Decision Referrals in Human-Automation Teams

Kesav Kaza¹, Jerome Le Ny¹ and Aditya Mahajan² ¹Polytechnique Montreal ²McGill University **IEEE CDC 2021** 14 December 2021

- Automation is coming into the domains of both physical (manufacturing, assembly, etc) and mental tasks (data analysis and decision making)
- Data driven decision support systems (DSS) are an important area of interest in various applications
- \diamond Automation and humans have different models of decision making
 - Automation is good at number crunching
 - Humans are good at reasoning with quick mental models
- \diamond In collaborative decision making both these strengths can be utilized.

- Distributed collaborative systems, distributed hypothesis testing with purely automated agents [Tsitsiklis 1993, Tartakovsky et al 2014]
- Dependence of human performance on workload in human factors engineering literature [Tulga and Sheridan 1980, Wickens et al 2015]
- Decision queues where human is modeled as a server with utilization-dependent performance [Jog 2021]
- Task allocation in mixed initiative systems [Hyun et al 2015, Dubois 2020]

- Human-automation team for binary classification tasks
- 🔶 Hierarchical structure
 - $\diamond\,$ The automation takes first pass at a batch of tasks (say ${\cal K})$
 - ♦ It decides which subset $\mathcal{N} \subseteq \mathcal{K}$ of tasks need to be referred to human for review and final decision
 - $\diamond\,$ For all the other tasks (${\cal K}\setminus {\cal N}),$ the automation makes the final classification decision
- Problem statement : Given a batch (set) of binary classification tasks find the "optimal" subset of tasks to be referred to the human.

Application Scenario

Figure 1: A simulation of a radar screen which shows targets which can be either hostile or non-hostile

- Batch of *K i.i.d.* binary classification tasks, $\mathcal{K} = \{1, 2, \dots, K\}$.
- Each task $k \in \mathcal{K}$ has true state $H_k \in \{\mathcal{H}_0, \mathcal{H}_1\}$.
- ◆ The states are i.i.d. across states with prior $\pi_i = \mathbb{P}(H_k = \mathcal{H}_i), i \in \{0, 1\}.$
- 🔶 For task *k*,
 - \diamond the automation observes $Y_{1,k} \in \mathcal{Y}_1$
 - ♦ the human observes $Y_{2,k} \in \mathcal{Y}_2$
- Observations are random variables which depend on the true state H_k
- Observations are i.i.d. across tasks but conditionally dependent on the states

Observation models

Automation observation model - Static

♦ Conditional distributions over observation values $P_1: \{\mathcal{H}_0, \mathcal{H}_1\} \rightarrow \Delta(\mathcal{Y}_1).$

$$\mathbb{P}(Y_{1,1},\ldots,Y_{1,K})=\prod_{k\in\mathcal{K}}\sum_{i\in\{0,1\}}\pi_iP_1(Y_{1,k}|\mathcal{H}_i)$$

♦ Example - Let H₀ = 0 and H₁ = d₀. The observations of the automation are given by

$$Y_{1,k} = H_k + N_{1,k}, \quad k \in \mathcal{K},$$

 $N_{1,1:K}$ is an independent Gaussian process, independent of $H_{1:K}$, with $N_{1,1:K} \sim Normal(0, \sigma_1^2)$.

Human observation models (Examples)

- 🔶 Human observation models Workload dependent
- ♦ Workload is defined as the fraction w = |N|/|K|∈ [0,1] of tasks referred to the human by the automation

$$\diamondsuit P_2: \{\mathcal{H}_0, \mathcal{H}_1\} \times [0,1] \to \Delta(\mathcal{Y}_2)$$

$$\mathbb{P}(\lbrace Y_{2,n}\rbrace_{n\in\mathcal{N}})=\prod_{n\in\mathcal{N}}\sum_{i\in\{0,1\}}\pi_iP_2(Y_{2,n}|\mathcal{H}_i,w)$$

Example 1 - AWGN channel with workload-dependent variance

$$Y_{2,n} = H_n + N_{2,n}, \quad n \in \mathcal{N}$$

◆ The performance degradation of the human with workload can be captured by assuming that, for some σ₂ such that $\sigma_2^2 \le \sigma_1^2 < 2\sigma_2^2$, $N_{2,n} \sim Normal(0, (1+w)\sigma_2^2), n \in \mathcal{N}.$

Example 2 - AWGN channel with workload-dependent mean

$$egin{aligned} &Y_{2,n}|\{H_n=\mathcal{H}_0\}\sim \textit{Normal}(0,\sigma_2^2)\ &Y_{2,n}|\{H_n=\mathcal{H}_1\}\sim \textit{Normal}(d_0(1-w),\sigma_2^2) \end{aligned}$$

- ◆ For each task n ∈ N, the human decides between H₀ and H₁ based only on the observation Y_{2,n}
- \diamond Human does not have access to the automation's observation $Y_{1,n}$.
- The human also does not account that the automation referred the task after looking at the entire batch

- The human's classification capability is characterized by the true and false positive rates as function of workload
- When operating at a workload of w, the human's capability is characterized by

$$\begin{split} P_{2,\mathrm{tp}}(w) &= \mathbb{P}(D_{2,n} = \mathcal{H}_1 | \mathcal{H}_n = \mathcal{H}_1, w), \quad \forall n \in \mathcal{N}, \\ P_{2,\mathrm{fp}}(w) &= \mathbb{P}(D_{2,n} = \mathcal{H}_1 | \mathcal{H}_n = \mathcal{H}_0, w), \quad \forall n \in \mathcal{N}. \end{split}$$

Automation does not know the human decision model exactly
 It knows the values of true and false positive rates for each workload level

Problem formulation

- Classification decision costs
 - ♦ The cost of final classification decision D_k for task k is

$$\bar{C}(D_k, H_k) = \begin{cases} c_{tp} & \text{if } (H_k, D_k) = (\mathcal{H}_1, \mathcal{H}_1), \text{true positive} \\ c_{fp} & \text{if } (H_k, D_k) = (\mathcal{H}_0, \mathcal{H}_1), \text{false positive} \\ c_{tn} & \text{if } (H_k, D_k) = (\mathcal{H}_0, \mathcal{H}_0), \text{true negative} \\ c_{fn} & \text{if } (H_k, D_k) = (\mathcal{H}_1, \mathcal{H}_0), \text{false negative}. \end{cases}$$

Referral decision costs

- $\diamond~$ Subset $\mathcal{N}\subseteq \mathcal{K}$ referred to the human
- The total referral decision cost from the point of view of the automation is

$$|\mathcal{N}|c_m + \sum_{n \in \mathcal{N}} \sum_{i \in \{0,1\}} p_{i,n}^1 \bar{C}(D_n, H_i),$$

where $p_{i,n}^1$ is the posterior on the state H_k computed by the automation given the observation $Y_{1,n}$

Optimization problem

- Given the posterior beliefs {p¹_{i,k}}_{k∈K}, i ∈ {0,1} of the automation, and the decision distribution P_{2,tp}; P_{2,fp} : [0,1] → [0,1] of the human, determine N and {D_k}_{K∖N} so as to minimize the total cost.
- Total cost = Cost of automation classification decisions + Cost of human classification decisions
- Cost of human classification decisions depends on the posterior probabilities of tasks and the true and false positive rates of the human

$$\begin{split} \Gamma_2(\mathcal{N},w) &= \sum_{n \in \mathcal{N}} \Bigl(p_{1,n}^1 [P_{2,\text{tp}}(w) c_{\text{tp}} + (1-P_{2,\text{tp}}(w)) c_{\text{fn}}] \\ &+ p_{0,n}^1 [P_{2,\text{fp}}(w) c_{\text{fp}} + (1-P_{2,\text{fp}}(w)) c_{\text{tn}}] \Bigr). \end{split}$$

Optimal Decision Referral Scheme

• G-indices :
$$G(p_k^1, w) \coloneqq \overline{C}_1^*(p_k^1) - \overline{\Gamma}_2(p_k^1, w) - c_m$$
.

 $^{\diamond}$ G–index of a task is the cost reduced by referring it to the human

Lemma

For a pre-specified workload $w = |\mathcal{N}|/|\mathcal{K}|$, it is optimal to allocate the tasks with the highest $|\mathcal{N}|$ *G*-indices to the human.

$$\bar{G}(\mathcal{N}) \coloneqq \sum_{n \in \mathcal{N}} G(p_n^1, |\mathcal{N}|/|\mathcal{K}|).$$
(1)

The total expected cost is equivalent to minimizing

$$\bar{G}^*(w) = \min_{\mathcal{N}:|\mathcal{N}|} = wK,$$
(2)

The optimal workload w can be identified by evaluating G*(w) for all choices of w.

Numerical Examples

Figure 2: The red hill is the classification cost of the automation, $\bar{C}_1^*(p_k^1)$, as a function of posterior probability $p_{1,k}^1$ of hypothesis \mathcal{H}_1 . The blue lines show the expected classification cost for the human, $\bar{\Gamma}_2(p_k^1, w)$, $w \in \{1/K, ..., K/K\}$. Batch size K = 20. The cost reduction for offloading is $G(p_k^1, w)$, which is the difference between the red and blue functions. ($c_{tp} = c_{tn}$ and $c_{fp} = c_{fn}$.)

Blind allocation (BA), which decides on a workload w^{*}_{ba} before seeing the batch Y_{1,1:K} and refers w^{*}_{ba}|K| tasks to the human at random.

$$w_{ba}^* = \arg \min_{w \in \mathcal{W}} \{ (1 - w)E_1 + wE_2(w) \},$$

Static allocation (SA), which uses a fixed workload w_{sa}^{*}, but then refers the tasks in an informed manner according to Lemma 1.

Numerical simulations

Figure 3: Comparison of various policies for 25 distinct problem instances, for batch size K = 20. *[left]* Average cost *[right]* Standard deviations of costs

Numerical simulations

Figure 4: Average workload allotted to human by various policies, over 25 distinct problem instances, for batch size K = 20.

- Informed allocation policies are better than static, blind task allocation schemes
- Informed allocation heuristics which are close to optimal can be devised and employed based on convenience of implementation
- We plan to validate the proposed model through experiments with human participants.
- Other human factors such as fatigue, trust in the automation may be considered.

- J. N. Tsitsiklis, "Decentralized detection," in Advances in Statistical Signal Processing, 1993, pp. 297—344.
- A. Tartakovsky, I. Nikiforov, and M. Basseville, "Sequential analysis: Hypothesis testing and changepoint detection," CRC Press, 2014.
- M. K. Tulga and T. B. Sheridan, "Dynamic decisions and work load in multitask supervisory control," IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, no. 5, pp. 217–232, 1980.
- C. D. Wickens, J. G. Hollands, S. Banbury, and R. Parasuraman, "Engineering psychology and human performance," Psychology Press, 2015.

- V. Jog, R. J. La, and N. C. Martins, "Channels, remote estimation and queueing systems with a utilization-dependent component: A unifying survey of recent results," CoRR, vol. abs/1905.04362, 2021.
- B. Hyun, M. Faied, P. Kabamba, and A. Girard, "Mixed-initiative nested classification by optimal thresholding," in 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 7653–7658.
- C. Dubois and J. Le Ny, "Adaptive task allocation in human-machine teams with trust and workload cognitive models," in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 3241–3246.