2

∣∣∣ , k ∈
K.

IV. NUMERICAL SIMULATIONS

In this section we present a simulation experiment to
compare the performance of the proposed algorithms with
other baseline allocation schemes.

We consider the observation model of Example 2 with
d0 = 3 and π = [0.8, 0.2]. The other parameters are chosen
randomly according to σ1 ∼ U(1.5, 2), σ2 ∼ U(1, 1.5),
{cfp , cfn} ∼ U(8, 12), {ctp , ctn} ∼ U(0, 2) and cm ∼
U(0, 0.5). Here, U(a, b) denotes uniform distribution over
the interval [a, b]. We compare the performance of the
optimal policy with the following baselines:

• Blind allocation (BA), which decides on a workload
w∗ba before seeing the batch Y1,1:K and refers w∗ba |K|
tasks to the human at random. The choice of w∗ba in
this case is given by

w∗ba = arg min
w∈W
{(1− w)E1 + wE2(w)},

where

E1 = π1(P1,tpctp + (1− P1,tp)cfn)

+ π0(P1,fpcfp + (1− P1,fp)ctn),

E2(w) = cm + π1(P2,tp(w)ctp + (1− P2,tp(w))cfn)

+ π0(P2,fp(w)cfp + (1− P2,fp(w))ctn).

• Static allocation (SA), which decides on the workload
w∗sa before seeing the batch Y1,1:K , but then refers
w∗sa |K| tasks to the human according to Lemma 1. The
choice of w∗sa in this case is given by

w∗sa = arg min
w∈W

Ep11:K

[
min

[awk ]k∈K

K∑
k=1

C(p1k, a
w
k )

]
, (18)

C(p11,k, a
w
k ) = (1− awk )C1(p11,k) + awk Γ̄2(p11,k, w),

where allocation vector [awk ]k∈K is for workload w with∑K
k=1 a

w
k = wK.

We choose 25 values of {σ1, σ2, cfp , cfn , {ctp , ctn , cm} at
random as described above. For each choice of these parame-
ters, we generate 2000 batches of size K = 20. The expected
performance as well as the standard deviation of performance
for each problem instance is shown in Fig. 2. The workload
allocation to humans under the different policies is shown in
Fig. 3.

The results show that decision referral has better perfor-
mance and less variance (about 17% less cost and 3% less
standard deviation) than blind allocation. It is also interesting
to note that across the different instances, blind allocation
has a higher variation of human workload than decision
referrals. Finally, static allocation performs almost as well
as the optimal allocation in almost all cases, suggesting that
it may be a useful practical alternative.

Fig. 3 shows the workload allocations to the human under
various policies. Blind allocation policy assigns either very
low or very high workloads to the human.



Fig. 2. Comparison of various policies for 25 distinct problem instances,
for batch size K = 20. [left] Average cost [right] Standard deviations of
costs

Fig. 3. Average workload allotted to human by various policies, over 25
distinct problem instances, for batch size K = 20.

V. CONCLUSION

In this paper a decision referral problem is formulated
for a human-automation team jointly performing binary
classification tasks. The decision support system needs to
decide which tasks should be referred to the human for
final classification decisions, after performing a first analysis
of the data. An algorithm for finding the optimal referral
decisions is presented. The proposed decision model only
requires the true and false positive rates of the ‘human
classifier’ as a function of time, and does not need any
other information about human decision making process.
Numerical simulations illustrate the benefits of the informed
allocation policies over static blind task allocation scheme.
Simulations also suggest that informed allocation heuristics
which are close to optimal can be devised and employed
based on convenience of implementation.

In the future we plan to validate the proposed model
through experiments with human participants.
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